1932

Abstract

Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant–pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-010820-012740
2020-08-25
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/phyto/58/1/annurev-phyto-010820-012740.html?itemId=/content/journals/10.1146/annurev-phyto-010820-012740&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T 2012. Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by φRSM filamentous phages. Phytopathology 102:5469–77
    [Google Scholar]
  2. 2.
    Ahmad AA, Stulberg MJ, Huang Q 2017. Prophage Rs551 and its repressor gene orf14 reduce virulence and increase competitive fitness of its Ralstonia solanacearum carrier strain UW551. Front. Microbiol. 8:2480
    [Google Scholar]
  3. 3.
    Alizon S, de Roode JC, Michalakis Y 2013. Multiple infections and the evolution of virulence. Ecol. Lett. 16:4556–67
    [Google Scholar]
  4. 4.
    Allison SD. 2005. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8:6626–35
    [Google Scholar]
  5. 5.
    Anderson RM, May RM. 1982. Coevolution of hosts and parasites. Parasitology 85:2411–26
    [Google Scholar]
  6. 6.
    Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW 2011. Economic game theory for mutualism and cooperation. Ecol. Lett. 14:121300–12
    [Google Scholar]
  7. 7.
    Aronoff DM. 2013. Clostridium novyi, sordellii, and tetani: mechanisms of disease. Anaerobe 24:98–101
    [Google Scholar]
  8. 8.
    Axelrod R, Hamilton W. 1981. The evolution of cooperation. Science 211:44891390–96
    [Google Scholar]
  9. 9.
    Bakker MG, Otto-Hanson L, Lange AJ, Bradeen JM, Kinkel LL 2013. Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biol. Biochem. 65:304–12
    [Google Scholar]
  10. 10.
    Barker JL, Bronstein JL, Friesen ML, Jones EI, Reeve HK et al. 2017. Synthesizing perspectives on the evolution of cooperation within and between species. Evolution 71:4814–25
    [Google Scholar]
  11. 11.
    Barrett LG, Bell T, Dwyer G, Bergelson J 2011. Cheating, trade-offs and the evolution of aggressiveness in a natural pathogen population. Ecol. Lett. 14:111149–57Comprehensively documents cheating within a clade of Pseudomonas syringae with an atypical T3SS.
    [Google Scholar]
  12. 12.
    Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J 2009. Continua of specificity and virulence in plant host-pathogen interactions: causes and consequences. New Phytol 183:3513–29
    [Google Scholar]
  13. 13.
    Barton IS, Fuqua C, Platt TG 2018. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ. Microbiol. 20:116–29
    [Google Scholar]
  14. 14.
    Bastmeyer M, Deising HB, Bechinger C 2002. Force exertion in fungal infection. Annu. Rev. Biophys. Biomol. Struct. 31:321–41
    [Google Scholar]
  15. 15.
    Belanger C, Canfield ML, Moore LW, Dion P 1995. Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors. J. Bacteriol. 177:133752–57
    [Google Scholar]
  16. 16.
    Bhatt G, Denny TP. 2004. Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator. J. Bacteriol. 186:237896–904
    [Google Scholar]
  17. 17.
    Bignell DRD, Selpke RF, Huguet-Tapla JC, Chambers AH, Parry RJ, Lorla R 2010. Streptomyces scabies 87–22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol. Plant-Microbe Interact. 23:2161–75
    [Google Scholar]
  18. 18.
    Boquet E, Boronat A, Ramos-Cormenzana A 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:5434527–29
    [Google Scholar]
  19. 19.
    Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–86
    [Google Scholar]
  20. 20.
    Breen J, Mur L, Sivakumaran A, Akinyemi A, Wilkinson M, Rodriguez Lopez CM 2016. Botrytis cinerea loss and restoration of virulence during in vitro culture follows flux in global DNA methylation. bioRxiv 59477. https://doi.org/10.1101/059477
    [Crossref]
  21. 21.
    Brockhurst MA, Habets MG, Libberton B, Buckling A, Gardner A 2010. Ecological drivers of the evolution of public-goods cooperation in bacteria. Ecology 91:2334–40
    [Google Scholar]
  22. 22.
    Bronstein JL. 2015. Mutualism New York: Oxford Univ. Press
  23. 23.
    Brown SP, Cornforth DM, Mideo N 2012. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:7336–42
    [Google Scholar]
  24. 24.
    Bruce JB, Cooper GA, Chabas H, West SA, Griffin AS 2017. Cheating and resistance to cheating in natural populations of the bacterium Pseudomonas fluorescens. . Evolution 71:102484–95
    [Google Scholar]
  25. 25.
    Bull JJ. 1994. Virulence. Evolution 48:51423–37
    [Google Scholar]
  26. 26.
    Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J et al. 2017. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLOS Biol 15:3e2001793
    [Google Scholar]
  27. 27.
    Butaite E, Baumgartner M, Wyder S, Kümmerli R 2017. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat. Commun. 8:414
    [Google Scholar]
  28. 28.
    Butt TM, Wang C, Shah FA, Hall R 2007. Degeneration of entomogenous fungi. An Ecological and Societal Approach to Biological Control J Eilenberg, HMT Hokkanen 213–26 Berlin, Ger: Springer Sci.
    [Google Scholar]
  29. 29.
    Caballo-Ponce E, Meng X, Uzelac G, Halliday N, Cámara M et al. 2018. Quorum sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: role in virulence and interspecies interactions in the olive knot. Appl. Environ. Microbiol. 84:18 AEM.00950-18
    [Google Scholar]
  30. 30.
    Chane A, Barbey C, Robert M, Merieau A, Konto-Ghiorghi Y et al. 2019. Biocontrol of soft rot: confocal microscopy highlights virulent pectobacterial communication and its jamming by rhodococcal quorum-quenching. Mol. Plant-Microbe Interact. 32:7802–12
    [Google Scholar]
  31. 31.
    Chatterjee S, Newman KL, Lindow SE 2008. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol. Plant-Microbe Interact. 21:101309–15
    [Google Scholar]
  32. 32.
    Chuang JS, Rivoire O, Leibler S 2009. Simpson's paradox in a synthetic microbial system. Science 323:5911272–75
    [Google Scholar]
  33. 33.
    Clarke CR, Cai R, Studholme DJ, Guttman DS, Vinatzer BA 2010. Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc locus are common leaf colonizers equipped with an atypical type III secretion system. Mol. Plant-Microbe Interact. 23:2198–210
    [Google Scholar]
  34. 34.
    Czárán T, Hoekstra RF. 2009. Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria. PLOS ONE 4:8e6655
    [Google Scholar]
  35. 35.
    Czechowska K, McKeithen-Mead S, Al Moussawi K, Kazmierczak BI 2014. Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection. PNAS 111:217801–6
    [Google Scholar]
  36. 36.
    Danhorn T, Fuqua C. 2007. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 61:401–22Comprehensive overview of the role of biofilms in plant–microbe interactions.
    [Google Scholar]
  37. 37.
    Degrassi G, Mortato V, Devescovi G, Hoshino R, Chatnaparat T et al. 2019. Many plant pathogenic Pseudomonas savastanoi pv glycinea isolates possess an inactive quorum sensing ahlR gene via a point mutation. FEMS Microbiol. Lett. 366:12fnz149
    [Google Scholar]
  38. 38.
    Diggle SP, Gardner A, West SA, Griffin AS 2007. Evolutionary theory of bacterial quorum sensing: When is a signal not a signal. Philos. Trans. R. Soc. B 362:14831241–49
    [Google Scholar]
  39. 39.
    Docherty KM, Borton HM, Espinosa N, Gebhardt M, Gil-Loaiza J et al. 2015. Key edaphic properties largely explain temporal and geographic variation in soil microbial communities across four biomes. PLOS ONE 10:11e0135352
    [Google Scholar]
  40. 40.
    Doebeli M, Hauert C. 2005. Models of cooperation based on the prisoner's dilemma and the snowdrift game. Ecol. Lett. 8:7748–66
    [Google Scholar]
  41. 41.
    Doebeli M, Knowlton N. 1998. The evolution of interspecific mutualisms. PNAS 95:158676–80
    [Google Scholar]
  42. 42.
    Dupuy LX, Silk WK. 2016. Mechanisms of early microbial establishment on growing root surfaces. Vadose Zone J 15:2 vzj2015.16.0094
    [Google Scholar]
  43. 43.
    Ebert D, Bull JJ. 2003. Challenging the trade-off model for the evolution of virulence: Is virulence management feasible. Trends Microbiol 11:115–20
    [Google Scholar]
  44. 44.
    Ebert D, Bull JJ. 2008. The evolution and expression of virulence. Evol. Health Dis. 2:153–67
    [Google Scholar]
  45. 45.
    Elena SF, Bernet GP, Carrasco JL 2014. The games plant viruses play. Curr. Opin. Virol. 8:62–67
    [Google Scholar]
  46. 46.
    Ezoe H, Ikegawa Y. 2013. Coexistence of mutualists and non-mutualists in a dual-lattice model. J. Theor. Biol. 332:1–8
    [Google Scholar]
  47. 47.
    Ferrière R, Bronstein JL, Rinaldi S, Law R, Gauduchon M 2002. Cheating and the evolutionary stability of mutualisms. Proc. R. Soc. B 269:1493773–80
    [Google Scholar]
  48. 48.
    Ferrière R, Gauduchon M, Bronstein JL 2007. Evolution and persistence of obligate mutualists and exploiters: competition for partners and evolutionary immunization. Ecol. Lett. 10:2115–26
    [Google Scholar]
  49. 49.
    Fitt BDL, Huang Y-J, van den Bosch F, West JS 2006. Coexistence of related pathogen species on arable crops in space and time. Annu. Rev. Phytopathol. 44:163–82
    [Google Scholar]
  50. 50.
    Flavier AB, Clough SJ, Schell MA, Denny TP 1997. Identification of 3‐hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol. . Microbiol 26:2251–59
    [Google Scholar]
  51. 51.
    Fortin C, Nester EW, Dion P 1992. Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone. J. Bacteriol. 174:175676–85
    [Google Scholar]
  52. 52.
    Frank SA. 1998. Foundations of Social Evolution Princeton, NJ: Princeton Univ. Press
  53. 53.
    Franza T, Mahé B, Expert D 2004. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol. Microbiol. 55:1261–75
    [Google Scholar]
  54. 54.
    Fuqua C, Winans SC, Greenberg EP 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727–51
    [Google Scholar]
  55. 55.
    Galloway WRJD, Hodgkinson JT, Bowden S, Welch M, Spring DR 2012. Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 20:9449–58
    [Google Scholar]
  56. 56.
    Garcia J, Kao-Kniffin J. 2018. Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling. Front. Microbiol. 9:1516
    [Google Scholar]
  57. 57.
    Genin S, Brito B, Denny TP, Boucher C 2005. Control of the Ralstonia solanacearum type III secretion system (Hrp) genes by the global virulence regulator PhcA. FEBS Lett 579:102077–81
    [Google Scholar]
  58. 58.
    Ghoul M, Griffin AS, West SA 2014. Toward an evolutionary definition of cheating. Evolution 68:2318–31
    [Google Scholar]
  59. 59.
    Ghoul M, West SA, Diggle SP, Griffin AS 2014. An experimental test of whether cheating is context dependent. J. Evol. Biol. 27:3551–56
    [Google Scholar]
  60. 60.
    Gokhale CS, Traulsen A. 2010. Evolutionary games in the multiverse. PNAS 107:125500–4
    [Google Scholar]
  61. 61.
    Goormachtig S, Capoen W, Holsters M 2004. Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci 9:11518–22
    [Google Scholar]
  62. 62.
    Griffin AS, West SA, Buckling A 2004. Cooperation and competition in pathogenic bacteria. Nature 430:70031024–27
    [Google Scholar]
  63. 63.
    Groisman EA, Ochman H. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:5791–94
    [Google Scholar]
  64. 64.
    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P 2017. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55:565–89
    [Google Scholar]
  65. 65.
    Hamilton WD. 1964. The genetical evolution of social behaviour. I. J. Theor. Biol. 7:11–16
    [Google Scholar]
  66. 66.
    Hamilton WD. 1964. The genetical evolution of social behaviour. II. J. Theor. Biol. 7:117–52
    [Google Scholar]
  67. 67.
    Hao F, Ding T, Wu M, Zhang J, Yang L et al. 2018. Two novel hypovirulence-associated mycoviruses in the phytopathogenic fungus Botrytis cinerea: molecular characterization and suppression of infection cushion formation. Viruses 10:5254
    [Google Scholar]
  68. 68.
    Hardin G. 1968. The tragedy of the commons. Science 162:38591243–48
    [Google Scholar]
  69. 69.
    Hauert C, Doebeli M. 2004. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428:6983643–46
    [Google Scholar]
  70. 70.
    Hayat S, Muzammil S, Shabana Aslam B, Siddique MH et al. 2019. Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol 14:161–72
    [Google Scholar]
  71. 71.
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8:115–25
    [Google Scholar]
  72. 72.
    Hofbauer J, Sigmund K. 2003. Evolutionary game dynamics. Bull. Am. Math. Soc. 40:4479–519
    [Google Scholar]
  73. 73.
    Hood MI, Skaar EP. 2012. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol. 10:8525–37
    [Google Scholar]
  74. 74.
    Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi MB et al. 2011. Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J 5:121857–70
    [Google Scholar]
  75. 75.
    Huang J. 1986. Ultrastructure of bacterial penetration in plants. Annu. Rev. Phytopathol. 24:141–57
    [Google Scholar]
  76. 76.
    Ilhardt PD, Nuñez JR, Denis EH, Rosnow JJ, Krogstad EJ et al. 2019. High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS). Soil Biol. Biochem. 131:119–32
    [Google Scholar]
  77. 77.
    Janzen DH. 1985. The natural history of mutualisms. The Biology of Mutualism: Ecology and Evolution DH Boucher 40–99 London: Croom Helm
    [Google Scholar]
  78. 78.
    Jones EI, Afkhami ME, Akçay E, Bronstein JL, Bshary R et al. 2015. Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol. Lett. 18:111270–84General introduction to the concept of cheating and empirical guidelines for measuring fitness conflict.
    [Google Scholar]
  79. 79.
    Kalia VC, Patel SKS, Kang YC, Lee JK 2019. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv. 37:168–90
    [Google Scholar]
  80. 80.
    Kasuga T, Gijzen M. 2013. Epigenetics and the evolution of virulence. Trends Microbiol 21:11575–82
    [Google Scholar]
  81. 81.
    Keller L, Surette MG. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:4249–58
    [Google Scholar]
  82. 82.
    Kelsic ED, Zhao J, Vetsigian K, Kishony R 2015. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521:7553516–19
    [Google Scholar]
  83. 83.
    Kinkel LL, Bakker MG, Schlatter DC 2011. A coevolutionary framework for managing disease-suppressive soils. Annu. Rev. Phytopathol. 49:47–67
    [Google Scholar]
  84. 84.
    Kniskern JM, Barrett LG, Bergelson J 2011. Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae. . Evolution 65:3818–30
    [Google Scholar]
  85. 85.
    Kümmerli R, Brown SP. 2010. Molecular and regulatory properties of a public good shape the evolution of cooperation. PNAS 107:4418921–26
    [Google Scholar]
  86. 86.
    Lamichhane JR, Venturi V. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front. Plant Sci. 6:385
    [Google Scholar]
  87. 87.
    LaSarre B, Federle MJ. 2013. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 77:173–111
    [Google Scholar]
  88. 88.
    Lee MH, Khan R, Tao W, Choi K, Lee SY et al. 2018. Soil metagenome-derived 3-hydroxypalmitic acid methyl ester hydrolases suppress extracellular polysaccharide production in Ralstonia solanacearum. J. Biotechnol 270:30–38
    [Google Scholar]
  89. 89.
    Lemus-Minor CG, Cañizares MC, García-Pedrajas MD, Pérez-Artés E 2018. Fusarium oxysporum f. sp. dianthi virus 1 accumulation is correlated with changes in virulence and other phenotypic traits of its fungal host. Phytopathology 108:8957–63
    [Google Scholar]
  90. 90.
    Lenski RE, May RM. 1994. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J. Theor. Biol. 169:3253–65
    [Google Scholar]
  91. 91.
    Lindow SE, Leveau JHJ. 2002. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13:3238–43
    [Google Scholar]
  92. 92.
    Llop P, Murillo J, Lastra B, López MM 2009. Recovery of nonpathogenic mutant bacteria from tumors caused by several Agrobacterium tumefaciens strains: a frequent event. Appl. Environ. Microbiol. 75:206504–14
    [Google Scholar]
  93. 93.
    Loper J, Buyer J. 1991. Siderophores in microbial interactions on plant surfaces. Mol. Plant-Microbe Interact. 4:15–13
    [Google Scholar]
  94. 94.
    Loper JE, Henkels MD. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:125357–63
    [Google Scholar]
  95. 95.
    Lowe-Power TM, Khokhani D, Allen C 2018. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol 26:11929–42
    [Google Scholar]
  96. 96.
    Ma KW, Ma W. 2016. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 91:6713–25
    [Google Scholar]
  97. 97.
    Ma Z, Zhu L, Song T, Wang Y, Zhang Q et al. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355:6326710–14
    [Google Scholar]
  98. 98.
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:6614–29
    [Google Scholar]
  99. 99.
    Marschner P, Crowley D, Rengel Z 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis: model and research methods. Soil Biol. Biochem. 43:5883–94
    [Google Scholar]
  100. 100.
    Matthysse AG. 2014. Attachment of Agrobacterium to plant surfaces. Front. Plant Sci. 5:252
    [Google Scholar]
  101. 101.
    May RM, Nowak MA. 1995. Coinfection and the evolution of parasite virulence. Proc. R. Soc. B 261:1361209–15
    [Google Scholar]
  102. 102.
    McNally L, Brown SP. 2015. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos. Trans. R. Soc. B 370:167520140298
    [Google Scholar]
  103. 103.
    Michielse CB, Rep M. 2009. Pathogen profile update. Fusarium oxysporum. Mol. Plant Pathol. 10:3311–24
    [Google Scholar]
  104. 104.
    Misas-Villamil JC, Kolodziejek I, Crabill E, Kaschani F, Niessen S et al. 2013. Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites. PLOS Pathog 9:3e1003281
    [Google Scholar]
  105. 105.
    Mohr TJ, Liu H, Yan S, Morris CE, Castillo JA et al. 2008. Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J. Bacteriol. 190:82858–70
    [Google Scholar]
  106. 106.
    Mukhtar MS, McCormack ME, Argueso CT, Pajerowska-Mukhtar KM 2016. Pathogen tactics to manipulate plant cell death. Curr. Biol. 26:13R608–19
    [Google Scholar]
  107. 107.
    Muñoz-Adalia EJ, Flores-Pacheco JA, Martínez-Álvarez P, Martín-García J, Fernández M, Diez JJ 2016. Effect of mycoviruses on the virulence of Fusarium circinatum and laccase activity. Physiol. Mol. Plant Pathol. 94:8–15
    [Google Scholar]
  108. 108.
    Norman JS, Friesen ML. 2017. Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs. ISME J 11:2315–26
    [Google Scholar]
  109. 109.
    Nowak MA. 2006. Five rules for the evolution of cooperation. Science 314:58051560–63Concise introduction to the eco-evolutionary mechanisms that maintain cooperation and prevent cheating.
    [Google Scholar]
  110. 110.
    Nowak MA, May RM. 1994. Superinfection and the evolution of parasite virulence. Proc. R. Soc. B 255:134281–89
    [Google Scholar]
  111. 111.
    O'Brien HE, Thakur S, Guttman DS 2011. Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Annu. Rev. Phytopathol. 49:269–89
    [Google Scholar]
  112. 112.
    Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ et al. 2017. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 292:104064–76
    [Google Scholar]
  113. 113.
    Palmer AG, Streng E, Blackwell HE 2011. Attenuation of virulence in pathogenic bacteria using synthetic quorum-sensing modulators under native conditions on plant hosts. ACS Chem. Biol. 6:121348–56
    [Google Scholar]
  114. 114.
    Pandey SS, Patnana PK, Rai R, Chatterjee S 2017. Xanthoferrin, the α-hydroxycarboxylate-type siderophore of Xanthomonas campestris pv. campestris, is required for optimum virulence and growth inside cabbage. Mol. Plant Pathol. 18:7949–62
    [Google Scholar]
  115. 115.
    Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S 2016. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. . PLOS Pathog 12:10e1005939
    [Google Scholar]
  116. 116.
    Platt TG, Bever JD, Fuqua C 2012. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc. R. Soc. B 279:17341691–99
    [Google Scholar]
  117. 117.
    Platt TG, Fuqua C, Bever JD 2012. Resource and competitive dynamics shape the benefits of public goods cooperation in a plant pathogen. Evolution 66:61953–65
    [Google Scholar]
  118. 118.
    Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C 2014. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. Front. Plant Sci. 5:635Reviews the genetics, ecology, and evolution of Agrobacterium megaplasmids and their role in plant pathogenicity as well as the evolutionary ecology of cheating.
    [Google Scholar]
  119. 119.
    Rainey PB, Kerr B. 2010. Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. BioEssays 32:10872–80Proposes alternative hypothesis to cheating in Pseudomonas fluorescens system.
    [Google Scholar]
  120. 120.
    Rainey PB, Rainey K. 2003. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:695372–74
    [Google Scholar]
  121. 121.
    Redfield R. 2002. Is quorum sensing a side effect of diffusion sensing. Trends Microbiol 10:8365–70
    [Google Scholar]
  122. 122.
    Rodríguez-Navarro DN, Dardanelli MS, Ruíz-Saínz JE 2007. Attachment of bacteria to the roots of higher plants. FEMS Microbiol. Lett. 272:2127–36
    [Google Scholar]
  123. 123.
    Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ 2015. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLOS Pathog 11:1e1004483
    [Google Scholar]
  124. 124.
    Ross-Gillespie A, Gardner A, West SA, Griffin AS 2007. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170:3331–42
    [Google Scholar]
  125. 125.
    Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA 2009. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19:4341–45
    [Google Scholar]
  126. 126.
    Rutherford F, Ward E, Buzzell R 1985. Variation in virulence in successive single-zoospore propagations of Phytophthora megasperma f. sp. glycinea. Phytopathology 75:3371–74
    [Google Scholar]
  127. 127.
    Sacristan S, Garcia-Arenal F. 2008. The evolution of virulence and pathogenicity in plant pathogen populations. Mol. Plant Pathol. 9:3369–84
    [Google Scholar]
  128. 128.
    Saleem M, Hu J, Jousset A 2019. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50:145–68
    [Google Scholar]
  129. 129.
    Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T 2017. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:111284–97
    [Google Scholar]
  130. 130.
    Schlatter DC, Kinkel LL. 2015. Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces. BMC Evol. Biol. 15:186
    [Google Scholar]
  131. 131.
    Schneider P, Jacobs JM, Neres J, Aldrich CC, Allen C et al. 2009. The global virulence regulators VsrAD and PhcA control secondary metabolism in the plant pathogen Ralstonia solanacearum. . ChemBioChem 10:172730–32
    [Google Scholar]
  132. 132.
    Shinohara M, Nakajima N, Uehara Y 2007. Purification and characterization of a novel esterase (β‐hydroxypalmitate methyl ester hydrolase) and prevention of the expression of virulence by Ralstonia solanacearum. J. Appl. Microbiol 103:1152–62
    [Google Scholar]
  133. 133.
    Spohn M, Kuzyakov Y. 2014. Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots: a soil zymography analysis. Plant Soil 379:1–267–77
    [Google Scholar]
  134. 134.
    Tollenaere C, Susi H, Laine AL 2016. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci 21:180–90Reviews evidence for coinfection in plant–pathogen interactions and explores the eco-evolutionary consequences of coinfection.
    [Google Scholar]
  135. 135.
    Toruño TY, Stergiopoulos I, Coaker G 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54:419–41Comprehensive overview of pathogen effectors and the many roles they play during infection and disease progression.
    [Google Scholar]
  136. 136.
    Van Dam P, Fokkens L, Ayukawa Y, Van Der Gragt M, Ter Horst A et al. 2017. A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci. Rep. 7:19042
    [Google Scholar]
  137. 137.
    Venturi V, Fuqua C. 2013. Chemical signaling between plants and plant-pathogenic bacteria. Annu. Rev. Phytopathol. 51:17–37
    [Google Scholar]
  138. 138.
    Vidaver AK, Lambrecht PA. 2004. Bacteria as plant pathogens. Plant Health Instr https://doi.org/10.1094/PHI-I-2004-0809-01
    [Crossref] [Google Scholar]
  139. 139.
    Vlaardingerbroek I, Beerens B, Schmidt SM, Cornelissen BJC, Rep M 2016. Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici. Mol. Plant Pathol. 17:91455–66
    [Google Scholar]
  140. 140.
    von Bodman SB, Bauer WD, Coplin DL 2003. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41:455–82
    [Google Scholar]
  141. 141.
    Walencka E, Różalska S, Sadowska B, Różalska B 2008. The influence of Lactobacillus acidophilus–derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol 53:161–66
    [Google Scholar]
  142. 142.
    Wang Y, Wang Y. 2018. Trick or treat: microbial pathogens evolved apoplastic effectors modulating plant susceptibility to infection. Mol. Plant-Microbe Interact. 31:16–12
    [Google Scholar]
  143. 143.
    West SA, Griffin AS, Gardner A, Diggle SP 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:8597–607
    [Google Scholar]
  144. 144.
    Wheatley RM, Poole PS. 2018. Mechanisms of bacterial attachment to roots. FEMS Microbiol. Rev. 42:4448–61
    [Google Scholar]
  145. 145.
    Wilson DS. 1975. A theory of group selection. PNAS 72:1143–46
    [Google Scholar]
  146. 146.
    Worden L, Levin SA. 2007. Evolutionary escape from the prisoner's dilemma. J. Theor. Biol. 245:3411–22
    [Google Scholar]
  147. 147.
    Xavier JB. 2016. Sociomicrobiology and pathogenic bacteria. Microbiol. Spectr. 4:327337482
    [Google Scholar]
  148. 148.
    Xin X-F, He SY. 2013. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol 51:473–98
    [Google Scholar]
  149. 149.
    Yamada T. 2013. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria. Front. Microbiol. 4:325
    [Google Scholar]
  150. 150.
    Zhu JZ, Zhu HJ, Gao BD, Zhou Q, Zhong J 2018. Diverse, novel mycoviruses from the virome of a hypovirulent Sclerotium rolfsii strain. Front. Plant Sci. 9:1738
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-010820-012740
Loading
/content/journals/10.1146/annurev-phyto-010820-012740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error