1932

Abstract

The use of electronic (e)-cigarettes was initially considered a beneficial solution to conventional cigarette smoking cessation. However, paradoxically, e-cigarette use is rapidly growing among nonsmokers, including youth and young adults. In 2019, this rapid growth resulted in an epidemic of hospitalizations and deaths of e-cigarette users (vapers) due to acute lung injury; this novel disease was termed e-cigarette or vaping use-associated lung injury (EVALI). Pathophysiologic mechanisms of EVALI likely involve cytotoxicity and neutrophilic inflammation caused by inhaled chemicals, but further details remain unknown. The undiscovered mechanisms of EVALI are a barrier to identifying biomarkers and developing therapeutics. Furthermore, adverse effects of e-cigarette use have been linked to chronic lung diseases and systemic effects on multiple organs. In this comprehensive review, we discuss the diverse spectrum of vaping exposures, epidemiological and clinical reports, and experimental findings to provide a better understanding of EVALI and the adverse health effects of chronic e-cigarette exposure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-061121-040014
2022-02-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-061121-040014.html?itemId=/content/journals/10.1146/annurev-physiol-061121-040014&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dockrell M, Morrison R, Bauld L, McNeill A. 2013. E-cigarettes: prevalence and attitudes in Great Britain. Nicotine Tob. Res. 15:1737–44
    [Google Scholar]
  2. 2. 
    Grana R, Benowitz N, Glantz SA. 2014. E-cigarettes: a scientific review. Circulation 129:1972–86
    [Google Scholar]
  3. 3. 
    Zhu SH, Sun JY, Bonnevie E, Cummins SE, Gamst A et al. 2014. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob. Control 23:Suppl. 3iii3–9
    [Google Scholar]
  4. 4. 
    Hajek P, Etter JF, Benowitz N, Eissenberg T, McRobbie H 2014. Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction 109:1801–10
    [Google Scholar]
  5. 5. 
    Shahandeh N, Chowdhary H, Middlekauff HR. 2021. Vaping and cardiac disease. Heart 107:1530–35
    [Google Scholar]
  6. 6. 
    Choi H, Lin Y, Race E, Macmurdo MG. 2021. Electronic cigarettes and alternative methods of vaping. Ann. Am. Thorac. Soc 18:191–99
    [Google Scholar]
  7. 7. 
    DeVito EE, Krishnan-Sarin S. 2018. E-cigarettes: impact of e-liquid components and device characteristics on nicotine exposure. Curr. Neuropharmacol. 16:438–59
    [Google Scholar]
  8. 8. 
    Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M et al. 2014. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 16:1319–26
    [Google Scholar]
  9. 9. 
    Wang P, Chen W, Liao J, Matsuo T, Ito K et al. 2017. A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLOS ONE 12:e0169811
    [Google Scholar]
  10. 10. 
    Vreeke S, Zhu X, Strongin RM. 2020. A simple predictive model for estimating relative e-cigarette toxic carbonyl levels. PLOS ONE 15:e0238172
    [Google Scholar]
  11. 11. 
    Zhao D, Aravindakshan A, Hilpert M, Olmedo P, Rule AM et al. 2020. Metal/metalloid levels in electronic cigarette liquids, aerosols, and human biosamples: a systematic review. Environ. Health Perspect. 128:36001
    [Google Scholar]
  12. 12. 
    Olmedo P, Goessler W, Tanda S, Grau-Perez M, Jarmul S et al. 2018. Metal concentrations in e-cigarette liquid and aerosol samples: the contribution of metallic coils. Environ. Health Perspect. 126:027010
    [Google Scholar]
  13. 13. 
    Lerner CA, Sundar IK, Watson RM, Elder A, Jones R et al. 2015. Environmental health hazards of e-cigarettes and their components: oxidants and copper in e-cigarette aerosols. Environ. Pollut. 198:100–7
    [Google Scholar]
  14. 14. 
    Fowles J, Barreau T, Wu N. 2020. Cancer and non-cancer risk concerns from metals in electronic cigarette liquids and aerosols. Int. J. Environ. Res. Public Health 17:2146
    [Google Scholar]
  15. 15. 
    Allen JG, Flanigan SS, LeBlanc M, Vallarino J, MacNaughton P et al. 2016. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ. Health Perspect. 124:733–39
    [Google Scholar]
  16. 16. 
    Klager S, Vallarino J, MacNaughton P, Christiani DC, Lu Q, Allen JG 2017. Flavoring chemicals and aldehydes in e-cigarette emissions. Environ. Sci. Technol. 51:10806–13
    [Google Scholar]
  17. 17. 
    Lee MS, LeBouf RF, Son YS, Koutrakis P, Christiani DC 2017. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes. Environ. Health 16:42
    [Google Scholar]
  18. 18. 
    Lee MS, Allen JG, Christiani DC 2019. Endotoxin and (1 → 3)-β-d-glucan contamination in electronic cigarette products sold in the United States. Environ. Health Perspect. 127:47008
    [Google Scholar]
  19. 19. 
    Lee MS, Christiani DC. 2020. Microbial toxins in nicotine vaping liquids. Am. J. Respir. Crit. Care Med. 201:741–43
    [Google Scholar]
  20. 20. 
    Kennedy CD, van Schalkwyk MCI, McKee M, Pisinger C. 2019. The cardiovascular effects of electronic cigarettes: a systematic review of experimental studies. Prev. Med. 127:105770
    [Google Scholar]
  21. 21. 
    Bergeria CL, Heil SH, Bunn JY, Sigmon SC, Higgins ST. 2018. Comparing smoking topography and subjective measures of usual brand cigarettes between pregnant and non-pregnant smokers. Nicotine Tob. Res. 20:1243–49
    [Google Scholar]
  22. 22. 
    Cox S, Goniewicz ML, Kosmider L, McRobbie H, Kimber C, Dawkins L 2021. The time course of compensatory puffing with an electronic cigarette: secondary analysis of real-world puffing data with high and low nicotine concentration under fixed and adjustable power settings. Nicotine Tob. Res. 23:1153–59
    [Google Scholar]
  23. 23. 
    Glasser AM, Johnson AL, Niaura RS, Abrams DB, Pearson JL. 2021. Youth vaping and tobacco use in context in the United States: results from the 2018 National Youth Tobacco Survey. Nicotine Tob. Res. 23:447–53
    [Google Scholar]
  24. 24. 
    Ballbe M, Martinez-Sanchez JM, Sureda X, Fu M, Perez-Ortuno R et al. 2014. Cigarettes versus e-cigarettes: passive exposure at home measured by means of airborne marker and biomarkers. Environ. Res. 135:76–80
    [Google Scholar]
  25. 25. 
    Lee MS, Rees VW, Koutrakis P, Wolfson JM, Son YS et al. 2019. Cardiac autonomic effects of secondhand exposure to nicotine from electronic cigarettes: an exploratory study. Environ. Epidemiol. 3:e033
    [Google Scholar]
  26. 26. 
    Visser WF, Klerx WN, Cremers H, Ramlal R, Schwillens PL, Talhout R. 2019. The health risks of electronic cigarette use to bystanders. Int. J. Environ. Res. Public Health 16:1525
    [Google Scholar]
  27. 27. 
    Layden JE, Ghinai I, Pray I, Kimball A, Layer M et al. 2020. Pulmonary illness related to e-cigarette use in Illinois and Wisconsin—Final Report. N. Engl. J. Med. 382:903–16
    [Google Scholar]
  28. 28. 
    Maddock SD, Cirulis MM, Callahan SJ, Keenan LM, Pirozzi CS et al. 2019. Pulmonary lipid-laden macrophages and vaping. N. Engl. J. Med. 381:1488–89
    [Google Scholar]
  29. 29. 
    Henry TS, Kanne JP, Kligerman SJ. 2019. Imaging of vaping-associated lung disease. N. Engl. J. Med. 381:1486–87
    [Google Scholar]
  30. 30. 
    Rhee J, Dominici F, Zanobetti A, Schwartz J, Wang Y et al. 2019. Impact of long-term exposures to ambient PM2.5 and ozone on ARDS risk for older adults in the United States. Chest 156:71–79
    [Google Scholar]
  31. 31. 
    Inoue K. 2011. Promoting effects of nanoparticles/materials on sensitive lung inflammatory diseases. Environ. Health Prev. Med. 16:139–43
    [Google Scholar]
  32. 32. 
    Auerbach A, Hernandez ML. 2012. The effect of environmental oxidative stress on airway inflammation. Curr. Opin. Allergy Clin. Immunol. 12:133–39
    [Google Scholar]
  33. 33. 
    Hailemariam Y, Amiri HM, Nugent K. 2012. Acute respiratory symptoms following massive carbon black exposure. Occup. Med. 62:578–80
    [Google Scholar]
  34. 34. 
    Johannson KA, Balmes JR, Collard HR. 2015. Air pollution exposure: A novel environmental risk factor for interstitial lung disease?. Chest 147:1161–67
    [Google Scholar]
  35. 35. 
    Schelegle ES, Walby WF, Alfaro MF, Wong VJ, Putney L et al. 2003. Repeated episodes of ozone inhalation attenuates airway injury/repair and release of substance P, but not adaptation. Toxicol. Appl. Pharmacol. 186:127–42
    [Google Scholar]
  36. 36. 
    D'Amato G, Cecchi L. 2008. Effects of climate change on environmental factors in respiratory allergic diseases. Clin. Exp. Allergy 38:1264–74
    [Google Scholar]
  37. 37. 
    Alexis NE, Carlsten C 2014. Interplay of air pollution and asthma immunopathogenesis: a focused review of diesel exhaust and ozone. Int. Immunopharmacol. 23:347–55
    [Google Scholar]
  38. 38. 
    Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH et al. 2019. Air pollution and noncommunicable diseases: a review by the Forum of International Respiratory Societies’ Environmental Committee, part 2: air pollution and organ systems. Chest 155:417–26
    [Google Scholar]
  39. 39. 
    Kales SN, Christiani DC. 2004. Acute chemical emergencies. N. Engl. J. Med. 350:800–8
    [Google Scholar]
  40. 40. 
    Puisney C, Baeza-Squiban A, Boland S. 2018. Mechanisms of uptake and translocation of nanomaterials in the lung. Adv. Exp. Med. Biol. 1048:21–36
    [Google Scholar]
  41. 41. 
    Manke A, Wang L, Rojanasakul Y 2013. Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol. Mech. Methods 23:196–206
    [Google Scholar]
  42. 42. 
    Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J et al. 2017. Toxicology of silica nanoparticles: an update. Arch. Toxicol. 91:2967–3010
    [Google Scholar]
  43. 43. 
    Braakhuis HM, Park MV, Gosens I, De Jong WH, Cassee FR. 2014. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 11:18
    [Google Scholar]
  44. 44. 
    Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR et al. 2019. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 5:18
    [Google Scholar]
  45. 45. 
    Laffey JG, Kavanagh BP. 2017. Fifty years of research in ARDS. Insight into acute respiratory distress syndrome: from models to patients. Am. J. Respir. Crit. Care Med. 196:18–28
    [Google Scholar]
  46. 46. 
    Thompson BT, Chambers RC, Liu KD. 2017. Acute respiratory distress syndrome. N. Engl. J. Med. 377:562–72
    [Google Scholar]
  47. 47. 
    Mull ES, Erdem G, Nicol K, Adler B, Shell R. 2020. Eosinophilic pneumonia and lymphadenopathy associated with vaping and tetrahydrocannabinol use. Pediatrics 145:e20193007
    [Google Scholar]
  48. 48. 
    Collins BN, Lepore SJ, Winickoff JP, Nair US, Moughan B et al. 2018. An office-initiated multilevel intervention for tobacco smoke exposure: a randomized trial. Pediatrics 141:S75–86
    [Google Scholar]
  49. 49. 
    Galiatsatos P, Gomez E, Lin CT, Illei PB, Shah P, Neptune E. 2020. Secondhand smoke from electronic cigarette resulting in hypersensitivity pneumonitis. BMJ Case Rep 13:e233381
    [Google Scholar]
  50. 50. 
    Christiani DC. 2020. Vaping-induced acute lung injury. N. Engl. J. Med. 382:960–62
    [Google Scholar]
  51. 51. 
    De Giacomi F, Vassallo R, Yi ES, Ryu JH 2018. Acute eosinophilic pneumonia. Causes, diagnosis, and management. Am. J. Respir. Crit. Care Med. 197:728–36
    [Google Scholar]
  52. 52. 
    Blount BC, Karwowski MP, Shields PG, Morel-Espinosa M, Valentin-Blasini L et al. 2020. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N. Engl. J. Med. 382:697–705
    [Google Scholar]
  53. 53. 
    Feldman R, Meiman J, Stanton M, Gummin DD 2020. Culprit or correlate? An application of the Bradford Hill criteria to Vitamin E acetate. Arch. Toxicol. 94:2249–54
    [Google Scholar]
  54. 54. 
    Bhat TA, Kalathil SG, Bogner PN, Blount BC, Goniewicz ML, Thanavala YM. 2020. An animal model of inhaled vitamin E acetate and EVALI-like lung injury. N. Engl. J. Med. 382:1175–77
    [Google Scholar]
  55. 55. 
    Reagan-Steiner S, Gary J, Matkovic E, Ritter JM, Shieh WJ et al. 2020. Pathological findings in suspected cases of e-cigarette, or vaping, product use-associated lung injury (EVALI): a case series. Lancet Respir. Med. 8:1219–32
    [Google Scholar]
  56. 56. 
    Mukhopadhyay S, Mehrad M, Dammert P, Arrossi AV, Sarda R et al. 2020. Lung biopsy findings in severe pulmonary illness associated with e-cigarette use (vaping). Am. J. Clin. Pathol. 153:30–39
    [Google Scholar]
  57. 57. 
    Werner AK, Koumans EH, Chatham-Stephens K, Salvatore PP, Armatas C et al. 2020. Hospitalizations and deaths associated with EVALI. N. Engl. J. Med. 382:1589–98
    [Google Scholar]
  58. 58. 
    Kazachkov M, Pirzada M. 2020. Diagnosis of EVALI in the COVID-19 era. Lancet Respir. Med. 8:1169–70
    [Google Scholar]
  59. 59. 
    Callahan SJ, Harris D, Collingridge DS, Guidry DW, Dean NC et al. 2020. Diagnosing EVALI in the time of COVID-19. Chest 158:2034–37
    [Google Scholar]
  60. 60. 
    Gaiha SM, Cheng J, Halpern-Felsher B. 2020. Association between youth smoking, electronic cigarette use, and COVID-19. J. Adolesc. Health 67:519–23
    [Google Scholar]
  61. 61. 
    Besaratinia A, Tommasi S. 2019. Vaping: a growing global health concern. EClinicalMedicine 17:100208
    [Google Scholar]
  62. 62. 
    Cullen KA, Gentzke AS, Sawdey MD, Chang JT, Anic GM et al. 2019. E-cigarette use among youth in the United States, 2019. JAMA 322:2095–103
    [Google Scholar]
  63. 63. 
    Hwang JH, Lyes M, Sladewski K, Enany S, McEachern E et al. 2016. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J. Mol. Med. 94:667–79
    [Google Scholar]
  64. 64. 
    Park HR, O'Sullivan M, Vallarino J, Shumyatcher M, Himes BE et al. 2019. Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes. Sci. Rep. 9:1400
    [Google Scholar]
  65. 65. 
    Bozier J, Chivers EK, Chapman DG, Larcombe AN, Bastian NA et al. 2020. The evolving landscape of e-cigarettes: a systematic review of recent evidence. Chest 157:1362–90
    [Google Scholar]
  66. 66. 
    Schweitzer RJ, Wills TA, Tam E, Pagano I, Choi K 2017. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev. Med. 105:226–31
    [Google Scholar]
  67. 67. 
    Osei AD, Mirbolouk M, Orimoloye OA, Dzaye O, Uddin SMI et al. 2019. The association between e-cigarette use and asthma among never combustible cigarette smokers: behavioral risk factor surveillance system (BRFSS) 2016 & 2017. BMC Pulm. Med. 19:180
    [Google Scholar]
  68. 68. 
    Cho JH, Paik SY. 2016. Association between electronic cigarette use and asthma among high school students in South Korea. PLOS ONE 11:e0151022
    [Google Scholar]
  69. 69. 
    Choi K, Bernat D. 2016. E-cigarette use among Florida youth with and without asthma. Am. J. Prev. Med. 51:446–53
    [Google Scholar]
  70. 70. 
    Li D, Xie Z 2020. Cross-sectional association of lifetime electronic cigarette use with wheezing and related respiratory symptoms in U.S. adults. Nicotine Tob. Res. 22:S85–92
    [Google Scholar]
  71. 71. 
    Xie Z, Li D. 2020. Cross-sectional association between lifetime use of electronic cigarettes with or without marijuana and self-reported past 12-month respiratory symptoms as well as lifetime respiratory diseases in U.S. adults. Nicotine Tob. Res. 22:S70–75
    [Google Scholar]
  72. 72. 
    Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG. 2018. Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir. Res. 19:78
    [Google Scholar]
  73. 73. 
    Larcombe AN. 2019. Early-life exposure to electronic cigarettes: cause for concern. Lancet Respir. Med. 7:985–92
    [Google Scholar]
  74. 74. 
    Wetendorf M, Randall LT, Lemma MT, Hurr SH, Pawlak JB et al. 2019. E-cigarette exposure delays implantation and causes reduced weight gain in female offspring exposed in utero. J. Endocr. Soc. 3:1907–16
    [Google Scholar]
  75. 75. 
    McGrath-Morrow SA, Gorzkowski J, Groner JA, Rule AM, Wilson K et al. 2020. The effects of nicotine on development. Pediatrics 145:e20191346
    [Google Scholar]
  76. 76. 
    Meyer KF, Verkaik-Schakel RN, Timens W, Kobzik L, Plosch T, Hylkema MN 2017. The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific. Epigenetics 12:1076–91
    [Google Scholar]
  77. 77. 
    Holbrook BD. 2016. The effects of nicotine on human fetal development. Birth Defects Res. C Embryo Today 108:181–92
    [Google Scholar]
  78. 78. 
    Wong MK, Barra NG, Alfaidy N, Hardy DB, Holloway AC. 2015. Adverse effects of perinatal nicotine exposure on reproductive outcomes. Reproduction 150:R185–93
    [Google Scholar]
  79. 79. 
    Figueredo CA, Abdelhay N, Figueredo CM, Catunda R, Gibson MP. 2021. The impact of vaping on periodontitis: a systematic review. Clin. Exp. Dent. Res. 7:376–84
    [Google Scholar]
  80. 80. 
    Sundar IK, Javed F, Romanos GE, Rahman I. 2016. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget 7:77196–204
    [Google Scholar]
  81. 81. 
    Qasim H, Karim ZA, Rivera JO, Khasawneh FT, Alshbool FZ. 2017. Impact of electronic cigarettes on the cardiovascular system. J. Am. Heart Assoc. 6:e006353
    [Google Scholar]
  82. 82. 
    Tsai M, Byun MK, Shin J, Crotty Alexander LE. 2020. Effects of e-cigarettes and vaping devices on cardiac and pulmonary physiology. J. Physiol. 598:5039–62
    [Google Scholar]
  83. 83. 
    Heldt NA, Reichenbach N, McGary HM, Persidsky Y. 2021. Effects of electronic nicotine delivery systems and cigarettes on systemic circulation and blood-brain barrier: implications for cognitive decline. Am. J. Pathol. 191:243–55
    [Google Scholar]
  84. 84. 
    Kim S, Chen J, Cheng T, Gindulyte A, He J et al. 2019. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47:D1102–9
    [Google Scholar]
  85. 85. 
    Breland AB, Spindle T, Weaver M, Eissenberg T. 2014. Science and electronic cigarettes: current data, future needs. J. Addict. Med. 8:223–33
    [Google Scholar]
  86. 86. 
    Li G, Chan YL, Nguyen LT, Mak C, Zaky A et al. 2019. Impact of maternal e-cigarette vapor exposure on renal health in the offspring. Ann. N. Y. Acad. Sci. 1452:65–77
    [Google Scholar]
  87. 87. 
    Gotts JE, Jordt SE, McConnell R, Tarran R. 2019. What are the respiratory effects of e-cigarettes?. BMJ 366:l5275
    [Google Scholar]
  88. 88. 
    Moses E, Wang T, Corbett S, Jackson GR, Drizik E et al. 2017. Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium. Toxicol. Sci. 155:248–57
    [Google Scholar]
  89. 89. 
    Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES et al. 2018. Chronic e-cigarette exposure alters the human bronchial epithelial proteome. Am. J. Respir. Crit. Care Med. 198:67–76
    [Google Scholar]
  90. 90. 
    Lim HB, Kim SH. 2014. Inhallation of e-cigarette cartridge solution aggravates allergen-induced airway inflammation and hyper-responsiveness in mice. Toxicol. Res. 30:13–18
    [Google Scholar]
  91. 91. 
    Marczylo T. 2020. How bad are e-cigarettes? What can we learn from animal exposure models?. J. Physiol. 598:5073–89
    [Google Scholar]
  92. 92. 
    Scott A, Lugg ST, Aldridge K, Lewis KE, Bowden A et al. 2018. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax 73:1161–69
    [Google Scholar]
  93. 93. 
    Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A et al. 2018. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314:R834–47
    [Google Scholar]
  94. 94. 
    Garcia-Arcos I, Geraghty P, Baumlin N, Campos M, Dabo AJ et al. 2016. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax 71:1119–29
    [Google Scholar]
  95. 95. 
    Higham A, Rattray NJ, Dewhurst JA, Trivedi DK, Fowler SJ et al. 2016. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir. Res. 17:56
    [Google Scholar]
  96. 96. 
    Matsumoto S, Fang X, Traber MG, Jones KD, Langelier C et al. 2020. Dose-dependent pulmonary toxicity of aerosolized vitamin E acetate. Am. J. Respir. Cell Mol. Biol. 63:748–57
    [Google Scholar]
  97. 97. 
    Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S et al. 2018. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. Am. J. Respir. Crit. Care Med. 197:492–501
    [Google Scholar]
  98. 98. 
    Janoff A, White R, Carp H, Harel S, Dearing R, Lee D. 1979. Lung injury induced by leukocytic proteases. Am. J. Pathol. 97:111–36
    [Google Scholar]
  99. 99. 
    Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. 1997. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277:2002–4
    [Google Scholar]
  100. 100. 
    Glynos C, Bibli SI, Katsaounou P, Pavlidou A, Magkou C et al. 2018. Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 315:L662–72
    [Google Scholar]
  101. 101. 
    Wang Q, Sundar IK, Li D, Lucas JH, Muthumalage T et al. 2020. E-cigarette-induced pulmonary inflammation and dysregulated repair are mediated by nAChR α7 receptor: role of nAChR α7 in SARS-CoV-2 Covid-19 ACE2 receptor regulation. Respir. Res. 21:154
    [Google Scholar]
  102. 102. 
    Kleinman MT, Arechavala RJ, Herman D, Shi J, Hasen I et al. 2020. E-cigarette or vaping product use-associated lung injury produced in an animal model from electronic cigarette vapor exposure without tetrahydrocannabinol or vitamin E oil. J. Am. Heart Assoc. 9:e017368
    [Google Scholar]
  103. 103. 
    Szafran BN, Pinkston R, Perveen Z, Ross MK, Morgan T et al. 2020. Electronic-cigarette vehicles and flavoring affect lung function and immune responses in a murine model. Int. J. Mol. Sci. 21:6022
    [Google Scholar]
  104. 104. 
    Fallon PG, Schwartz C. 2020. The high and lows of type 2 asthma and mouse models. J. Allergy Clin. Immunol. 145:496–98
    [Google Scholar]
  105. 105. 
    Chapman DG, Casey DT, Ather JL, Aliyeva M, Daphtary N et al. 2019. The effect of flavored e-cigarettes on murine allergic airways disease. Sci. Rep. 9:13671
    [Google Scholar]
  106. 106. 
    Taha HR, Al-Sawalha NA, Alzoubi KH, Khabour OF 2020. Effect of e-cigarette aerosol exposure on airway inflammation in a murine model of asthma. Inhal. Toxicol. 32:503–11
    [Google Scholar]
  107. 107. 
    Azimi P, Keshavarz Z, Lahaie Luna M, Cedeno Laurent JG, Vallarino J et al. 2021. An unrecognized hazard in e-cigarette vapor: preliminary quantification of methylglyoxal formation from propylene glycol in e-cigarettes. Int. J. Environ. Res. Public Health 18:385
    [Google Scholar]
  108. 108. 
    Breitzig M, Bhimineni C, Lockey R, Kolliputi N 2016. 4-Hydroxy-2-nonenal: A critical target in oxidative stress?. Am. J. Physiol. Cell Physiol. 311:C537–43
    [Google Scholar]
  109. 109. 
    Bahmed K, Messier EM, Zhou W, Tuder RM, Freed CR et al. 2016. DJ-1 modulates nuclear erythroid 2-related factor-2-mediated protection in human primary alveolar type II cells in smokers. Am. J. Respir. Cell Mol. Biol. 55:439–49
    [Google Scholar]
  110. 110. 
    Xiao M, Zhong H, Xia L, Tao Y, Yin H. 2017. Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic. . Biol. Med. 111:316–27
    [Google Scholar]
  111. 111. 
    Noel A, Hossain E, Perveen Z, Zaman H, Penn AL. 2020. Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air-liquid interface. Respir. Res. 21:305
    [Google Scholar]
  112. 112. 
    Muthumalage T, Lucas JH, Wang Q, Lamb T, McGraw MD, Rahman I. 2020. Pulmonary toxicity and inflammatory response of e-cigarette vape cartridges containing medium-chain triglycerides oil and vitamin E acetate: implications in the pathogenesis of EVALI. Toxics 8:46
    [Google Scholar]
  113. 113. 
    Yu V, Rahimy M, Korrapati A, Xuan Y, Zou AE et al. 2016. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral. Oncol. 52:58–65
    [Google Scholar]
  114. 114. 
    Espinoza-Derout J, Hasan KM, Shao XM, Jordan MC, Sims C et al. 2019. Chronic intermittent electronic cigarette exposure induces cardiac dysfunction and atherosclerosis in apolipoprotein-E knockout mice. Am. J. Physiol. Heart Circ. Physiol. 317:H445–59
    [Google Scholar]
  115. 115. 
    Canistro D, Vivarelli F, Cirillo S, Marquillas CB, Buschini A et al. 2017. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci. Rep. 7:2028
    [Google Scholar]
  116. 116. 
    Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ et al. 2015. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLOS ONE 10:e0116732
    [Google Scholar]
  117. 117. 
    Zhao J, Zhang Y, Sisler JD, Shaffer J, Leonard SS et al. 2018. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. J. Hazard. Mater 344:549–57
    [Google Scholar]
  118. 118. 
    Sussan TE, Gajghate S, Thimmulappa RK, Ma J, Kim JH et al. 2015. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLOS ONE 10:e0116861
    [Google Scholar]
  119. 119. 
    Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I 2019. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am. J. Physiol. Lung Cell. Mol. Physiol. 316:L470–86
    [Google Scholar]
  120. 120. 
    Tommasi S, Caliri AW, Caceres A, Moreno DE, Li M et al. 2019. Deregulation of biologically significant genes and associated molecular pathways in the oral epithelium of electronic cigarette users. Int. J. Mol. Sci. 20:738
    [Google Scholar]
  121. 121. 
    Park HR, Vallarino J, O'Sullivan M, Wirth C, Panganiban RA et al. 2021. Electronic cigarette smoke reduces ribosomal protein gene expression to impair protein synthesis in primary human airway epithelial cells. Sci. Rep. 11:17517
    [Google Scholar]
  122. 122. 
    Shen Y, Wolkowicz MJ, Kotova T, Fan L, Timko MP 2016. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci. Rep. 6:23984
    [Google Scholar]
  123. 123. 
    Jing JC, Chen JJ, Chou L, Wong BJF, Chen Z. 2017. Visualization and detection of ciliary beating pattern and frequency in the upper airway using phase resolved Doppler optical coherence tomography. Sci. Rep. 7:8522
    [Google Scholar]
  124. 124. 
    Siegel SJ, Weiser JN. 2015. Mechanisms of bacterial colonization of the respiratory tract. Annu. Rev. Microbiol. 69:425–44
    [Google Scholar]
  125. 125. 
    Carson JL, Zhou L, Brighton L, Mills KH, Zhou H et al. 2017. Temporal structure/function variation in cultured differentiated human nasal epithelium associated with acute single exposure to tobacco smoke or E-cigarette vapor. Inhal. Toxicol. 29:137–44
    [Google Scholar]
  126. 126. 
    Chung S, Baumlin N, Dennis JS, Moore R, Salathe SF et al. 2019. Electronic cigarette vapor with nicotine causes airway mucociliary dysfunction preferentially via TRPA1 receptors. Am. J. Respir. Crit. Care Med. 200:1134–45
    [Google Scholar]
  127. 127. 
    Corriden R, Moshensky A, Bojanowski CM, Meier A, Chien J et al. 2020. E-cigarette use increases susceptibility to bacterial infection by impairment of human neutrophil chemotaxis, phagocytosis, and NET formation. Am. J. Physiol. Cell Physiol. 318:C205–14
    [Google Scholar]
  128. 128. 
    Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL et al. 2017. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am. J. Physiol. Lung Cell. Mol. Physiol. 313:L278–92
    [Google Scholar]
  129. 129. 
    Wu Q, Jiang D, Minor M, Chu HW. 2014. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLOS ONE 9:e108342
    [Google Scholar]
  130. 130. 
    McConnell R, Barrington-Trimis JL, Wang K, Urman R, Hong H et al. 2017. Electronic cigarette use and respiratory symptoms in adolescents. Am. J. Respir. Crit. Care Med. 195:1043–49
    [Google Scholar]
  131. 131. 
    Bagale K, Paudel S, Cagle H, Sigel E, Kulkarni R 2020. Electronic cigarette (e-cigarette) vapor exposure alters the Streptococcus pneumoniae transcriptome in a nicotine-dependent manner without affecting pneumococcal virulence. Appl. Environ. Microbiol. 86:e02125-19
    [Google Scholar]
  132. 132. 
    Serpa GL, Renton ND, Lee N, Crane MJ, Jamieson AM. 2020. Electronic nicotine delivery system aerosol-induced cell death and dysfunction in macrophages and lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 63:306–16
    [Google Scholar]
  133. 133. 
    Woodall M, Jacob J, Kalsi KK, Schroeder V, Davis E et al. 2020. E-cigarette constituents propylene glycol and vegetable glycerin decrease glucose uptake and its metabolism in airway epithelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 319:L957–67
    [Google Scholar]
  134. 134. 
    Pezzulo AA, Gutierrez J, Duschner KS, McConnell KS, Taft PJ et al. 2011. Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLOS ONE 6:e16166
    [Google Scholar]
  135. 135. 
    Madison MC, Landers CT, Gu BH, Chang CY, Tung HY et al. 2019. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J. Clin. Investig. 129:4290–304
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-061121-040014
Loading
/content/journals/10.1146/annurev-physiol-061121-040014
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error