1932

Abstract

We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, K (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1–3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones— oxytocin, estrogen, and progesterone—modulate and integrate excitability throughout gestation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-032420-035509
2021-02-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-032420-035509.html?itemId=/content/journals/10.1146/annurev-physiol-032420-035509&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Winkler M, Rath W. 1999. Changes in the cervical extracellular matrix during pregnancy and parturition. J. Perinat. Med. 27:45–60
    [Google Scholar]
  2. 2. 
    Vink J. 2020. The potential role of the cervix in myometrial function. Curr. Opin. Physiol. 13:33–37
    [Google Scholar]
  3. 3. 
    Noble K, Zhang J, Wray S 2006. Lipid rafts, the sarcoplasmic reticulum and uterine calcium signalling: an integrated approach. J. Physiol. 570:29–35
    [Google Scholar]
  4. 4. 
    Shynlova O, Tsui P, Jaffer S, Lye SJ 2009. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur. J. Obstet. Gynecol. Reprod. Biol. 144:Suppl. 1S2–10
    [Google Scholar]
  5. 5. 
    Kajuluri LP, Li Y, Morgan KG 2020. The uterine myocyte, contractile machinery and proteins of the myometrium and their relationship to the dynamic nature of myometrial function. Curr. Opin. Physiol. 13:14–19
    [Google Scholar]
  6. 6. 
    Yu JT, Lopez Bernal A 1998. The cytoskeleton of human myometrial cells. J. Reprod. Fertil. 112:185–98
    [Google Scholar]
  7. 7. 
    Small JV, Gimona M. 1998. The cytoskeleton of the vertebrate smooth muscle cell. Acta Physiol. Scand. 164:341–48
    [Google Scholar]
  8. 8. 
    Burdyga T, Wray S, Noble K 2007. In situ calcium signaling: no calcium sparks detected in rat myometrium. Ann. N. Y. Acad. Sci. 1101:85–96
    [Google Scholar]
  9. 9. 
    Wray S, Burdyga T. 2010. Sarcoplasmic reticulum function in smooth muscle. Physiol. Rev. 90:113–78
    [Google Scholar]
  10. 10. 
    Noble D, Borysova L, Wray S, Burdyga T 2014. Store-operated Ca2+ entry and depolarization explain the anomalous behaviour of myometrial SR: effects of SERCA inhibition on electrical activity, Ca2+ and force. Cell Calcium 56:188–94
    [Google Scholar]
  11. 11. 
    Gonzalez-Cobos JC, Trebak M. 2010. TRPC channels in smooth muscle cells. Front. Biosci 15:1023–39
    [Google Scholar]
  12. 12. 
    Dalrymple A, Slater DM, Poston L, Tribe RM 2004. Physiological induction of transient receptor potential canonical proteins, calcium entry channels, in human myometrium: influence of pregnancy, labor, and interleukin-1β. J. Clin. Endocrinol. Metab. 89:1291–300
    [Google Scholar]
  13. 13. 
    Singh V, Ram M, Kandasamy K, Thangamalai R, Choudhary S et al. 2015. Molecular and functional characterization of TRPV4 channels in pregnant and nonpregnant mouse uterus. Life Sci 122:51–58
    [Google Scholar]
  14. 14. 
    Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM 2002. Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol. Hum. Reprod. 8:946–51
    [Google Scholar]
  15. 15. 
    Miyoshi H, Boyle MB, MacKay LB, Garfield RE 1996. Voltage-clamp studies of gap junctions between uterine muscle cells during term and preterm labor. Biophys. J. 71:1324–34
    [Google Scholar]
  16. 16. 
    Garfield RE, Sims S, Daniel EE 1977. Gap junctions: their presence and necessity in myometrium during parturition. Science 198:958–60
    [Google Scholar]
  17. 17. 
    Turton P, Neilson JP, Quenby S, Burdyga T, Wray S 2009. A short review of twin pregnancy and how oxytocin receptor expression may differ in multiple pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 144:Suppl. 1S40–44
    [Google Scholar]
  18. 18. 
    Noble K, Wray S. 2002. The role of the sarcoplasmic reticulum in neonatal uterine smooth muscle: enhanced role compared to adult rat. J. Physiol. 545:557–66
    [Google Scholar]
  19. 19. 
    Young RC. 2018. The uterine pacemaker of labor. Best Pract. Res. Clin. Obstet. Gynaecol. 52:68–87
    [Google Scholar]
  20. 20. 
    Wang SY, Yoshino M, Sui JL, Wakui M, Kao PN, Kao CY 1998. Potassium currents in freshly dissociated uterine myocytes from nonpregnant and late-pregnant rats. J. Gen. Physiol. 112:737–56
    [Google Scholar]
  21. 21. 
    Duquette RA, Shmygol A, Vaillant C, Mobasheri A, Pope M et al. 2005. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking?. Biol. Reprod. 72:276–83
    [Google Scholar]
  22. 22. 
    Cretoiu SM, Radu BM, Banciu A, Banciu DD, Cretoiu D et al. 2015. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem. Cell Biol. 143:83–94
    [Google Scholar]
  23. 23. 
    Young RC. 2016. Mechanotransduction mechanisms for coordinating uterine contractions in human labor. Reproduction 152:R51–61
    [Google Scholar]
  24. 24. 
    Jones K, Shmygol A, Kupittayanant S, Wray S 2004. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflügers Arch 448:36–43
    [Google Scholar]
  25. 25. 
    Miyoshi H, Urabe T, Fujiwara A 1991. Electrophysiological properties of membrane currents in single myometrial cells isolated from pregnant rats. Pflügers Arch 419:386–93
    [Google Scholar]
  26. 26. 
    Casteels R, Kuriyama H. 1965. Membrane potential and ionic content in pregnant and non-pregnant rat myometrium. J. Physiol. 177:263–87
    [Google Scholar]
  27. 27. 
    Parkington HC, Tonta MA, Brennecke SP, Coleman HA 1999. Contractile activity, membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy and during labor. Am. J. Obstet. Gynecol. 181:1445–51
    [Google Scholar]
  28. 28. 
    Parkington HC, Coleman HA. 1990. The role of membrane potential in the control of uterine motility. Uterine Function: Molecular and Cellular Aspects ME Carsten, JD Miller 195–248 New York: Plenum
    [Google Scholar]
  29. 29. 
    Bengtsson B, Chow EM, Marshall JM 1984. Activity of circular muscle of rat uterus at different times in pregnancy. Am. J. Physiol. 246:C216–23
    [Google Scholar]
  30. 30. 
    Buhimschi C, Boyle MB, Saade GR, Garfield RE 1998. Uterine activity during pregnancy and labor assessed by simultaneous recordings from the myometrium and abdominal surface in the rat. Am. J. Obstet. Gynecol. 178:811–22
    [Google Scholar]
  31. 31. 
    Garfield RE, Maner WL. 2007. Physiology and electrical activity of uterine contractions. Semin. Cell Dev. Biol. 18:289–95
    [Google Scholar]
  32. 32. 
    Lammers WJ. 2013. The electrical activities of the uterus during pregnancy. Reprod. Sci. 20:182–89
    [Google Scholar]
  33. 33. 
    Burdyga T, Borisova L, Burdyga AT, Wray S 2009. Temporal and spatial variations in spontaneous Ca events and mechanical activity in pregnant rat myometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 144:Suppl. 1S25–32
    [Google Scholar]
  34. 34. 
    Lutton EJ, Lammers W, James S, van den Berg HA, Blanks AM 2018. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat. J. Physiol. 596:2841–52
    [Google Scholar]
  35. 35. 
    Kanda S, Kuriyama H. 1980. Specific features of smooth muscle cells recorded from the placental region of the myometrium of pregnant rats. J. Physiol. 299:127–44
    [Google Scholar]
  36. 36. 
    Lutton EJ, Lammers WJEP, James S, van den Berg HA, Blanks AM 2017. A computational method for three-dimensional reconstruction of the microarchitecture of myometrial smooth muscle from histological sections. PLOS ONE 12:e0173404
    [Google Scholar]
  37. 37. 
    Garfield RE, Lucovnik M, Chambliss L, Qian X 2020. Monitoring the onset and progress of labor with electromyography in pregnant women. Curr. Opin. Physiol. 13:94–101
    [Google Scholar]
  38. 38. 
    Blanks AM, Eswaran H. 2020. Measurement of uterine electrophysiological activity. Curr. Opin. Physiol. 13:38–42
    [Google Scholar]
  39. 39. 
    Atia J, McCloskey C, Shmygol AS, Rand DA, van den Berg HA, Blanks AM 2016. Reconstruction of cell surface densities of ion pumps, exchangers, and channels from mRNA expression, conductance kinetics, whole-cell calcium, and current-clamp voltage recordings, with an application to human uterine smooth muscle cells. PLOS Comput. Biol. 12:e1004828
    [Google Scholar]
  40. 40. 
    Hofmann F, Flockerzi V, Kahl S, Wegener JW 2014. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol. Rev. 94:303–26
    [Google Scholar]
  41. 41. 
    Shmigol AV, Eisner DA, Wray S 1998. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J. Physiol. 511:Part 3803–11
    [Google Scholar]
  42. 42. 
    Robinson H, Wray S. 2012. A new slow releasing, H2S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. PLOS ONE 7:e46278
    [Google Scholar]
  43. 43. 
    Monir-Bishty E, Pierce SJ, Kupittayanant S, Shmygol A, Wray S 2003. The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG 110:1050–56
    [Google Scholar]
  44. 44. 
    Taggart MJ, Menice CB, Morgan KG, Wray S 1997. Effect of metabolic inhibition on intracellular Ca2+, phosphorylation of myosin regulatory light chain and force in rat smooth muscle. J. Physiol. 499:Part 2485–96
    [Google Scholar]
  45. 45. 
    Chien EK, Saunders T, Phillippe M 1996. The mechanisms underlying Bay K 8644-stimulated phasic myometrial contractions. J. Soc. Gynecol. Investig. 3:106–12
    [Google Scholar]
  46. 46. 
    Sun H, Leblanc N, Nattel S 1997. Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am. J. Physiol. 272:H1625–35
    [Google Scholar]
  47. 47. 
    Collins PL, Moore JJ, Lundgren DW, Choobineh E, Chang SM, Chang AS 2000. Gestational changes in uterine L-type calcium channel function and expression in guinea pig. Biol. Reprod. 63:1262–70
    [Google Scholar]
  48. 48. 
    Mershon JL, Mikala G, Schwartz A 1994. Changes in the expression of the L-type voltage-dependent calcium channel during pregnancy and parturition in the rat. Biol. Reprod. 51:993–99
    [Google Scholar]
  49. 49. 
    Inoue Y, Sperelakis N. 1991. Gestational change in Na+ and Ca2+ channel current densities in rat myometrial smooth muscle cells. Am. J. Physiol. 260:C658–63
    [Google Scholar]
  50. 50. 
    Longo M, Jain V, Vedernikov YP, Hankins GD, Garfield RE, Saade GR 2003. Effects of L-type Ca2+-channel blockade, K+ATP-channel opening and nitric oxide on human uterine contractility in relation to gestational age and labour. Mol. Hum. Reprod. 9:159–64
    [Google Scholar]
  51. 51. 
    Tezuka N, Ali M, Chwalisz K, Garfield RE 1995. Changes in transcripts encoding calcium channel subunits of rat myometrium during pregnancy. Am. J. Physiol. 269:C1008–17
    [Google Scholar]
  52. 52. 
    Young RC, Smith LH, McLaren MD 1993. T-type and L-type calcium currents in freshly dispersed human uterine smooth muscle cells. Am. J. Obstet. Gynecol. 169:785–92
    [Google Scholar]
  53. 53. 
    Blanks AM, Zhao ZH, Shmygol A, Bru-Mercier G, Astle S, Thornton S 2007. Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium. J. Physiol. 581:915–26
    [Google Scholar]
  54. 54. 
    Fry CH, Sui G, Wu C 2006. T-type Ca2+ channels in non-vascular smooth muscles. Cell Calcium 40:231–39
    [Google Scholar]
  55. 55. 
    Ohkubo T, Inoue Y, Kawarabayashi T, Kitamura K 2005. Identification and electrophysiological characteristics of isoforms of T-type calcium channel Cav3.2 expressed in pregnant human uterus. Cell. Physiol. Biochem. 16:245–54
    [Google Scholar]
  56. 56. 
    Greenwood IA. 2020. Trying to keep calm in troubled times: the role of K channels in uterine physiology. Curr. Opin. Physiol. 13:1–5
    [Google Scholar]
  57. 57. 
    Teramoto N. 2006. Physiological roles of ATP-sensitive K+ channels in smooth muscle. J. Physiol. 572:617–24
    [Google Scholar]
  58. 58. 
    Chien EK, Zhang Y, Furuta H, Hara M 1999. Expression of adenosine triphosphate-sensitive potassium channel subunits in female rat reproductive tissues: overlapping distribution of messenger ribonucleic acid for weak inwardly rectifying potassium channel subunit 6.1 and sulfonylurea-binding regulatory subunit 2. Am. J. Obstet. Gynecol. 180:1121–26
    [Google Scholar]
  59. 59. 
    Curley M, Cairns MT, Friel AM, McMeel OM, Morrison JJ, Smith TJ 2002. Expression of mRNA transcripts for ATP-sensitive potassium channels in human myometrium. Mol. Hum. Reprod. 8:941–45
    [Google Scholar]
  60. 60. 
    Sawada K, Morishige K, Hashimoto K, Tasaka K, Kurachi H et al. 2005. Gestational change of K+ channel opener effect is correlated with the expression of uterine KATP channel subunits. Eur. J. Obstet. Gynecol. Reprod. Biol. 122:49–56
    [Google Scholar]
  61. 61. 
    Xu C, You X, Gao L, Zhang L, Hu R et al. 2011. Expression of ATP-sensitive potassium channels in human pregnant myometrium. Reprod. Biol. Endocrinol. 9:35
    [Google Scholar]
  62. 62. 
    Du Q, Jovanović S, Tulić L, Šljivančanin D, Jack DW et al. 2013. KATP channels are up-regulated with increasing age in human myometrium. Mech. Ageing Dev. 134:98–102
    [Google Scholar]
  63. 63. 
    Piper I, Minshall E, Downing SJ, Hollingsworth M, Sadraei H 1990. Effects of several potassium channel openers and glibenclamide on the uterus of the rat. Br. J. Pharmacol. 101:901–7
    [Google Scholar]
  64. 64. 
    Larcombe-McDouall J, Buttell N, Harrison N, Wray S 1999. In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle. J. Physiol. 518:Part 3783–90
    [Google Scholar]
  65. 65. 
    Heaton RC, Wray S, Eisner DA 1993. Effects of metabolic inhibition and changes of intracellular pH on potassium permeability and contraction of rat uterus. J. Physiol. 465:43–56
    [Google Scholar]
  66. 66. 
    Crichton CA, Taggart MJ, Wray S, Smith GL 1993. Effects of pH and inorganic phosphate on force production in alpha-toxin-permeabilized isolated rat uterine smooth muscle. J. Physiol. 465:629–45
    [Google Scholar]
  67. 67. 
    Modzelewska B, Sipowicz MA, Saavedra JE, Keefer LK, Kostrzewska A 1998. Involvement of K+ATP channels in nitric oxide-induced inhibition of spontaneous contractile activity of the nonpregnant human myometrium. Biochem. Biophys. Res. Commun. 253:3653–57
    [Google Scholar]
  68. 68. 
    Waza AA, Andrabi K, Hussain MU 2014. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K+(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis. Cell. Signal. 26:1909–17
    [Google Scholar]
  69. 69. 
    Gonzalez C, Baez-Nieto D, Valencia I, Oyarzun I, Rojas P et al. 2012. K+ channels: function-structural overview. Compr. Physiol. 2:2087–149
    [Google Scholar]
  70. 70. 
    Smith RC, McClure MC, Smith MA, Abel PW, Bradley ME 2007. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility. Reprod. Biol. Endocrinol. 5:41
    [Google Scholar]
  71. 71. 
    Aaronson PI, Sarwar U, Gin S, Rockenbauch U, Connolly M et al. 2006. A role for voltage-gated, but not Ca2+-activated, K+ channels in regulating spontaneous contractile activity in myometrium from virgin and pregnant rats. Br. J. Pharmacol. 147:815–24
    [Google Scholar]
  72. 72. 
    Bähring R. 2018. Kv channel-interacting proteins as neuronal and non-neuronal calcium sensors. Channels 12:187–200
    [Google Scholar]
  73. 73. 
    Piedras-Renteria E, Stefani E, Toro L 1991. Potassium currents in freshly dispersed myometrial cells. Am. J. Physiol. 261:C278–84
    [Google Scholar]
  74. 74. 
    Suzuki T, Takimoto K. 2005. Differential expression of Kv4 pore-forming and KChIP auxiliary subunits in rat uterus during pregnancy. Am. J. Physiol. Endocrinol. Metab. 288:E335–41
    [Google Scholar]
  75. 75. 
    Song M, Helguera G, Eghbali M, Zhu N, Zarei MM et al. 2001. Remodeling of Kv4.3 potassium channel gene expression under the control of sex hormones. J. Biol. Chem. 276:31883–90
    [Google Scholar]
  76. 76. 
    Greenwood IA, Yeung SY, Tribe RM, Ohya S 2009. Loss of functional K+ channels encoded by ether-a-go-go-related genes in mouse myometrium prior to labour onset. J. Physiol. 587:2313–26
    [Google Scholar]
  77. 77. 
    Jackson WF. 2018. KV channels and the regulation of vascular smooth muscle tone. Microcirculation 25:e12421
    [Google Scholar]
  78. 78. 
    Diochot S, Drici MD, Moinier D, Fink M, Lazdunski M 1999. Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of Ito1 in cardiac electrogenesis. Br. J. Pharmacol. 126:251–63
    [Google Scholar]
  79. 79. 
    Haick JM, Byron KL. 2016. Novel treatment strategies for smooth muscle disorders: targeting Kv7 potassium channels. Pharmacol. Ther. 165:14–25
    [Google Scholar]
  80. 80. 
    McCallum LA, Greenwood IA, Tribe RM 2009. Expression and function of Kv7 channels in murine myometrium throughout oestrous cycle. Pflügers Arch 457:1111–20
    [Google Scholar]
  81. 81. 
    Parkington HC, Stevenson J, Tonta MA, Paul J, Butler T et al. 2014. Diminished hERG K+ channel activity facilitates strong human labour contractions but is dysregulated in obese women. Nat. Commun. 5:4108
    [Google Scholar]
  82. 82. 
    McCallum LA, Pierce SL, England SK, Greenwood IA, Tribe RM 2011. The contribution of Kv7 channels to pregnant mouse and human myometrial contractility. J. Cell. Mol. Med. 15:577–86
    [Google Scholar]
  83. 83. 
    Tsvetkov D, Kaßmann M, Tano JY, Chen L, Schleifenbaum J et al. 2017. Do KV 7.1 channels contribute to control of arterial vascular tone?. Br. J. Pharmacol. 174:150–62
    [Google Scholar]
  84. 84. 
    Oliveras A, Roura-Ferrer M, Solé L, de la Cruz A, Prieto A et al. 2014. Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology. Arterioscler. Thromb. Vasc. Biol. 34:1522–30
    [Google Scholar]
  85. 85. 
    McCloskey C, Rada C, Bailey E, McCavera S, van den Berg HA et al. 2014. The inwardly rectifying K+ channel KIR7.1 controls uterine excitability throughout pregnancy. EMBO Mol. Med. 6:1161–74
    [Google Scholar]
  86. 86. 
    Tong WC, Tribe RM, Smith R, Taggart MJ 2014. Computational modeling reveals key contributions of KCNQ and hERG currents to the malleability of uterine action potentials underpinning labor. PLOS ONE 9:e114034
    [Google Scholar]
  87. 87. 
    Greenwood IA, Tribe RM. 2014. Kv7 and Kv11 channels in myometrial regulation. Exp. Physiol. 99:503–9
    [Google Scholar]
  88. 88. 
    Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP 2012. hERG K+ channels: structure, function, and clinical significance. Physiol. Rev. 92:1393–478
    [Google Scholar]
  89. 89. 
    Shibasaki T. 1987. Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J. Physiol. 387:227–50
    [Google Scholar]
  90. 90. 
    Yeung SY, Greenwood IA. 2005. Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. Br. J. Pharmacol. 146:585–95
    [Google Scholar]
  91. 91. 
    Zhang J, Bricker L, Wray S, Quenby S 2007. Poor uterine contractility in obese women. BJOG 114:343–48
    [Google Scholar]
  92. 92. 
    Shmygol A, Noble K, Wray S 2007. Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. J. Physiol. 581:445–56
    [Google Scholar]
  93. 93. 
    Kazmierczak M, Zhang X, Chen B, Mulkey DK, Shi Y et al. 2013. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor. J. Gen. Physiol. 141:721–35
    [Google Scholar]
  94. 94. 
    Quenby S, Pierce SJ, Brigham S, Wray S 2004. Dysfunctional labor and myometrial lactic acidosis. Obstet. Gynecol. 103:718–23
    [Google Scholar]
  95. 95. 
    Pierce SJ, Kupittayanant S, Shmygol T, Wray S 2003. The effects of pH change on Ca++ signaling and force in pregnant human myometrium. Am. J. Obstet. Gynecol. 188:1031–38
    [Google Scholar]
  96. 96. 
    Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M 1997. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–71
    [Google Scholar]
  97. 97. 
    Reyes R, Duprat F, Lesage F, Fink M, Salinas M et al. 1998. Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J. Biol. Chem. 273:30863–69
    [Google Scholar]
  98. 98. 
    Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD et al. 2001. Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Mol. Brain Res. 86:101–14
    [Google Scholar]
  99. 99. 
    Bai X, Bugg GJ, Greenwood SL, Glazier JD, Sibley CP et al. 2005. Expression of TASK and TREK, two-pore domain K+ channels, in human myometrium. Reproduction 129:525–30
    [Google Scholar]
  100. 100. 
    Hong SH, Sung R, Kim YC, Suzuki H, Choi W et al. 2013. Mechanism of relaxation via TASK-2 channels in uterine circular muscle of mouse. Korean J. Physiol. Pharmacol. 17:359–65
    [Google Scholar]
  101. 101. 
    Kyeong KS, Hong SH, Kim YC, Cho W, Myung SC et al. 2016. Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels. Korean J. Physiol. Pharmacol. 20:547–56
    [Google Scholar]
  102. 102. 
    Taggart M, Wray S. 1993. Simultaneous measurement of intracellular pH and contraction in uterine smooth muscle. Pflügers Arch 423:527–29
    [Google Scholar]
  103. 103. 
    Buxton IL, Singer CA, Tichenor JN 2010. Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor. PLOS ONE 5:e12372
    [Google Scholar]
  104. 104. 
    Yin Z, He W, Li Y, Li D, Li H et al. 2018. Adaptive reduction of human myometrium contractile activity in response to prolonged uterine stretch during term and twin pregnancy. Role of TREK-1 channel. Biochem. Pharmacol. 152:252–63
    [Google Scholar]
  105. 105. 
    Crankshaw DJ, Crosby DA, Morrison JJ 2017. Effects of the KIR7.1 blocker VU590 on spontaneous and agonist-induced contractions of human pregnant myometrium. Reprod. Sci. 24:1402–9
    [Google Scholar]
  106. 106. 
    Noble K, Floyd R, Shmygol A, Shmygol A, Mobasheri A, Wray S 2010. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium. Cell Calcium 47:47–54
    [Google Scholar]
  107. 107. 
    Khan RN, Smith SK, Morrison JJ, Ashford MLJ 1997. Ca2+ dependence and pharmacology of large-conductance K+ channels in nonlabor and labor human uterine myocytes. Am. J. Physiol. Cell Physiol. 273:C1721–31
    [Google Scholar]
  108. 108. 
    Moczydlowski EG. 2006. The maxi K+ channel of human myometrium reveals a split personality. J. Physiol. 573:286
    [Google Scholar]
  109. 109. 
    Zarei MM, Zhu N, Alioua A, Eghbali M, Stefani E, Toro L 2001. A novel MaxiK splice variant exhibits dominant-negative properties for surface expression. J. Biol. Chem. 276:16232–39
    [Google Scholar]
  110. 110. 
    Nelson MT, Bonev AD. 2004. The β1 subunit of the Ca2+-sensitive K+ channel protects against hypertension. J. Clin. Investig. 113:955–57
    [Google Scholar]
  111. 111. 
    Sadlonova V, Franova S, Dokus K, Janicek F, Visnovsky J, Sadlonova J 2011. Participation of BKCa2+ and KATP potassium ion channels in the contractility of human term pregnant myometrium in in vitro conditions. J. Obstet. Gynaecol. Res. 37:215–21
    [Google Scholar]
  112. 112. 
    Chanrachakul B, Pipkin FB, Khan RN 2004. Contribution of coupling between human myometrial β2-adrenoreceptor and the BKCa channel to uterine quiescence. Am. J. Physiol. Cell Physiol. 287:C1747–52
    [Google Scholar]
  113. 113. 
    Brainard AM, Korovkina VP, England SK 2009. Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells. Reprod. Biol. Endocrinol. 7:131
    [Google Scholar]
  114. 114. 
    Smith RD, Babiychuk EB, Noble K, Draeger A, Wray S 2005. Increased cholesterol decreases uterine activity: functional effects of cholesterol alteration in pregnant rat myometrium. Am. J. Physiol. Cell Physiol. 288:C982–88
    [Google Scholar]
  115. 115. 
    Lorca RA, Prabagaran M, England SK 2014. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front. Physiol. 5:289
    [Google Scholar]
  116. 116. 
    Li Y, Lorca RA, Ma X, Rhodes A, England SK 2014. BK channels regulate myometrial contraction by modulating nuclear translocation of NF-κB. Endocrinology 155:3112–22
    [Google Scholar]
  117. 117. 
    Skarra DV, Cornwell T, Solodushko V, Brown A, Taylor MS 2011. CyPPA, a positive modulator of small-conductance Ca2+-activated K+ channels, inhibits phasic uterine contractions and delays preterm birth in mice. Am. J. Physiol. Cell Physiol. 301:C1027–35
    [Google Scholar]
  118. 118. 
    Pierce SL, Kresowik JDK, Lamping KG, England SK 2008. Overexpression of SK3 channels dampens uterine contractility to prevent preterm labor in mice. Biol. Reprod. 78:1058–63
    [Google Scholar]
  119. 119. 
    Pierce SL, England SK. 2010. SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene. Am. J. Physiol. Endocrinol. Metab. 299:E640–46
    [Google Scholar]
  120. 120. 
    Rahbek M, Nazemi S, Ødum L, Gupta S, Poulsen SS et al. 2014. Expression of the small conductance Ca2+-activated potassium channel subtype 3 (SK3) in rat uterus after stimulation with 17β-estradiol. PLOS ONE 9:e87652
    [Google Scholar]
  121. 121. 
    Brown A, Cornwell T, Korniyenko I, Solodushko V, Bond CT et al. 2007. Myometrial expression of small conductance Ca2+-activated K+ channels depresses phasic uterine contraction. Am. J. Physiol. Cell Physiol. 292:C832–40
    [Google Scholar]
  122. 122. 
    Bond CT, Sprengel R, Bissonnette JM, Kaufmann WA, Pribnow D et al. 2000. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 289:1942–46
    [Google Scholar]
  123. 123. 
    Chen MX, Gorman SA, Benson B, Singh K, Hieble JP et al. 2004. Small and intermediate conductance Ca2+-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch. Pharmacol. 369:602–15
    [Google Scholar]
  124. 124. 
    Rosenbaum ST, Larsen T, Joergensen JC, Bouchelouche PN 2012. Relaxant effect of a novel calcium-activated potassium channel modulator on human myometrial spontaneous contractility in vitro. Acta Physiol 205:247–54
    [Google Scholar]
  125. 125. 
    Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A 2007. Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 42:345–50
    [Google Scholar]
  126. 126. 
    Ferreira JJ, Butler A, Stewart R, Gonzalez-Cota AL, Lybaert P et al. 2019. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na+-activated K+ channel, Slo2.1. J. Physiol. 597:137–49
    [Google Scholar]
  127. 127. 
    Lamont C, Burdyga TV, Wray S 1998. Intracellular Na+ measurements in smooth muscle using SBFI—changes in [Na+], Ca2+ and force in normal and Na+-loaded ureter. Pflügers Arch 435:523–27
    [Google Scholar]
  128. 128. 
    Seda M, Pinto FM, Wray S, Cintado CG, Noheda P et al. 2007. Functional and molecular characterization of voltage-gated sodium channels in uteri from nonpregnant rats. Biol. Reprod. 77:855–63
    [Google Scholar]
  129. 129. 
    Yoshino M, Wang SY, Kao CY 1997. Sodium and calcium inward currents in freshly dissociated smooth myocytes of rat uterus. J. Gen. Physiol. 110:565–77
    [Google Scholar]
  130. 130. 
    Sperelakis N, Inoue Y, Ohya Y 1992. Fast Na+ channels and slow Ca2+ current in smooth muscle from pregnant rat uterus. Mol. Cell. Biochem. 114:79–89
    [Google Scholar]
  131. 131. 
    Amedee T, Renaud JF, Jmari K, Lombet A, Mironneau J, Lazdunski M 1986. The presence of Na+ channels in myometrial smooth muscle cells is revealed by specific neurotoxins. Biochem. Biophys. Res. Commun. 137:675–81
    [Google Scholar]
  132. 132. 
    Phillippe M, Basa A. 1997. Effects of sodium and calcium channel blockade on cytosolic calcium oscillations and phasic contractions of myometrial tissue. J. Soc. Gynecol. Investig. 4:72–77
    [Google Scholar]
  133. 133. 
    Chan YW, van den Berg HA, Moore JD, Quenby S, Blanks AM 2014. Assessment of myometrial transcriptome changes associated with spontaneous human labour by high-throughput RNA-seq. Exp. Physiol. 99:510–24
    [Google Scholar]
  134. 134. 
    Kao CY, Zakim D, Bronner F 1961. Sodium influx and excitation in uterine smooth muscle. Nature 192:1189–90
    [Google Scholar]
  135. 135. 
    Anderson NC, Ramon F, Snyder A 1971. Studies on calcium and sodium in uterine smooth muscle excitation under current-clamp and voltage-clamp conditions. J. Gen. Physiol. 58:322–39
    [Google Scholar]
  136. 136. 
    Amazu C, Ferreira JJ, Santi CM, England SK 2020. Sodium channels and transporters in the myometrium. Curr. Opin. Physiol. 13:141–44
    [Google Scholar]
  137. 137. 
    Lu B, Su Y, Das S, Liu J, Xia J, Ren D 2007. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129:371–83
    [Google Scholar]
  138. 138. 
    Senatore A, Monteil A, van Minnen J, Smit AB, Spafford JD 2013. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels. PLOS ONE 8:e55088
    [Google Scholar]
  139. 139. 
    Cochet-Bissuel M, Lory P, Monteil A 2014. The sodium leak channel, NALCN, in health and disease. Front. Cell. Neurosci. 8:132
    [Google Scholar]
  140. 140. 
    Miyoshi H, Yamaoka K, Garfield RE, Ohama K 2004. Identification of a non-selective cation channel current in myometrial cells isolated from pregnant rats. Pflügers Arch 447:457–64
    [Google Scholar]
  141. 141. 
    Reinl EL, Zhao P, Wu W, Ma X, Amazu C et al. 2018. Na+-leak channel, non-selective (NALCN) regulates myometrial excitability and facilitates successful parturition. Cell. Physiol. Biochem. 48:503–15
    [Google Scholar]
  142. 142. 
    Reinl EL, Cabeza R, Gregory IA, Cahill AG, England SK 2015. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women. Mol. Hum. Reprod. 21:816–24
    [Google Scholar]
  143. 143. 
    Floyd RV, Wray S, Quenby S, Martin-Vasallo P, Mobasheri A 2010. Expression and distribution of Na, K-ATPase isoforms in the human uterus. Reprod. Sci. 17:366–76
    [Google Scholar]
  144. 144. 
    Floyd RV, Mobasheri A, Wray S 2017. Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus. Physiol. Rep. 5:e13527
    [Google Scholar]
  145. 145. 
    Parkington HC, Tonta MA, Davies NK, Brennecke SP, Coleman HA 1999. Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and f2α: involvement of the Na+ pump. J. Physiol. 514:Part 1229–43
    [Google Scholar]
  146. 146. 
    Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y 2010. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 90:291–366
    [Google Scholar]
  147. 147. 
    Dunford JR, Blanks AM, Gallos G 2020. Calcium activated chloride channels and their role in the myometrium. Curr. Opin. Physiol. 13:43–48
    [Google Scholar]
  148. 148. 
    Song J, Zhang X, Qi Z, Sun G, Chi S et al. 2009. Cloning and characterization of a calcium-activated chloride channel in rat uterus. Biol. Reprod. 80:788–94
    [Google Scholar]
  149. 149. 
    Bernstein K, Vink JY, Fu XW, Wakita H, Danielsson J et al. 2014. Calcium-activated chloride channels anoctamin 1 and 2 promote murine uterine smooth muscle contractility. Am. J. Obstet. Gynecol. 211:688.e1–10
    [Google Scholar]
  150. 150. 
    Mijuskovic A, Kokic AN, Dusic ZO, Slavic M, Spasic MB, Blagojevic D 2015. Chloride channels mediate sodium sulphide-induced relaxation in rat uteri. Br. J. Pharmacol. 172:3671–86
    [Google Scholar]
  151. 151. 
    Hyuga S, Danielsson J, Vink J, Fu XW, Wapner R, Gallos G 2018. Functional comparison of anoctamin 1 antagonists on human uterine smooth muscle contractility and excitability. J. Smooth Muscle Res. 54:28–42
    [Google Scholar]
  152. 152. 
    Jin X, Shah S, Du X, Zhang H, Gamper N 2016. Activation of Ca2+-activated Cl channel ANO1 by localized Ca2+ signals. J. Physiol. 594:19–30
    [Google Scholar]
  153. 153. 
    Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y et al. 2015. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: novel targets to reduce tumor development by lipids. Biochim. Biophys. Acta 1848:2603–20
    [Google Scholar]
  154. 154. 
    Biel M, Wahl-Schott C, Michalakis S, Zong X 2009. Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89:847–85
    [Google Scholar]
  155. 155. 
    Satoh H. 1995. Identification of a hyperpolarization-activated inward current in uterine smooth muscle cells during pregnancy. Gen. Pharmacol. 26:1335–38
    [Google Scholar]
  156. 156. 
    Okabe K, Inoue Y, Kawarabayashi T, Kajiya H, Okamoto F, Soeda H 1999. Physiological significance of hyperpolarization-activated inward currents (Ih) in smooth muscle cells from the circular layers of pregnant rat myometrium. Pflügers Arch 439:76–85
    [Google Scholar]
  157. 157. 
    Alotaibi M, Kahlat K, Nedjadi T, Djouhri L 2017. Effects of ZD7288, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, on term-pregnant rat uterine contractility in vitro. Theriogenology 90:141–46
    [Google Scholar]
  158. 158. 
    Dawood MY, Lauersen NH, Trivedi D, Ylikorkala O, Fuchs F 1979. Studies of oxytocin in the baboon during pregnancy and delivery. Acta Endocrinol 91:704–18
    [Google Scholar]
  159. 159. 
    Fuchs AR, Fields MJ, Freidman S, Shemesh M, Ivell R 1995. Oxytocin and the timing of parturition. Influence of oxytocin receptor gene expression, oxytocin secretion, and oxytocin-induced prostaglandin F2 alpha and E2 release. Adv. Exp. Med. Biol. 395:405–20
    [Google Scholar]
  160. 160. 
    Luckas MJ, Taggart MJ, Wray S 1999. Intracellular calcium stores and agonist-induced contractions in isolated human myometrium. Am. J. Obstet. Gynecol. 181:468–76
    [Google Scholar]
  161. 161. 
    Chin-Smith EC, Slater DM, Johnson MR, Tribe RM 2014. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy. Front. Physiol. 5:169
    [Google Scholar]
  162. 162. 
    Akerman KEO, Wikström KF 1979. (Ca2+ + Mg2+)-stimulated ATPase activity of rabbit myometrium plasma membrane is blocked by oxytocin. FEBS Lett 97:283–87
    [Google Scholar]
  163. 163. 
    Popescu LM, Nutu O, Panoiu C 1985. Oxytocin contracts the human uterus at term by inhibiting the myometrial Ca2+-extrusion pump. Biosci. Rep. 5:21–28
    [Google Scholar]
  164. 164. 
    Soloff MS, Sweet P. 1982. Oxytocin inhibition of (Ca2+ + Mg2+)-ATPase activity in rat myometrial plasma membranes. J. Biol. Chem. 257:10687–93
    [Google Scholar]
  165. 165. 
    Arrowsmith S. 2020. Oxytocin and vasopressin signalling and myometrial contraction. Curr. Opin. Physiol. 13:62–70
    [Google Scholar]
  166. 166. 
    Arrowsmith S, Wray S. 2014. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J. Neuroendocrinol. 26:356–69
    [Google Scholar]
  167. 167. 
    Helguera G, Olcese R, Song M, Toro L, Stefani E 2002. Tissue-specific regulation of Ca2+ channel protein expression by sex hormones. Biochim. Biophys. Acta 1569:59–66
    [Google Scholar]
  168. 168. 
    Osa T, Ogasawara T. 1984. Effects in vitro of progesterone and estradiol-17β on the contractile and electrical responses in rat myometrium. Jpn. J. Physiol. 34:427–41
    [Google Scholar]
  169. 169. 
    Okabe K, Inoue Y, Soeda H 1999. Estradiol inhibits Ca2+ and K+ channels in smooth muscle cells from pregnant rat myometrium. Eur. J. Pharmacol. 376:101–8
    [Google Scholar]
  170. 170. 
    Banciu A, Banciu DD, Mustaciosu CC, Radu M, Cretoiu D et al. 2018. Beta-estradiol regulates voltage-gated calcium channels and estrogen receptors in telocytes from human myometrium. Int. J. Mol. Sci. 19:1413
    [Google Scholar]
  171. 171. 
    Knock GA, Tribe RM, Hassoni AA, Aaronson PI 2001. Modulation of potassium current characteristics in human myometrial smooth muscle by 17β-estradiol and progesterone. Biol. Reprod. 64:1526–34
    [Google Scholar]
  172. 172. 
    Song M, Zhu N, Olcese R, Barila B, Toro L, Stefani E 1999. Hormonal control of protein expression and mRNA levels of the MaxiK channel α subunit in myometrium. FEBS Lett 460:427–32
    [Google Scholar]
  173. 173. 
    Benkusky NA, Korovkina VP, Brainard AM, England SK 2002. Myometrial maxi-K channel β1 subunit modulation during pregnancy and after 17β-estradiol stimulation. FEBS Lett 524:97–102
    [Google Scholar]
  174. 174. 
    Mazzone JN, Kaiser RA, Buxton IL 2002. Calcium-activated potassium channel expression in human myometrium: effect of pregnancy. Proc. West. Pharmacol. Soc. 45:184–86
    [Google Scholar]
  175. 175. 
    Rosenbaum ST, Svalø J, Nielsen K, Larsen T, Jørgensen JC, Bouchelouche P 2012. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium. J. Cell. Mol. Med. 16:3001–8
    [Google Scholar]
  176. 176. 
    Anderson L, Martin W, Higgins C, Nelson SM, Norman JE 2009. The effect of progesterone on myometrial contractility, potassium channels, and tocolytic efficacy. Reprod. Sci. 16:1052–61
    [Google Scholar]
  177. 177. 
    Arrowsmith S, Neilson J, Bricker L, Wray S 2016. Differing in vitro potencies of tocolytics and progesterone in myometrium from singleton and twin pregnancies. Reprod. Sci. 23:98–111
    [Google Scholar]
  178. 178. 
    Sakamoto K, Kurokawa J. 2019. Involvement of sex hormonal regulation of K+ channels in electrophysiological and contractile functions of muscle tissues. J. Pharmacol. Sci. 139:259–65
    [Google Scholar]
  179. 179. 
    Amazu C, Ma X, Henkes C, Ferreira JJ, Santi CM, England SK Progesterone and estrogen regulate NALCN expression in human myometrial smooth muscle cells. Am. J. Physiol. Endocrinol. Metab. 318:E441–52
    [Google Scholar]
  180. 180. 
    Lye SJ, Nicholson BJ, Mascarenhas M, MacKenzie L, Petrocelli T 1993. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology 132:2380–86
    [Google Scholar]
  181. 181. 
    Hendrix EM, Myatt L, Sellers S, Russell PT, Larsen WJ 1995. Steroid hormone regulation of rat myometrial gap junction formation: effects on cx43 levels and trafficking. Biol. Reprod. 52:547–60
    [Google Scholar]
  182. 182. 
    Nadeem L, Shynlova O, Mesiano S, Lye S 2017. Progesterone via its type-A receptor promotes myometrial gap junction coupling. Sci. Rep. 7:13357
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-032420-035509
Loading
/content/journals/10.1146/annurev-physiol-032420-035509
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error