1932

Abstract

The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine–interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-040122-081302
2023-02-10
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-040122-081302.html?itemId=/content/journals/10.1146/annurev-physiol-040122-081302&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sherrington CS. 1906. The Integrative Action of the Nervous System New Haven, CT: Yale Univ. Press
  2. 2.
    Proske U, Gandevia SC. 2018. Kinesthetic senses. Compr. Physiol. 8:31157–83
    [Google Scholar]
  3. 3.
    Riemann BL, Lephart SM. 2002. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J. Athl. Train. 37:180–84
    [Google Scholar]
  4. 4.
    Tuthill JC, Azim E. 2018. Proprioception. Curr. Biol. 28:5R194–203
    [Google Scholar]
  5. 5.
    Proske U, Gandevia SC. 2012. The proprioceptive sense: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92:41651–97
    [Google Scholar]
  6. 6.
    Bensmaia SJ, Tyler DJ, Micera S. 2020. Restoration of sensory information via bionic hands. Nat. Biomed. Eng. 2020: https://doi.org/10.1038/s41551-020-00630-8
    [Google Scholar]
  7. 7.
    Pandarinath C, Bensmaia SJ. 2022. The science and engineering behind sensitized brain-controlled bionic hands. Physiol. Rev. 102:2551–604
    [Google Scholar]
  8. 8.
    Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ 2014. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6:257257ra138
    [Google Scholar]
  9. 9.
    Dhillon GS, Horch KW. 2005. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13:4468–72
    [Google Scholar]
  10. 10.
    Marasco PD, Hebert JS, Sensinger JW, Beckler DT, Thumser ZC et al. 2021. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. Sci. Robot. 6:58eabf3368
    [Google Scholar]
  11. 11.
    D'Anna E, Valle G, Mazzoni A, Strauss I, Iberite F et al. 2019. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4:27eaau8892
    [Google Scholar]
  12. 12.
    Clippinger FW, Avery R, Titus BR 1974. A sensory feedback system for an upper-limb amputation prosthesis. Bull. Prosthet. Res. 1974:247–58
    [Google Scholar]
  13. 13.
    George JAA, Kluger DTT, Davis TSS, Wendelken SMM, Okorokova EVV et al. 2019. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4:32eaax2352
    [Google Scholar]
  14. 14.
    Schiefer MA, Graczyk EL, Sidik SM, Tan DW, Tyler DJ. 2018. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLOS ONE 13:12e0207659
    [Google Scholar]
  15. 15.
    Horch K, Meek S, Taylor TG, Hutchinson DT. 2011. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 19:5483–89
    [Google Scholar]
  16. 16.
    Segil JL, Cuberovic I, Graczyk EL, Weir RF ff, Tyler D 2020. Combination of simultaneous artificial sensory percepts to identify prosthetic hand postures: a case study. Sci. Rep. 10:16576
    [Google Scholar]
  17. 17.
    Marasco PD, Hebert JS, Sensinger JW, Shell CE, Schofield JS et al. 2018. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 10:4326990
    [Google Scholar]
  18. 18.
    Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM et al. 2018. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10:443eaap8373
    [Google Scholar]
  19. 19.
    Wu H, Petitpré C, Fontanet P, Sharma A, Bellardita C et al. 2021. Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat. Commun. 12:11026
    [Google Scholar]
  20. 20.
    Oliver KM, Florez-Paz DM, Badea TC, Mentis GZ, Menon V, de Nooij JC. 2021. Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nat. Commun. 12:11451
    [Google Scholar]
  21. 21.
    Klingler E, Tomasello U, Prados J, Kebschull JM, Contestabile A et al. 2021. Temporal controls over inter-areal cortical projection neuron fate diversity. Nature 599:7885453–57
    [Google Scholar]
  22. 22.
    Condylis C, Ghanbari A, Manjrekar N, Bistrong K, Yao S et al. 2022. Dense functional and molecular readout of a circuit hub in sensory cortex. Science 375:6576eabl5981
    [Google Scholar]
  23. 23.
    Li Y, Lopez-Huerta VG, Adiconis X, Levandowski K, Choi S et al. 2020. Distinct subnetworks of the thalamic reticular nucleus. Nature 583:7818819–24
    [Google Scholar]
  24. 24.
    Baek M, Menon V, Jessell TM, Hantman AW, Dasen JS. 2019. Molecular logic of spinocerebellar tract neuron diversity and connectivity. Cell Rep. 27:92620–2635.e4
    [Google Scholar]
  25. 25.
    Matthews PBC. 1972. Mammalian Muscle Receptors and Their Central Actions Philadelphia: Williams & Wilkins
  26. 26.
    Jami L 1992. Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol. Rev. 72:3623–66
    [Google Scholar]
  27. 27.
    Banks RW, Ellaway PH, Prochazka A, Proske U. 2021. Secondary endings of muscle spindles: structure, reflex action, role in motor control and proprioception. Exp. Physiol. 106:122339–66
    [Google Scholar]
  28. 28.
    Hunt CC. 1990. Mammalian muscle spindle: peripheral mechanisms. Physiol. Rev. 70:3643–63
    [Google Scholar]
  29. 29.
    Vincent JA, Gabriel HM, Deardorff AS, Nardelli P, Fyffe REW et al. 2017. Muscle proprioceptors in adult rat: mechanosensory signaling and synapse distribution in spinal cord. J. Neurophysiol. 118:52687–701
    [Google Scholar]
  30. 30.
    Houk J, Henneman E. 1967. Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat. J. Neurophysiol. 30:3466–81
    [Google Scholar]
  31. 31.
    Davies P, Petit J, Scott JJ. 1995. The dynamic response of Golgi tendon organs to tetanic contraction of in-series motor units. Brain Res. 690:182–91
    [Google Scholar]
  32. 32.
    Sojka P, Johansson H, Sjölander P, Lorentzon R, Djupsjöbacka M. 1989. Fusimotor neurones can be reflexly influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Res. 483:1177–83
    [Google Scholar]
  33. 33.
    Fuentes CT, Bastian AJ. 2010. Where is your arm? Variations in proprioception across space and tasks. J. Neurophysiol. 103:1164–71
    [Google Scholar]
  34. 34.
    Germann C, Sutter R, Nanz D. 2021. Novel observations of Pacinian corpuscle distribution in the hands and feet based on high-resolution 7-T MRI in healthy volunteers. Skelet. Radiol. 50:61249–55
    [Google Scholar]
  35. 35.
    Han Y-H, Li B, Wen Y 2020. Distribution, quantity and gene expression of mechanoreceptors in ligaments and tendons of knee joint in rabbits. J. Mol. Histol. 51:3233–40
    [Google Scholar]
  36. 36.
    Handler A, Ginty DD. 2021. The mechanosensory neurons of touch and their mechanisms of activation. Nat. Rev. Neurosci. 22:9521–37
    [Google Scholar]
  37. 37.
    Johnson KO, Yoshioka T, Vega-Bermudez F. 2000. Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 17:6539–58
    [Google Scholar]
  38. 38.
    Johansson RS, Flanagan JR. 2009. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10:5345–59
    [Google Scholar]
  39. 39.
    Woo S-H, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR et al. 2015. Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci. 18:121756–62
    [Google Scholar]
  40. 40.
    Chesler AT, Szczot M, Bharucha-Goebel D, Čeko M, Donkervoort S et al. 2016. The role of PIEZO2 in human mechanosensation. N. Engl. J. Med. 375:141355–64
    [Google Scholar]
  41. 41.
    Bewick GS, Reid B, Richardson C, Banks RW. 2005. Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J. Physiol. 562:Part 2381–94
    [Google Scholar]
  42. 42.
    Than K, Kim E, Navarro C, Chu S, Klier N et al. 2021. Vesicle-released glutamate is necessary to maintain muscle spindle afferent excitability but not dynamic sensitivity in adult mice. J. Physiol. 599:112953–67
    [Google Scholar]
  43. 43.
    Espino CM, Lewis CM, Ortiz S, Dalal MS, Wells KM et al. 2022. NaV 1.1 is essential for proprioceptive signaling and motor behaviors. eLife 11e79917
  44. 44.
    Loutit AJ, Vickery RM, Potas JR. 2021. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J. Comp. Neurol. 529:1187–220
    [Google Scholar]
  45. 45.
    Ivanusic JJ, Bourke DW, Xu ZM, Butler EG, Horne MK. 2005. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement. Brain Res. 1041:2181–97
    [Google Scholar]
  46. 46.
    Horne MK, Butler EG. 1995. The role of the cerebello-thalamo-cortical pathway in skilled movement. Prog. Neurobiol. 46:2–3199–213
    [Google Scholar]
  47. 47.
    Yuengert R, Hori K, Kibodeaux EE, McClellan JX, Morales JE et al. 2015. Origin of a non-Clarke's column division of the dorsal spinocerebellar tract and the role of caudal proprioceptive neurons in motor function. Cell Rep. 13:61258–71
    [Google Scholar]
  48. 48.
    Pop IV, Espinosa F, Blevins CJ, Okafor PC, Ogujiofor OW et al. 2022. Structure of long-range direct and indirect spinocerebellar pathways as well as local spinal circuits mediating proprioception. J. Neurosci. 42:4581–600
    [Google Scholar]
  49. 49.
    Alstermark B, Ekerot C-F. 2015. The lateral reticular nucleus; integration of descending and ascending systems regulating voluntary forelimb movements. Front. Comput. Neurosci. 9:102
    [Google Scholar]
  50. 50.
    White JJ, Sillitoe RV. 2017. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat. Commun. 8:14912
    [Google Scholar]
  51. 51.
    Stecina K, Fedirchuk B, Hultborn H. 2013. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J. Physiol. 591:225433–43
    [Google Scholar]
  52. 52.
    Sengul G, Fu Y, Yu Y, Paxinos G. 2015. Spinal cord projections to the cerebellum in the mouse. Brain Struct. Funct. 220:52997–3009
    [Google Scholar]
  53. 53.
    Bosco G, Poppele RE. 2001. Proprioception from a spinocerebellar perspective. Physiol. Rev. 81:2539–68
    [Google Scholar]
  54. 54.
    Walmsley B. 1991. Central synaptic transmission: studies at the connection between primary afferent fibres and dorsal spinocerebellar tract (DSCT) neurones in Clarke's column of the spinal cord. Prog. Neurobiol. 36:5391–423
    [Google Scholar]
  55. 55.
    Popova LB, Ragnarson B, Orlovsky GN, Grant G. 1995. Responses of neurons in the central cervical nucleus of the rat to proprioceptive and vestibular inputs. Arch. Ital. Biol. 133:131–45
    [Google Scholar]
  56. 56.
    Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ. 2012. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. J. Physiol. 590:71737–55
    [Google Scholar]
  57. 57.
    Edgley SA, Jankowska E. 1988. Information processed by dorsal horn spinocerebellar tract neurones in the cat. J. Physiol. 397:81–97
    [Google Scholar]
  58. 58.
    Bosco G, Eian J, Poppele RE. 2006. Phase-specific sensory representations in spinocerebellar activity during stepping: evidence for a hybrid kinematic/kinetic framework. Exp. Brain Res. 175:183–96
    [Google Scholar]
  59. 59.
    Wolpert DM, Miall RC, Kawato M. 1998. Internal models in the cerebellum. Trends Cogn. Sci. 2:9338–47
    [Google Scholar]
  60. 60.
    Ebner TJ, Hewitt AL, Popa LS. 2011. What features of limb movements are encoded in the discharge of cerebellar neurons?. Cerebellum 10:4683–93
    [Google Scholar]
  61. 61.
    Thanawalla AR, Chen AI, Azim E. 2020. The cerebellar nuclei and dexterous limb movements. Neuroscience 450:168–83
    [Google Scholar]
  62. 62.
    Valle MS, Bosco G, Poppele RE. 2017. Cerebellar compartments for the processing of kinematic and kinetic information related to hindlimb stepping. Exp. Brain Res. 235:113437–48
    [Google Scholar]
  63. 63.
    Campbell SK, Parker TD, Welker W. 1974. Somatotopic organization of the external cuneate nucleus in albino rats. Brain Res. 77:11–23
    [Google Scholar]
  64. 64.
    Dykes RW, Rasmusson DD, Sretavan D, Rehman NB. 1982. Submodality segregation and receptive-field sequences in cuneate, gracile, and external cuneate nuclei of the cat. J. Neurophysiol. 47:3389–416
    [Google Scholar]
  65. 65.
    Li CX, Yang Q, Waters RS 2012. Functional and structural organization of the forelimb representation in cuneate nucleus in rat. Brain Res. 1468:11–28
    [Google Scholar]
  66. 66.
    Conner JM, Bohannon A, Igarashi M, Taniguchi J, Baltar N, Azim E. 2021. Modulation of tactile feedback for the execution of dexterous movement. Science 374:6565316–23
    [Google Scholar]
  67. 67.
    Johansson H, Silfvenius H. 1977. Connexions from large, ipsilateral hind limb muscle and skin afferents to the rostral main cuneate nucleus and to the nucleus X region in the cat. J. Physiol. 265:2395–428
    [Google Scholar]
  68. 68.
    Landgren S, Silfvenius H. 1971. Nucleus Z, the medullary relay in the projection path to the cerebral cortex of group I muscle afferents from the cat's hind limb. J. Physiol. 218:3551–71
    [Google Scholar]
  69. 69.
    Uemura Y, Haque T, Sato F, Tsutsumi Y, Ohara H et al. 2020. Proprioceptive thalamus receiving forelimb and neck muscle spindle inputs via the external cuneate nucleus in the rat. Brain Struct. Funct. 225:72177–92
    [Google Scholar]
  70. 70.
    Low JST, Mantle-St. John LA, Tracey DJ 1986. Nucleus Z in the rat: spinal afferents from collaterals of dorsal spinocerebellar tract neurons. J. Comp. Neurol. 243:4510–26
    [Google Scholar]
  71. 71.
    Rosén I, Sjölund B. 1973. Organization of group I activated cells in the main and external cuneate nuclei of the cat: identification of muscle receptors. Exp. Brain Res. 16:3221–37
    [Google Scholar]
  72. 72.
    Mackie PD, Morley JW, Rowe MJ. 1999. Signalling of static and dynamic features of muscle spindle input by external cuneate neurones in the cat. J. Physiol. 519:Part 2559–69
    [Google Scholar]
  73. 73.
    McIntyre AK, Proske U, Rawson JA. 1989. Corticofugal action on transmission of group I input from the hindlimb to the pericruciate cortex in the cat. J. Physiol. 416:19–30
    [Google Scholar]
  74. 74.
    Versteeg C, Rosenow JM, Bensmaia SJ, Miller LE. 2021. Encoding of limb state by single neurons in the cuneate nucleus of awake monkeys. J. Neurophysiol. 126:2693–706
    [Google Scholar]
  75. 75.
    Jörntell H, Bengtsson F, Geborek P, Spanne A, Terekhov AV, Hayward V 2014. Segregation of tactile input features in neurons of the cuneate nucleus. Neuron 83:61444–52
    [Google Scholar]
  76. 76.
    Suresh AK, Winberry JE, Versteeg C, Chowdhury R, Tomlinson T et al. 2017. Methodological considerations for a chronic neural interface with the cuneate nucleus of macaques. J. Neurophysiol. 118:63271–81
    [Google Scholar]
  77. 77.
    Crowe A, Matthews PBC. 1964. The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles. J. Physiol. 174:1109–31
    [Google Scholar]
  78. 78.
    Prochazka A, Hulliger M, Zangger P, Appenteng K. 1985.. “ Fusimotor set”: new evidence for alpha-independent control of gamma-motoneurones during movement in the awake cat. Brain Res. 339:1136–40
    [Google Scholar]
  79. 79.
    Rudomin P, Schmidt RF. 1999. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129:11–37
    [Google Scholar]
  80. 80.
    Liu TT, Bannatyne BA, Jankowska E, Maxwell DJ 2010. Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents. J. Physiol. 588:Part 214217–33
    [Google Scholar]
  81. 81.
    Hantman AW, Jessell TM. 2010. Clarke's column neurons as the focus of a corticospinal corollary circuit. Nat. Neurosci. 13:101233–39
    [Google Scholar]
  82. 82.
    Gordon G, Jukes MG. 1964. Descending influences on the exteroceptive organizations of the cat's gracile nucleus. J. Physiol. 173:2291–319
    [Google Scholar]
  83. 83.
    Leiras R, Velo P, Martín-Cora F, Canedo A. 2010. Processing afferent proprioceptive information at the main cuneate nucleus of anesthetized cats. J. Neurosci. 30:4615383–99
    [Google Scholar]
  84. 84.
    Mantle-St. John LA, Tracey DJ 1987. Somatosensory nuclei in the brainstem of the rat: independent projections to the thalamus and cerebellum. J. Comp. Neurol. 255:2259–71
    [Google Scholar]
  85. 85.
    Cheek MD, Rustioni A, Trevino DL. 1975. Dorsal column nuclei projections to the cerebellar cortex in cats as revealed by the use of the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164:131–46
    [Google Scholar]
  86. 86.
    Francis JT, Xu S, Chapin JK. 2008. Proprioceptive and cutaneous representations in the rat ventral posterolateral thalamus. J. Neurophysiol. 99:52291–304
    [Google Scholar]
  87. 87.
    Padberg J, Cerkevich C, Engle J, Rajan AT, Recanzone G et al. 2009. Thalamocortical connections of parietal somatosensory cortical fields in macaque monkeys are highly divergent and convergent. Cereb. Cortex 19:92038–64
    [Google Scholar]
  88. 88.
    Phillips CG, Powell TP, Wiesendanger M. 1971. Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon's cortex. J. Physiol. 217:2419–46
    [Google Scholar]
  89. 89.
    Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O. 1993. Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey's postcentral gyrus. Exp. Brain Res. 92:3360–68
    [Google Scholar]
  90. 90.
    Delhaye BP, Long KH, Bensmaia SJ. 2018. Neural basis of touch and proprioception in primate cortex. Compr. Physiol. 8:41575–602
    [Google Scholar]
  91. 91.
    Baker CM, Burks JD, Briggs RG, Conner AK, Glenn CA et al. 2018. A connectomic atlas of the human cerebrum—Chapter 7: the lateral parietal lobe. Oper. Neurosurg. 15:Suppl. 1S295–349
    [Google Scholar]
  92. 92.
    Roll JP, Vedel JP. 1982. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp. Brain Res. 47:2177–90
    [Google Scholar]
  93. 93.
    Craske B. 1977. Perception of impossible limb positions induced by tendon vibration. Science 196:428571–73
    [Google Scholar]
  94. 94.
    Lackner JR. 1988. Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111:Part 2281–97
    [Google Scholar]
  95. 95.
    Thyrion C, Roll J-P. 2010. Predicting any arm movement feedback to induce three-dimensional illusory movements in humans. J. Neurophysiol. 104:2949–59
    [Google Scholar]
  96. 96.
    Latash ML. 2021. Efference copy in kinesthetic perception: a copy of what is it?. J. Neurophysiol. 125:41079–94
    [Google Scholar]
  97. 97.
    Naito E, Roland PE, Ehrsson HH. 2002. I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 36:5979–88
    [Google Scholar]
  98. 98.
    Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE. 1999. Illusory arm movements activate cortical motor areas: a positron emission tomography study. J. Neurosci. 19:146134–44
    [Google Scholar]
  99. 99.
    Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S et al. 2005. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J. Neurophysiol. 93:21020–34
    [Google Scholar]
  100. 100.
    Naito E, Kochiyama T, Kitada R, Nakamura S, Matsumura M et al. 2002. Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. J. Neurosci. 22:93683–91
    [Google Scholar]
  101. 101.
    Naito E, Nakashima T, Kito T, Aramaki Y, Okada T, Sadato N. 2007. Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur. J. Neurosci. 25:113476–87
    [Google Scholar]
  102. 102.
    Naito E, Morita T, Amemiya K. 2016. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness. Neurosci. Res. 104:16–30
    [Google Scholar]
  103. 103.
    Haggard P. 2017. Sense of agency in the human brain. Nat. Rev. Neurosci. 18:4196–207
    [Google Scholar]
  104. 104.
    O'Suilleabhain PE, Lagerlund TD, Matsumoto JY. 1999. Cortical potentials at the frequency of absolute wrist velocity become phase-locked during slow sinusoidal tracking movements. Exp. Brain Res. 126:4529–35
    [Google Scholar]
  105. 105.
    Bourguignon M, Jousmäki V, Dalal SS, Jerbi K, De Tiège X. 2019. Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings. Neuroimage 203:116177
    [Google Scholar]
  106. 106.
    Bourguignon M, Jousmäki V, Op de Beeck M, Van Bogaert P, Goldman S, De Tiège X. 2012. Neuronal network coherent with hand kinematics during fast repetitive hand movements. Neuroimage 59:21684–91
    [Google Scholar]
  107. 107.
    Bourguignon M, De Tiège X, Op de Beeck M, Pirotte B, Van Bogaert P et al. 2011. Functional motor-cortex mapping using corticokinematic coherence. Neuroimage 55:41475–79
    [Google Scholar]
  108. 108.
    Marty B, Wens V, Bourguignon M, Naeije G, Goldman S et al. 2018. Neuromagnetic cerebellar activity entrains to the kinematics of executed finger movements. Cerebellum 17:5531–39
    [Google Scholar]
  109. 109.
    Amemiya K, Naito E. 2016. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement. Cortex 78:15–30
    [Google Scholar]
  110. 110.
    Miele DB, Wager TD, Mitchell JP, Metcalfe J. 2011. Dissociating neural correlates of action monitoring and metacognition of agency. J. Cogn. Neurosci. 23:113620–36
    [Google Scholar]
  111. 111.
    Igelström KM, Graziano MSA. 2017. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia 105:70–83
    [Google Scholar]
  112. 112.
    Ohata R, Asai T, Kadota H, Shigemasu H, Ogawa K, Imamizu H. 2020. Sense of agency beyond sensorimotor process: decoding self-other action attribution in the human brain. Cereb. Cortex 30:74076–91
    [Google Scholar]
  113. 113.
    Blanke O, Slater M, Serino A. 2015. Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 88:1145–66
    [Google Scholar]
  114. 114.
    Blanke O. 2012. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13:8556–71
    [Google Scholar]
  115. 115.
    Friston K. 2010. The free-energy principle: a unified brain theory?. Nat. Rev. Neurosci. 11:2127–38
    [Google Scholar]
  116. 116.
    Osseward PJ 2nd, Amin ND, Moore JD, Temple BA, Barriga BK et al. 2021. Conserved genetic signatures parcellate cardinal spinal neuron classes into local and projection subsets. Science 372:6540385–93
    [Google Scholar]
  117. 117.
    Roy DS, Zhang Y, Halassa MM, Feng G. 2022. Thalamic subnetworks as units of function. Nat. Neurosci. 25:2140–53
    [Google Scholar]
  118. 118.
    Versteeg C, Chowdhury RH, Miller LE. 2021. Cuneate nucleus: the somatosensory gateway to the brain. Curr. Opin. Physiol. 20:206–15
    [Google Scholar]
  119. 119.
    de Nooij JC. 2022. MS and GTO proprioceptor subtypes in the molecular genetic era: opportunities for new advances and perspectives. Curr. Opin. Neurobiol. 76:102597
    [Google Scholar]
  120. 120.
    Poliak S, Norovich AL, Yamagata M, Sanes JR, Jessell TM. 2016. Muscle-type identity of proprioceptors specified by spatially restricted signals from limb mesenchyme. Cell 164:3512–25
    [Google Scholar]
  121. 121.
    Shin MM, Catela C, Dasen J. 2020. Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit. eLife 9:e56374
    [Google Scholar]
  122. 122.
    Dietrich S, Company C, Song K, Lowenstein ED, Riedel L et al. 2022. The molecular foundation of proprioceptor muscle-type identity. bioRxiv 501977. https://doi.org/10.1101/2022.07.29.501977
  123. 123.
    Elliott D, Lyons J, Hayes SJ, Burkitt JJ, Hansen S et al. 2020. The multiple process model of goal-directed aiming/reaching: insights on limb control from various special populations. Exp. Brain Res. 238:122685–99
    [Google Scholar]
  124. 124.
    Abelew TA, Miller MD, Cope TC, Nichols TR. 2000. Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat. J. Neurophysiol. 84:52709–14
    [Google Scholar]
  125. 125.
    Mayer WP, Akay T. 2021. The role of muscle spindle feedback in the guidance of hindlimb movement by the ipsilateral forelimb during locomotion in mice. eNeuro 8:6ENEURO.0432–21
    [Google Scholar]
  126. 126.
    Gordon J, Ghilardi MF, Ghez C. 1995. Impairments of reaching movements in patients without proprioception. I. Spatial errors. J. Neurophysiol. 73:1347–60
    [Google Scholar]
  127. 127.
    Smith L, Norcliffe-Kaufmann L, Palma J-A, Kaufmann H, Macefield VG. 2020. Elbow proprioception is normal in patients with a congenital absence of functional muscle spindles. J. Physiol. 598:163521–29
    [Google Scholar]
  128. 128.
    Brown MC, Engberg I, Matthews PBC. 1967. Fusimotor stimulation and the dynamic sensitivity of the secondary ending of the muscle spindle. J. Physiol. 189:3545–50
    [Google Scholar]
  129. 129.
    Botterman BR, Eldred E. 1982. Static stretch sensitivity of Ia and II afferents in the cat's gastrocnemius. Pflügers Arch. 395:3204–11
    [Google Scholar]
  130. 130.
    Roll JP, Vedel JP, Ribot E. 1989. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp. Brain Res. 76:1213–22
    [Google Scholar]
  131. 131.
    Wise AK, Gregory JE, Proske U. 1996. The effects of muscle conditioning on movement detection thresholds at the human forearm. Brain Res. 735:1125–30
    [Google Scholar]
  132. 132.
    Wise AK, Gregory JE, Proske U. 1999. The responses of muscle spindles to small, slow movements in passive muscle and during fusimotor activity. Brain Res. 821:187–94
    [Google Scholar]
  133. 133.
    Gregory JE, Morgan DL, Proske U. 1988. Aftereffects in the responses of cat muscle spindles and errors of limb position sense in man. J. Neurophysiol. 59:41220–30
    [Google Scholar]
  134. 134.
    White O, Proske U. 2009. Illusions of forearm displacement during vibration of elbow muscles in humans. Exp. Brain Res. 192:1113–20
    [Google Scholar]
  135. 135.
    Proske U, Chen B. 2021. Two senses of human limb position: methods of measurement and roles in proprioception. Exp. Brain Res. 239:113157–74
    [Google Scholar]
  136. 136.
    Schofield JS, Shell CE, Thumser ZC, Beckler DT, Nataraj R, Marasco PD. 2019. Characterization of the sense of agency over the actions of neural-machine interface-operated prostheses. J. Vis. Exp. 2019:143e58702
    [Google Scholar]
  137. 137.
    Seizova-Cajic T, Smith JL, Taylor JL, Gandevia SC. 2007. Proprioceptive movement illusions due to prolonged stimulation: reversals and aftereffects. PLOS ONE 2:10e1037
    [Google Scholar]
  138. 138.
    Collins DF, Refshauge KM, Gandevia SC. 2000. Sensory integration in the perception of movements at the human metacarpophalangeal joint. J. Physiol. 529:Part 2505–15
    [Google Scholar]
  139. 139.
    Collins DF, Prochazka A. 1996. Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J. Physiol. 496:Part 3857–71
    [Google Scholar]
  140. 140.
    Shehata AW, Keri M-I, Gomez M, Marasco PD, Vette AH, Hebert JS. 2019. Skin stretch enhances illusory movement in persons with lower-limb amputation. IEEE Int. Conf. Rehabil. Robot. 2019:1233–38
    [Google Scholar]
  141. 141.
    Schofield JS, Dawson MR, Carey JP, Hebert JS. 2015. Characterizing the effects of amplitude, frequency and limb position on vibration induced movement illusions: implications in sensory-motor rehabilitation. Technol. Health Care 23:2129–41
    [Google Scholar]
  142. 142.
    Rabin E, Gordon AM. 2004. Tactile feedback contributes to consistency of finger movements during typing. Exp. Brain Res. 155:3362–69
    [Google Scholar]
  143. 143.
    Seizova-Cajic T, Azzi R. 2011. Conflict with vision diminishes proprioceptive adaptation to muscle vibration. Exp. Brain Res. 211:2169–75
    [Google Scholar]
  144. 144.
    Kuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JPA. 2007. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. PNAS 104:5020061–66
    [Google Scholar]
  145. 145.
    Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefi K et al. 2007. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369:9559371–80
    [Google Scholar]
  146. 146.
    Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler DJ 2015. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J. Neural Eng. 12:2026002
    [Google Scholar]
  147. 147.
    Schofield JS, Shell CE, Beckler DT, Thumser ZC, Marasco PD. 2020. Long-term home-use of sensory-motor-integrated bidirectional bionic prosthetic arms promotes functional, perceptual, and cognitive changes. Front. Neurosci. 14:120
    [Google Scholar]
  148. 148.
    Clemente F, Valle G, Controzzi M, Strauss I, Iberite F et al. 2019. Intraneural sensory feedback restores grip force control and motor coordination while using a prosthetic hand. J. Neural Eng. 16:2026034
    [Google Scholar]
  149. 149.
    Mastinu E, Engels LF, Clemente F, Dione M, Sassu P et al. 2020. Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses. Sci. Rep. 10:111793
    [Google Scholar]
  150. 150.
    De Nunzio AM, Dosen S, Lemling S, Markovic M, Schweisfurth MA et al. 2017. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Exp. Brain Res. 235:82547–59
    [Google Scholar]
  151. 151.
    Dhillon GS, Horch KW. 2005. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13:4468–72
    [Google Scholar]
  152. 152.
    Kim K, Colgate JE. 2012. Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 20:6798–805
    [Google Scholar]
  153. 153.
    Ferrari F, Courtney SE, Thumser ZC, Clemente F, Plow E et al. 2021. Proprioceptive augmentation with illusory kinaesthetic sensation in stroke patients improves movement quality in an active upper limb. Front. Neurorobot. 15:610673
    [Google Scholar]
  154. 154.
    Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA. 2007. Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J. Neurophysiol. 97:21288–97
    [Google Scholar]
  155. 155.
    Marasco PD, Bourbeau DJ, Shell CE, Granja-Vazquez R, Ina JG. 2017. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion. PLOS ONE 12:11e0188559
    [Google Scholar]
  156. 156.
    Bretas RV, Taoka M, Suzuki H, Iriki A. 2020. Secondary somatosensory cortex of primates: beyond body maps, toward conscious self-in-the-world maps. Exp. Brain Res. 238:2259–72
    [Google Scholar]
  157. 157.
    Rossi-Pool R, Zainos A, Alvarez M, Diaz-deLeon G, Romo R. 2021. A continuum of invariant sensory and behavioral-context perceptual coding in secondary somatosensory cortex. Nat. Commun. 12:12000
    [Google Scholar]
  158. 158.
    Sperduti M, Delaveau P, Fossati P, Nadel J. 2011. Different brain structures related to self- and external-agency attribution: a brief review and meta-analysis. Brain Struct. Funct. 216:2151–57
    [Google Scholar]
  159. 159.
    Schofield JS, Battraw MA, Parker ASR, Pilarski PM, Sensinger JW, Marasco PD. 2021. Embodied cooperation to promote forgiving interactions with autonomous machines. Front. Neurorobot. 15:661603
    [Google Scholar]
  160. 160.
    Farrer C, Frith CD. 2002. Experiencing oneself versus another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15:3596–603
    [Google Scholar]
  161. 161.
    Craig ADB. 2009. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10:159–70
    [Google Scholar]
  162. 162.
    Craig ADB. 2009. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. B 364:15251933–42
    [Google Scholar]
  163. 163.
    Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN et al. 2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21:91281–89
    [Google Scholar]
  164. 164.
    Karashchuk P, Rupp KL, Dickinson ES, Walling-Bell S, Sanders E et al. 2021. Anipose: a toolkit for robust markerless 3D pose estimation. Cell Rep. 36:13109730
    [Google Scholar]
  165. 165.
    Darian-Smith C, Darian-Smith I, Cheema SS 1990. Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J. Comp. Neurol 299:117–46
    [Google Scholar]
  166. 166.
    Darian-Smith C, Darian-Smith I 1993. Thalamic projections to areas 3a, 3b, and 4 in the sensorimotor cortex of the mature and infant macaque monkey. J. Comp. Neurol 335:2173–99
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-040122-081302
Loading
/content/journals/10.1146/annurev-physiol-040122-081302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error