1932

Abstract

Some of the most agriculturally important plant-parasitic nematodes (PPNs) harbor endosymbionts. Extensive work in other systems has shown that endosymbionts can have major effects on host virulence and biology. This review highlights the discovery, development, and diversity of PPN endosymbionts, incorporating inferences from genomic data. , reported from five PPN hosts to date, is characterized by its presence in the esophageal glands and other tissues, with a discontinuous distribution across populations, and genomic data suggestive of horizontal gene exchange. occurs in at least 27 species of dagger nematode in the ovaries and gut epithelial cells, where genomic data suggest it may serve in nutritional supplementation. , reported in just three PPNs, appears to have an ancient history in the Pratylenchidae and displays broad tissue distribution and genomic features intermediate between parasitic and reproductive groups. Finally, a model is described that integrates these insights to explain patterns of endosymbiont replacement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-045824
2018-08-25
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-045824.html?itemId=/content/journals/10.1146/annurev-phyto-080417-045824&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adams RE, Eichenmuller JJ 1963. A bacterial infection of Xiphinema americanum. . Phytopathology 53:745
    [Google Scholar]
  2. 2.  Archidona-Yuste A, Navas-Cortés JA, Cantalapiedra-Navarrete C, Palomares-Rius JE, Castillo P 2016. Cryptic diversity and species delimitation in the Xiphinema americanum–group complex (Nematoda: Longidoridae) as inferred from morphometrics and molecular markers. Zool. J. Linn. Soc. 176:2231–65
    [Google Scholar]
  3. 3.  Atibalentja N, Noel RG 2008. Bacterial endosymbionts of plant-parasitic nematodes. Symbiosis 46:287–93
    [Google Scholar]
  4. 4.  Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A et al. 2011. Detection and characterization of Wolbachia infections in natural populations of aphids: Is the hidden diversity fully unraveled?. PLOS ONE 6:12e28695
    [Google Scholar]
  5. 5.  Baldridge GD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG 2008. Plasmids of the pRM/pRF family occur in diverse Rickettsia species. Appl. Environ. Microbiol. 74:3645–52
    [Google Scholar]
  6. 6.  Baquiran J-P, Thater B, Sedky S, De Ley P, Crowley D, Orwin PM 2013. Culture-independent investigation of the microbiome associated with the nematode Acrobeloides maximus. . PLOS ONE 8:7e67425
    [Google Scholar]
  7. 7.  Beckmann J, Ronau J, Hochstrasser M 2017. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2:17007
    [Google Scholar]
  8. 8.  Bekal S, Domier LL, Gonfa B, Lakhssassi N, Meksem K et al. 2015. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence. PLOS ONE 10:12e0145601
    [Google Scholar]
  9. 9.  Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG et al. 2011. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43:71450–55
    [Google Scholar]
  10. 10.  Bordenstein SR, Fitch DHA, Werren JH 2003. Absence of Wolbachia in nonfilariid nematodes. J. Nematol. 35:3266–70
    [Google Scholar]
  11. 11.  Brown AMV, Howe DK, Wasala SK, Peetz AB, Zasada IA, Denver DR 2015. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biol. Evol. 7:92727–46
    [Google Scholar]
  12. 12.  Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR 2016. Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts. Sci. Rep. 6:34955
    [Google Scholar]
  13. 13.  Cao Y, Tian B, Ji X, Shang S, Lu C, Zhang K 2015. Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing-based analysis. J. Basic Microbiol. 55:950–60
    [Google Scholar]
  14. 14.  Castillo JD, Vivanco JM, Manter DK 2017. Bacterial microbiome and nematode occurrence in different potato agricultural soils. Microb. Ecol. 74:4888–900
    [Google Scholar]
  15. 15.  Cohn E 1970. Observations on the feeding and symptomatology of Xiphinema and Longidorus on selected host roots. J. Nematol. 2:2167–73
    [Google Scholar]
  16. 16.  Coomans A, Claeys M 1998. Structure of the female reproductive system of Xiphinema americanum (Nematoda: Longidoridae). Fundam. Appl. Nematol. 21:5569–80
    [Google Scholar]
  17. 17.  Coomans A, Vandekerckhove TTTM, Claeys M 2000. Transovarial transmission of symbionts in Xiphinema brevicollum (Nematoda: Longidoridae). Nematology 2:4443–49
    [Google Scholar]
  18. 18.  Coomans A, Willems A 1998. What are symbiotic bacteria doing in the ovaria of Xiphinema americanum–group species?. Nematologica 44:323–26
    [Google Scholar]
  19. 19.  Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P et al. 2014. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 15:R43
    [Google Scholar]
  20. 20.  Craig JP, Bekal S, Niblack T, Domier L, Lambert KN 2009. Evidence for horizontally transferred genes involved in the biosynthesis of vitamin B1, B5, and B7 in Heterodera glycines. J. . Nematol 41:4281–90
    [Google Scholar]
  21. 21.  Danchin EGJ, Guzeeva EA, Mantelin S, Berepiki A, Jones JT 2016. Horizontal gene transfer from bacteria has enabled the plant-parasitic nematode Globodera pallida to feed on host-derived sucrose. Mol. Biol. Evol. 33:61571–79
    [Google Scholar]
  22. 22.  Danchin EGJ, Rosso M-N, Vieira P, de Almeida-Engler J, Coutinho PM et al. 2010. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. PNAS 107:4117651–56
    [Google Scholar]
  23. 23.  de Araujo ASF, Bezerra WM, dos Santos VM, Rocha SMB, da Silva Carvalho N et al. 2017. Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. Antonie van Leeuwenhoek 110:4457–69
    [Google Scholar]
  24. 24.  De W. Kruger JC, Heyns J 1988. Notes on the cytogenetics of some South African Xiphinema species (Nematoda: Longidoridae). S. Afr. J. Zool. 23:4337–41
    [Google Scholar]
  25. 25.  Denver DR, Brown AMV, Howe DK, Peetz AB, Zasada IA 2016. Genome skimming: a rapid approach to gaining diverse biological insights into multicellular pathogens. PLOS Pathog 12:8e1005713
    [Google Scholar]
  26. 26.  Dunning Hotopp JC 2011. Horizontal gene transfer between bacteria and animals. Trends Genet 27:4157–63
    [Google Scholar]
  27. 27.  Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L et al. 2008. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:127
    [Google Scholar]
  28. 28.  Endo BY 1979. The ultrastructure and distribution of an intracellular bacterium-like microorganism in tissue of larvae of the soybean cyst nematode.. Heterodera glycines. J. Ultrastruct. Res. 67:11–14
    [Google Scholar]
  29. 29.  Gerth M, Bleidorn C 2016. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat. Microbiol. 2:20150249
    [Google Scholar]
  30. 30.  Gill AC, Darby AC, Makepeace BL 2014. Iron necessity: the secret of Wolbachia’s success?. PLOS Negl. Trop. Dis. 8:10e3224
    [Google Scholar]
  31. 31.  Gonella E, Pajoro M, Marzorati M, Crotti E, Mandrioli M et al. 2015. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Sci. Rep. 5:15811
    [Google Scholar]
  32. 32.  Haegeman A, Jones JT, Danchin EGJ 2011. Horizontal gene transfer in nematodes: a catalyst for plant parasitism?. Mol. Plant-Microbe Interact. 24:8879–87
    [Google Scholar]
  33. 33.  Haegeman A, Vanholme B, Jacob J, Vandekerckhove TTM, Claeys M et al. 2009. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int. J. Parasitol. 39:91045–54
    [Google Scholar]
  34. 34.  Jones JT, Furlanetto C, Kikuchi T 2005. Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology 7:5641–46
    [Google Scholar]
  35. 35.  Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:9946–61
    [Google Scholar]
  36. 36.  Koutsovoulos G, Makepeace B, Tanya VN, Blaxter M 2014. Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode. PLOS Genet 10:6e1004397
    [Google Scholar]
  37. 37.  Ladygina N, Johansson T, Canbäck B, Tunlid A, Hedlund K 2009. Diversity of bacteria associated with grassland soil nematodes of different feeding groups: research article. FEMS Microbiol. Ecol. 69:153–61
    [Google Scholar]
  38. 38.  Lazarova SS, Brown DJF, Oliveira CMG, Fenton B, MacKenzie K et al. 2016. Diversity of endosymbiont bacteria associated with a non-filarial nematode group. Nematology 18:5615–23
    [Google Scholar]
  39. 39.  Liu H, Guo X, Gooneratne R, Lai R, Zeng C et al. 2016. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6:24340
    [Google Scholar]
  40. 40.  Lòpez-Fernàndez S, Mazzoni V, Pedrazzoli F, Pertot I, Campisano A 2017. A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Front. Microbiol. 8:834
    [Google Scholar]
  41. 41.  Luc M, Coomans A, Loof PAA, Baujard P 1998. The Xiphinema americanum–group (Nematoda: Longidoridae). 2. Observations on Xiphinema brevicollum Lordello & da Costa, 1961 and comments on the group. Fundam. Appl. Nematol. 21:5475–90
    [Google Scholar]
  42. 42.  Ma WJ, Schwander T 2017. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J. Evol. Biol. 30:5868–88
    [Google Scholar]
  43. 43.  Mankau R 1981. Microbial control of nematodes. Plant Parasitic Nematodes III BM Zuckerman, RA Rodhe 475–94 New York: Academic Press
    [Google Scholar]
  44. 44.  Mann E, Stouthamer CM, Kelly SE, Dzieciol M, Hunter MS, Schmitz-Esser S 2017. Transcriptome sequencing reveals novel candidate genes for Cardinium hertigii–caused cytoplasmic incompatibility and host-cell interaction. mSystems 2:6e00140–17
    [Google Scholar]
  45. 45.  Marti O, Rogers CE, Styler EL 1995. Report of an intracellular bacterial symbiont in Noctuidonema guyanense, an ectoparasitic nematode of Spodoptera frugiperda.J. Invertebr. . Pathol 66:194–96
    [Google Scholar]
  46. 46.  McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J et al. 2010. Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLOS ONE 5:6e11029
    [Google Scholar]
  47. 47.  Moliner C, Fournier P-E, Raoult D 2010. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol. Rev. 34:281–94
    [Google Scholar]
  48. 48.  Moriyama M, Nikoh N, Hosokawa T, Fukatsu T 2015. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio 6:6e01732–15
    [Google Scholar]
  49. 49.  Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T et al. 2009. Prevalence of Cardinium bacteria in plant-hoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new Cardinium group from biting midges. Appl. Environ. Microbiol. 75:216757–63
    [Google Scholar]
  50. 50.  Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Tahna Maafi Z 2011. Current nematode threats to world agriculture. Genomics and Molecular Genetics of Plant-Nematode Interactions JT Jones, G Gheysen, C Fenoll 21–44 Heidelberg: Springer
    [Google Scholar]
  51. 51.  Noel GR, Atibalentja N 2006. Candidatus Paenicardinium endonii”, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol. 56:Pt. 71697–702
    [Google Scholar]
  52. 52.  Orlando VO, Chitambar JJC, Dong KD, Chizhov VNC, Mollov DM et al. 2016. Molecular and morphological characterisation of Xiphinema americanum–group species (Nematoda: Dorylaimida) from California, USA, and other regions, and co-evolution of bacteria from the genus Candidatus Xiphinematobacter with nematodes. Nematology 18:91015–43
    [Google Scholar]
  53. 53.  Orton Williams KJ 1984. Xiphinema bacaniboiu n. sp. (Nematoda: Dorylaimida) from Fiji. Syst. Parasitol. 6:207–11
    [Google Scholar]
  54. 54.  Palomares-Rius JE, Archidona-Yuste A, Cantalapiedra-Navarrete C, Prieto P, Castillo P 2016. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host. Mol. Ecol. 25:246225–47
    [Google Scholar]
  55. 55.  Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A et al. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. . PLOS Genet 8:10e1003012
    [Google Scholar]
  56. 56.  Proença DN, Francisco R, Santos CV, Lopes A, Fonseca L et al. 2010. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLOS ONE 5:12e15191
    [Google Scholar]
  57. 57.  Rota-Stabelli O, Daley AC, Pisani D 2013. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23:5392–98
    [Google Scholar]
  58. 58.  Rumbos I, Sikora RA, Nienhaus F 1977. Rickettsia-like organisms in Xiphinema index Thorne & Allen found associated with yellows disease of grapevines. Z. Pflanzenkrankh. Pflanzenschutz 84:240–43
    [Google Scholar]
  59. 59.  Rybarczyk-Mydłowska K, Maboreke HR, van Megen H, van den Elsen S et al. 2012. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes. BMC Evol. Biol. 12:221
    [Google Scholar]
  60. 60.  Santos-Garcia D, Farnier P-A, Beitia F, Zchori-Fein E, Vavre F et al. 2012. Complete genome sequence of “Candidatus Portiera aleyrodidarum” BT-QVLC, an obligate symbiont that supplies amino acids and carotenoids to Bemisia tabaci. . J. Bacteriol 194:236654–55
    [Google Scholar]
  61. 61.  Santos-Garcia D, Rollat-Farnier P-A, Beitia F, Zchori-Fein E, Vavre F et al. 2014. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci.Genome Biol. . Evol 6:41013–30
    [Google Scholar]
  62. 62.  Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T et al. 2010. The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol. 192:1045–57
    [Google Scholar]
  63. 63.  Schuurmans Stekoven JHJ, Teunissen RJH 1938. Exploration du parc national albert: nematodes libres terrestres. Inst. Parcs Natx. Congo Belge. 22:1–229
    [Google Scholar]
  64. 64.  Smant G, Stokkermans JPWG, Yan Y, de Boer JM, Baum TJ, Wang X et al. 1998. Endogenous cellulases in animals: Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. PNAS 95:94906–11
    [Google Scholar]
  65. 65.  Shen C, Ge Y, Yang T, Chu H 2017. Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio. J. Soils Sediments 17:102449–56
    [Google Scholar]
  66. 66.  Shepherd AM, Clark SA, Kempton A 1973. An intracellular micro-organism associated with tissues of Heterodera spp. Nematologica 19:131–34
    [Google Scholar]
  67. 67.  Takano S, Tuda M, Takasu K, Furuya N, Imamura Y et al. 2017. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. PNAS 114:236110–15
    [Google Scholar]
  68. 68.  Taylor M, Mediannikov O, Raoult D, Greub G 2012. Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol. Med. Microbiol. 64:121–31
    [Google Scholar]
  69. 69.  Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK et al. 2017. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens.Environ. . Microbiol 19:82964–83
    [Google Scholar]
  70. 70.  Vandekerckhove TT, Willems A, Gillis M, Coomans A 2000. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum–group species (Nematoda, Longidoridae). Int. J. Syst. Evol. Microbiol 50:Pt. 62197–205
    [Google Scholar]
  71. 71.  Vandekerckhove TTM, Coomans A, Cornelis K, Baert P, Gillis M 2002. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl. Environ. Microbiol. 68:63121–25
    [Google Scholar]
  72. 72.  Walsh JA, Lee DL, Shepherd AM 1983. The distribution and effect of intracellular Rickettsia-like micro-organisms infecting adult males of the potato cyst-nematode Globodera rostochiensis. . Nematologica 29:227–39
    [Google Scholar]
  73. 73.  Walsh JA, Shepherd AM, Lee DL 1983. The distribution and effect of intracellular Rickettsia-like micro-organisms infecting second-stage juveniles of the potato cyst-nematode Globodera rostochiensis. J. Zool. Lond 199:395–419
    [Google Scholar]
  74. 74.  Wang Z, Wu M 2017. Comparative genomic analysis of Acanthamoeba endosymbionts highlights the role of amoebae as a “melting pot” shaping the Rickettsiales evolution. Genome Biol. Evol. 9:3214–24
    [Google Scholar]
  75. 75.  Yang D, Chen C, Liu Q, Jian H 2017. Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae. . Cell Biosci 7:111
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-045824
Loading
/content/journals/10.1146/annurev-phyto-080417-045824
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error