1932

Abstract

Bacterial soft rot is a disease complex caused by multiple genera of gram-negative and gram-positive bacteria, with and being the most widely studied soft-rot bacterial pathogens. In addition to soft rot, these bacteria also cause blackleg of potato, foot rot of rice, and bleeding canker of pear. Multiple and species cause the same symptoms on potato, complicating epidemiology and disease resistance studies. The primary pathogen species present in potato-growing regions differs over time and space, further complicating disease management. Genomics technologies are providing new management possibilities, including improved detection and biocontrol methods that may finally allow effective disease management. The recent development of inbred diploid potato lines is also having a major impact on studying soft-rot pathogens because it is now possible to study soft-rot disease in model plant species that produce starchy vegetative storage organs. Together, these new discoveries have changed how we face diseases caused by these pathogens.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-045906
2018-08-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-045906.html?itemId=/content/journals/10.1146/annurev-phyto-080417-045906&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adeolu M, Alnajar S, Naushad S, Gupta RS 2016. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 66:5575–99
    [Google Scholar]
  2. 2.  Alcorn SM, Orum TV, Steigerwalt AG, Foster JL, Fogleman JC, Brenner DJ 1991. Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int. J. Syst. Bacteriol. 41:197–212
    [Google Scholar]
  3. 3.  Alič S, Naglič T, Tušek-Žnidarič M, Peterka M, Ravnikar M, Dreo T 2017. Putative new species of the genus Dickeya as major soft rot pathogens in Phalaenopsis orchid production. Plant Pathol 66:1357–68
    [Google Scholar]
  4. 4.  Alippi AM, Lopez AC 2009. First report of Pectobacteriumcarotovorum subsp. carotovorum on Spathiphyllum wallisii in Argentina. Plant Dis 93:842–43
    [Google Scholar]
  5. 5.  Ansermet M, Schaerer S, Kellenberger I, Tallant M, Dupuis B 2016. Influence of seed-borne and soil-carried inocula of Dickeya spp. on potato plant transpiration and symptom expression. Eur. J. Plant Pathol. 145:459–67
    [Google Scholar]
  6. 6.  Aranda S, Montes-Borrego M, Munoz-Ledesma FJ, Jimenez-Diaz RM, Landa BB 2008. First report of Pectobacterium carotovorum causing soft rot of opium poppy in Spain. Plant Dis 92:317
    [Google Scholar]
  7. 7.  Baghaee-Ravari S, Gerayeli N 2015. Detection of Pectobacteriumcarotovorum subsp. carotovorum associated with bacterial soft rot of two succulent plants in Iran using recA and pmrA genes. J. Plant Pathol. 97:143–48
    [Google Scholar]
  8. 8.  Bastas KK, Hekimhan H, Maden S, Tor M 2009. First report of bacterial stalk and head rot disease caused by Pectobacterium atrosepticum on sunflower in Turkey. Plant Dis 93:1352
    [Google Scholar]
  9. 9.  Bdliya BS, Langerfeld E, Rudolph K 2004. A modified crystal violet pectate (CVP) medium for detection and isolation of soft rot Erwinia spp. from plant materials. J. Plant Dis. Prot. 111:506–15
    [Google Scholar]
  10. 10.  Burra DD, Mühlenbock P, Andreasson E 2015. Salicylic and jasmonic acid pathways are necessary for defence against Dickeya solani as revealed by a novel method for blackleg disease screening of in vitro grown potato. Plant Biol 17:1030–38
    [Google Scholar]
  11. 11.  Campos E, Maher EA, Kelman A 1982. Relationship of pectolytic clostridia and Erwinia carotovora strains to decay of potato tubers in storage. Plant Dis 66:543–46
    [Google Scholar]
  12. 12.  Cariddi C, Bubici G 2016. First report of bacterial pith soft rot caused by Pectobacterium carotovorum subsp. brasiliense on artichoke in Italy. J. Plant Pathol. 98:563–68
    [Google Scholar]
  13. 13.  Cariddi C, Bubici G 2016. First report of bacterial pith soft rot caused by Pectobacterium carotovorum subsp. odoriferum on cauliflower in Italy. J. Plant Pathol. 98:689
    [Google Scholar]
  14. 14.  Caruso A, Licciardello G, La Rosa R, Catara V, Bella P 2016. Mixed infection of Pectobacterium carotovorum subsp. carotovorum and P. carotovorum subsp. brasiliensis in tomato stem rot in Italy. J. Plant Pathol. 98:661–65
    [Google Scholar]
  15. 15.  Catara V, Bella P, Polizzi G, Paratore A 2001. First report of bacterial stem rot caused by Pectobacterium carotovorum subsp. carotovorum and P. carotovorum subsp. atrosepticum on grafted eggplant in Italy. Plant Dis. 85:921
    [Google Scholar]
  16. 16.  Cating RA, Hong JC, Palmateer AJ, Stiles CM, Dickstein ER 2008. First report of bacterial soft rot on Vanda orchids caused by Dickeya chrysanthemi (Erwinia chrysanthemi) in the United States. Plant Dis 92:977
    [Google Scholar]
  17. 17.  Charkowski A, Blanco C, Condemine G, Expert D, Franza T et al. 2012. The role of secretion systems and small molecules in soft rot Enterobacteriaceae pathogenicity. Annu. Rev. Phytopathol. 50:425–49
    [Google Scholar]
  18. 18.  Charkowski AO 2015. Biology and control of Pectobacterium in potato. Am. J. Potato Res. 92:223–29
    [Google Scholar]
  19. 19.  Chatterjee A, Cui Y, Chatterjee AK 2002. RsmA and the quorum-sensing signal, N-[3-oxohexanoyl]-l-homoserine lactone, control the levels of rsmB RNA in Erwinia carotovora subsp. carotovora by affecting its stability. J. Bacteriol. 184:4089–95
    [Google Scholar]
  20. 20.  Chen XF, Zhang HL, Chen J 2015. First report of Dickeya solani causing soft rot in imported bulbs of Hyacinthus orientalis in China. Plant Dis 99:155
    [Google Scholar]
  21. 21.  Cheon W, Jeon YH 2014. First report of Pectobacteriumcarotovorum subsp. carotovorum causing soft rot of Orostachys japonica in Korea. Plant Dis 98:989
    [Google Scholar]
  22. 22.  Czajkowski R 2016. Bacteriophages of soft rot Enterobacteriaceae: a minireview. FEMS Microbiol. Lett. 363:fnv230
    [Google Scholar]
  23. 23.  Czajkowski R, De Boer WJ, van Veen JA, van der Wolf JM 2012. Studies on the interaction between the biocontrol agent, Serratia plymuthica, and blackleg-causing Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathol 61:677–88
    [Google Scholar]
  24. 24.  Czajkowski R, Grabe GJ, van der Wolf JM 2009. Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. Eur. J. Plant Pathol. 125:263–75
    [Google Scholar]
  25. 25.  Czajkowski R, Kaczynska N, Jafrab S, Narajczyk M, Lojkowska E 2017. Temperature-responsive genetic loci in pectinolytic plant pathogenic Dickeya solani. . Plant Pathol 66:584–94
    [Google Scholar]
  26. 26.  Czajkowski R, Ozymko Z, de Jager V, Siwinska J, Smolarska A et al. 2015. Genomic, proteomic, and morphological characterization of two novel, broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLOS ONE 10:e0119812
    [Google Scholar]
  27. 27.  Czajkowski R, Ozymko Z, Lojkowska E 2014. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (“D. solani. ”). Plant Pathol 63:758–72
    [Google Scholar]
  28. 28.  Czajkowski R, Perombelon MCM, Jafra S, Lojkowska E, Potrykus M et al. 2015. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann. Appl. Biol. 166:18–38
    [Google Scholar]
  29. 29.  Czajkowski R, Perombelon MCM, van Veen JA, van der Wolf JM 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013
    [Google Scholar]
  30. 30.  Czajkowski R, Smolarska A, Ozymko Z 2017. The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants. PLOS ONE 12:e0183200
    [Google Scholar]
  31. 31.  Dahaghin L, Shams-Bakhsh M 2014. Identification and genetic diversity of pectolytic phytopathogenic bacteria of mono- and dicotyledonous ornamental plants in Iran. J. Plant Pathol. 96:271–79
    [Google Scholar]
  32. 32.  da Silva Felix KC, da Silva CL, de Oliveira WJ, de Lima Ramos Mariano R, de Souza EB 2017. Calcium-mediated reduction of soft rot disease in Chinese cabbage. Eur. J. Plant Pathol. 147:73–84
    [Google Scholar]
  33. 33.  Dees MW, Lebecka R, Perminow JIS, Czajkowski R, Grupa A et al. 2017. Characterization of Dickeya and Pectobacterium strains obtained from diseased potato plants in different climatic conditions of Norway and Poland. Eur. J. Plant Pathol. 148:839–51
    [Google Scholar]
  34. 34.  Degefu Y, Virtanen E, Vayrynen T 2009. Pre-PCR processes in the molecular detection of blackleg and soft rot Erwiniae in seed potatoes. J. Phytopathol. 157:370–78
    [Google Scholar]
  35. 35.  Duarte V, De Boer SH, Ward LJ, de Oliveira MC 2004. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 96:535–45
    [Google Scholar]
  36. 36.  Elbanna K, Elnaggar S, Bakeer A 2014. Characterization of Bacillus altitudinis as a new causative agent of bacterial soft rot. J. Phytopathol. 162:712–22
    [Google Scholar]
  37. 37.  Endelman JB, Jansky SH 2016. Genetic mapping with an inbred line-derived F2 population in potato. Theor. Appl. Genet. 129:935–43
    [Google Scholar]
  38. 38.  Fan HC, Zeng L, Yang PW, Guo ZX, Bai TT 2016. First report of banana soft rot caused by Klebsiella variicola in China. Plant Dis 100:517
    [Google Scholar]
  39. 39.  Frost KE, Groves RL, Charkowski AO 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Dis 97:1268–80
    [Google Scholar]
  40. 40.  Gao B, Wang RY, Chen SL, Ma J, Li XH 2016. First report of Pectobacterium carotovorum subsp. carotovorum and P. carotovorum subsp. odoriferum causing bacterial soft rot of sweet potato in China. Plant Dis. 100:1776
    [Google Scholar]
  41. 41.  Gao B-D, Wang X-L, Xia H 2011. First report of artichoke bacterial stem rot caused by Pectobacterium carotovorum subsp. carotovorum in China. Plant Dis 95:1026
    [Google Scholar]
  42. 42.  Gao J, Nan N, Liu YN, Lu BH, Xia WY, Wu XY 2014. First report of bacterial soft rot of horn lian (Typhonium giganteum) caused by Pectobacterium carotovorum subsp. carotovorum in Jilin Province of China. Plant Dis 98:1268
    [Google Scholar]
  43. 43.  Gao J, Nan N, Lu BH, Liu YN, Wu XY, Xia WY 2014. First report of bacterial soft rot of milk thistle (Silybum marianum) caused by Pectobacterium carotovorum subsp. carotovorum in Jilin Province of China. Plant Dis 98:1152–53
    [Google Scholar]
  44. 44.  Gao SF, Liu AQ, Sang LW, Sun SW, Gou YF 2016. First report of bacterial soft rot of vanilla caused by Dickeya dadantii in China. Plant Dis 100:1493–94
    [Google Scholar]
  45. 45.  Gardan L, Gouy C, Christen R, Samson R 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Mic robiol. 53:381–91
    [Google Scholar]
  46. 46.  Garge SS, Nerurkar AS 2017. Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatal. Agric. Biotechnol. 9:48–57
    [Google Scholar]
  47. 47.  Ge TL, Jiang HH, Hao JJ, Johnson SB 2018. First report of Pectobacterium parmentieri causing bacterial soft rot and blackleg on potato in Maine. Plant Dis 102:437
    [Google Scholar]
  48. 48.  Gill ED, Schaerer S, Dupuis B 2014. Factors impacting blackleg development caused by Dickeya spp. in the field. Eur. J. Plant Pathol. 140:317–27
    [Google Scholar]
  49. 49.  Gillis A, Santana MA, Rodriguez M, Romay G 2017. First report of bell pepper soft rot caused by Pectobacterium carotovorum subsp. brasiliense in Venezuela. Plant Dis 101:1671
    [Google Scholar]
  50. 50.  Godfrey SAC, Marshall JW 2002. Identification of cold-tolerant Pseudomonas viridiflava and P. marginalis causing severe carrot postharvest bacterial soft rot during refrigerated export from New Zealand. Plant Pathol 51:155–62
    [Google Scholar]
  51. 51.  Golanowska M, Kielar J, Lojkowska E 2017. The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. Eur. J. Plant Pathol. 147:803–17
    [Google Scholar]
  52. 52.  Golkhandan E, Kamaruzaman S, Sariah M, Zainal Abidin MA, Nazerian E, Yassoralipour A 2013. First report of soft rot disease caused by Pectobacterium wasabiae on sweet potato, tomato, and eggplant in Malaysia. Plant Dis 97:685
    [Google Scholar]
  53. 53.  Golkhandan E, Kamaruzaman S, Zainalabidin MA, Nasehi A 2016. First report of soft rot disease on pak choi (Brassica chinensis) caused by Dickeya dadantii subsp. dieffenbachiae in Malaysia. Plant Dis 100:209
    [Google Scholar]
  54. 54.  Golkhandan E, Sijam K, Meon S, Ahmad ZAM, Nasehi ANE 2013. First report of Pectobacterium wasabiae causing soft rot of cabbage in Malaysia. Plant Dis 97:1110
    [Google Scholar]
  55. 55.  Goto M 1979. Bacterial foot rot of rice caused by a strain of Erwinia chrysanthemi. . Phytopathology 69:213–16
    [Google Scholar]
  56. 56.  Goyal RK, Autar K, Mattoo AK 2014. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci 228:135–49
    [Google Scholar]
  57. 57.  Hauben L, Moore ERB, Vauterin L, Steenackers M, Mergaert J et al. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. . Microbiol 21:384–97
    [Google Scholar]
  58. 58.  Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE 2014. Bacterial pectate lyases, structural and functional diversity. Environ. Microbiol. 6:427–40
    [Google Scholar]
  59. 59.  Jahn CE, Willis DK, Charkowski AO 2008. The flagellar sigma factor FliA is required for Dickeya dadantii virulence. Mol. Plant-Microbe Interact. 21:1431–42
    [Google Scholar]
  60. 60.  Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C et al. 2016. Reinventing potato as a diploid inbred line-based crop. Crop Sci 56:1412–22
    [Google Scholar]
  61. 61.  Jiang HH, Hao JJ, Johnson SB, Brueggeman RS, Secor G 2016. First report of Dickeya dianthicola causing blackleg and bacterial soft rot on potato in Maine. Plant Dis 100:2320
    [Google Scholar]
  62. 62.  Jiang X, Zghidi-Abouzid O, Oger-Desfeux C, Hommais F, Greliche N et al. 2016. Global transcriptional response of Dickeya dadantii to environmental stimuli relevant to the plant infection. Environ. Microbiol. 18:3651–72
    [Google Scholar]
  63. 63.  Johnson DA 2007. Potato Health Management St. Paul, MN: APS Press272 pp.
  64. 64.  Joshi JR, Burdman S, Lipsky A, Yariv S, Yedidia I 2016. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. Mol. Plant Pathol. 17:487–500
    [Google Scholar]
  65. 65.  Joshi JR, Khazanov N, Senderowitz H, Burdman S, Lipsky A, Yedidia I 2016. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Sci. Rep. 6:38126
    [Google Scholar]
  66. 66.  Kelemu S, Collmer A 1993. Erwinia chrysanthemi Ec16 produces a second set of plant inducible pectate lyase isozymes. Appl. Environ. Microbiol. 59:1756–61
    [Google Scholar]
  67. 67.  Khayi S, Cigna J, Chong TM, Quetu-Laurent A, Chan KG et al. 2016. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 66:5379–83
    [Google Scholar]
  68. 68.  Kim H-S, Ma B, Perna NT, Charkowski AO 2009. Prevalence and virulence of natural type III secretion system deficient Pectobacterium strains. Appl. Environ. Microbiol. 75:4539–49
    [Google Scholar]
  69. 69.  Kim JH, Joen YH, Kim SG, Kim YH 2007. First report on bacterial soft rot of graft-cactus Chamaecereus silvestrii caused by Pectobacterium carotovorum subsp. carotovorum in Korea. Plant Pathol. J. 23:314–17
    [Google Scholar]
  70. 70.  Kim YS, Jeon Y 2016. First report of Orostachysmalacophyllus soft rot caused by Pectobacterium carotovorum subsp. carotovorum in Korea. Plant Dis 100:208
    [Google Scholar]
  71. 71.  Lampert Y, Dror B, Sela N, Teper-Bamnolker P, Daus A et al. 2017. Emergence of Leuconostoc mesenteroides as a causative agent of oozing in carrots stored under non-ventilated conditions. Microb. Biotechnol. 10:1677–89
    [Google Scholar]
  72. 72.  Lan WW, Nishiwaki Y, Akino S, Kondo N 2013. Soft rot of root chicory in Hokkaido and its causal bacteria. J. Gen. Plant Pathol. 79:182–93
    [Google Scholar]
  73. 73.  Leonard S, Hommais F, Nasser W, Reverchon S 2017. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ. Microbiol. 19:1689–716
    [Google Scholar]
  74. 74.  Li Y, Hutchins W, Wu XY, Liang C, Zhang C et al. 2015. Derivative of plant phenolic compound inhibits the type III secretion system of Dickeya dadantii via HrpX/HrpY two-component signal transduction and Rsm systems. Mol. Plant Pathol. 16:150–63
    [Google Scholar]
  75. 75.  Li Y, Peng Q, Selimi D, Wang Q, Charkowski AO et al. 2009. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl. Environ. Microbiol. 75:1223–28
    [Google Scholar]
  76. 76.  Liao L, Hei R, Tang Y, Liu S, Zhou J 2016. First report of soft rot disease of peach caused by Pantoea ananatis in China. Plant Dis 100:516
    [Google Scholar]
  77. 77.  Lin BR, Shen HF, Zhou JN, Pu XM, Chen ZN, Feng J 2012. First report of a soft rot of Philodendron “Con-go” in China caused by Dickeya dieffenbachiae. . Plant Dis 96:452
    [Google Scholar]
  78. 78.  Lindeberg M, Boyd CM, Keen NT, Collmer A 1998. External loops at the C terminus of Erwinia chrysanthemi pectate lyase C are required for species-specific secretion through the out type II pathway. J. Bacteriol. 180:1431–37
    [Google Scholar]
  79. 79.  Lindeberg M, Salmond GPC, Collmer A 1996. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol. Microbiol. 20:175–90
    [Google Scholar]
  80. 80.  Lipsky A, Joshi JR, Carmi N, Yedidia I 2016. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. J. Biotechnol. 239:22–29
    [Google Scholar]
  81. 81.  Liu Q, Xiao W, Wu Z, Li S, Yuan Y, Li H 2016. Identification of Dickeya dadantii as a causal agent of banana bacterial sheath rot in China. J. Plant Pathol. 98:503–10
    [Google Scholar]
  82. 82.  Liu Q, Yuan Y, Liang J, Wei C, Zhang Q, Li H 2015. Physiological and biochemical characteristics and multilocus sequence analysis of banana soft rot bacteria in China. J. Plant Pathol. 97:69–75
    [Google Scholar]
  83. 83.  Lu S-E, Henn RA 2007. First report of ear soft rot of corn (Zea mays) caused by Burkholderia gladioli in the United States. Plant Dis 91:1514
    [Google Scholar]
  84. 84.  Ma B, Hibbing ME, Kim H-S, Reedy RM, Yedidia I et al. 2007. The host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. . Phytopathology 97:1150–63
    [Google Scholar]
  85. 85.  Mahmoudi E 2007. Detection of bacterial soft-rot of crown imperial caused by Pectobacterium carotovorum subsp. carotovorum using specific PCR primers. Phytopathol. Mediterr. 46:168–76
    [Google Scholar]
  86. 86.  Marquez-Villavicencio M, Groves RL, Charkowski AO 2011. Soft rot disease severity is affected by potato physiology and Pectobacterium taxa. Plant Dis 95:232–41
    [Google Scholar]
  87. 87.  Marrero G, Schneider KL, Jenkins DM, Alvarez AM 2013. Phylogeny and classification of Dickeya based on multilocus sequence analysis. Int. J. Syst. Evol. Microbiol. 63:3524–39
    [Google Scholar]
  88. 88.  Martinez-Cisneros BA, Juarez-Lopez G, Valencia-Torres N, Duran-Peralta E, Mezzalama M 2014. First report of bacterial stalk rot of maize caused by Dickeya zeae in Mexico. Plant Dis 98:1267
    [Google Scholar]
  89. 89.  Masyahit M, Sijam K, Awang Y, Satar MGM 2009. First report on bacterial soft rot disease on dragon fruit (Hylocereus spp.) caused by Enterobacter cloacae in peninsular Malaysia. Int. J. Agric. Biol. 11:659–66
    [Google Scholar]
  90. 90.  McNally RR, Curland RD, Webster BT, Robinson AP, Ishimaru CA 2017. First report of Pectobacterium carotovorum subsp. brasiliensis causing blackleg and stem rot in commercial and seed potato fields in Minnesota and North Dakota. Plant Dis 101:1672
    [Google Scholar]
  91. 91.  McNally RR, Curland RD, Webster BT, Robinson AP, Ishimaru CA 2018. First report of stem rot on potato caused by Dickeya chrysanthemi in Minnesota. Plant Dis 102:238
    [Google Scholar]
  92. 92.  Meng XL, Chai A, Shi YX, Xie XW, Ma ZH, Li BJ 2017. Emergence of bacterial soft rot in cucumber caused by Pectobacterium carotovorum subsp. brasiliense in China. Plant Dis 101:279–87
    [Google Scholar]
  93. 93.  Mohan S, Meiyalaghan S, Latimer JM, Gatehouse ML, Monaghan KS et al. 2014. GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato. Theor. Appl. Gen. 127:677–89
    [Google Scholar]
  94. 94.  Moloto VM, Goszczynska T 2007. First report of watermelon soft rot caused by Pectobacterium carotovorum subsp. carotovorum in South Africa. S. Afr. J. Sci. 103:12–13
    [Google Scholar]
  95. 95.  Moraes AJG, Souza EB, Mariano RLR, Silva AMF, Lima NB et al. 2017. First report of Pectobacteriumaroidearum and Pectobacterium carotovorum subsp. brasiliensis causing soft rot of Cucurbita pepo in Brazil. Plant Dis 101:379–80
    [Google Scholar]
  96. 96.  Nabhan S, De Boer SH, Maiss E, Wydra K 2013. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int. J. Syst. Evol. Mic robiol. 63:2520–25
    [Google Scholar]
  97. 97.  Nazerian E, Sijam K, Abidin MAZ, Vadamalai G 2011. First report of lettuce soft rot caused by Pectobacterium carotovorum subsp. carotovorum in Malaysia. J. Plant Pathol. 93:77
    [Google Scholar]
  98. 98.  Nazerian E, Sijam K, Abidin MAZ, Vadamalai G 2011. First report of soft rot caused by Pectobacterium carotovorum subsp. carotovorum on cucumber in Malaysia. Plant Dis 95:1474
    [Google Scholar]
  99. 99.  Nazerian E, Sijam K, Ahmad ZAM, Keshavarz K 2011. Characterization of Pectobacterium carotovorum causing a new soft rot disease on okra in Malaysia. J. Gen. Plant Pathol. 77:292–94
    [Google Scholar]
  100. 100.  Nazerian E, Sijam K, Ahmad ZAM, Vadamalai G 2011. First report of cabbage soft rot caused by Pectobacterium carotovorum subsp. carotovorum in Malaysia. Plant Dis 95:491
    [Google Scholar]
  101. 101.  Nykyri J, Fang X, Dorati F, Bakra R, Pasanen M et al. 2014. Evidence that nematodes may vector the soft rot-causing enterobacterial phytopathogens. Plant Pathol 63:747–57
    [Google Scholar]
  102. 102.  Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M et al. 2012. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLOS Pathog 8:e1003013
    [Google Scholar]
  103. 103.  Oskiera M, Kaluzna M, Kowalska B, Smolinska U 2017. Pectobacterium carotovorum subsp. odoriferum on cabbage and Chinese cabbage: identification, characterization, and taxonomic relatedness of bacterial soft rot causal agents. J. Plant Pathol. 99:149–60
    [Google Scholar]
  104. 104.  Parkinson N, DeVos P, Pirhonen M, Elphinstone J 2014. Dickeya aquatica sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 64:2264–66
    [Google Scholar]
  105. 105.  Parkinson N, Pritchard L, Bryant R, Toth I, Elphinstone J 2015. Epidemiology of Dickeya dianthicola and Dickeya solani in ornamental hosts and potato studied using variable number tandem repeat analysis. Eur. J. Plant Pathol. 141:63–70
    [Google Scholar]
  106. 106.  Perombelon MCM 1980. Ecology of the soft rot erwinias. Annu. Rev. Phytopathol. 18:361–87
    [Google Scholar]
  107. 107.  Pirhonen M, Flego D, Heikinheimo R, Palva ET 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. . EMBO J 12:2467–76
    [Google Scholar]
  108. 108.  Popovic T, Jelusic A, Milovanovic P, Janjatovic S, Budnar M et al. 2017. First report of Pectobacterium atrosepticum, causing bacterial soft rot on calla lily in Serbia. Plant Dis 101:2145
    [Google Scholar]
  109. 109.  Potrykus M, Golanowska M, Sledz W, Zoledowska S, Motyka A et al. 2016. Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis 100:408–17
    [Google Scholar]
  110. 110.  Pritchard L, Humphris S, Saddler G, Parkinson NM, Bertrand V et al. 2013. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathol 62:587–96
    [Google Scholar]
  111. 111.  Pu XM, Zhou JN, Lin BR, Shen HF 2012. First report of bacterial foot rot of rice caused by a Dickeya zeae in China. Plant Dis 96:1818
    [Google Scholar]
  112. 112.  Queiroz MF, Albuquerque GMR, Gama MAS, Mariano RLR, Moraes AJG et al. 2017. First report of soft rot in kale caused by Pectobacterium carotovorum subsp. brasiliensis in Brazil. Plant Dis 101:2144
    [Google Scholar]
  113. 113.  Rigault M, Buellet A, Masclaux-Daubresse C, Fagard M, Chardon F, Dellagi A 2017. Quantitative methods to assess differential susceptibility of Arabidopsis thaliana natural accessions to Dickeya dadantii. Front. . Plant Sci 8:394
    [Google Scholar]
  114. 114.  Rosskopf E, Hong J 2016. First report of bacterial stem rot of “heirloom” tomatoes caused by Pectobacterium carotovorum subsp. brasiliensis in Florida. Plant Dis 100:1233
    [Google Scholar]
  115. 115.  Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, Gardan L 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int. J. Syst. Evol. Microbiol. 55:1415–27
    [Google Scholar]
  116. 116.  Secor GA, Rivera-Varas VV, Brueggeman RS, Metzger MS, Rengifo J, Richards JK 2016. First report of field decay of sugar beet caused by Pectobacterium carotovorum subsp. brasiliense in North America. Plant Dis 100:2160
    [Google Scholar]
  117. 117.  Skelsey P, Elphinstone JG, Saddler GS, Wale SJ, Toth IK 2016. Spatial analysis of blackleg-affected seed potato crops in Scotland. Plant Pathol 65:570–76
    [Google Scholar]
  118. 118.  Slawiak M, van Beckhoven JRCM, Speksnijder AGCL, Czajkowski RL, Grabe G, van der Wolf JM 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 125:245–61
    [Google Scholar]
  119. 119.  Soleimani-Delfan A, Etemadifar Z, Emtiazi G, Bouzari M 2015. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages. Brazil J. Microbiol. 46:791–97
    [Google Scholar]
  120. 120.  Sutra L, Prior P, Perlemoine K, Risede JM, Cao-Vane P, Gardan L 1999. Description of a new disease on Erythrina sp. in Martinique (French West Indies) and preliminary characterization of the causal agent as a novel Erwinia species. Plant Pathol 48:253–59
    [Google Scholar]
  121. 121.  Tian Y, Zhao Y, Xie H, Wang X, Fan J, Hu B 2015. First report of bacterial soft rot of Seleng wormwood caused by Pectobacterium carotovorum subsp. carotovorum in China. Plant Dis 99:1175–76
    [Google Scholar]
  122. 122.  Tian Y, Zhao Y, Yuan X, Yi J, Fan J et al. 2016. Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). Int. J. Syst. Evol. Microbiol. 66:2831–35
    [Google Scholar]
  123. 123.  Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K et al. 2006. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–56
    [Google Scholar]
  124. 124.  Toth I, Humphris S, Campbell E, Pritchard L 2015. Why genomics research on Pectobacterium and Dickeya makes a difference. Am. J. Potato Res. 92:218–22
    [Google Scholar]
  125. 125.  Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Helias V et al. 2011. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 60:385–99
    [Google Scholar]
  126. 126.  Tsror L, Erlich O, Hazanovsky M, Ben Daniel B, Zig U, Lebiush S 2012. Detection of Dickeya spp. latent infection in potato seed tubers using PCR or ELISA and correlation with disease incidence in commercial field crops under hot-climate conditions. Plant Pathol 61:161–68
    [Google Scholar]
  127. 127.  Valenzuela-Soto JH, Maldonado-Bonilla LD, Hernández-Guzmán G, Rincón-Enríquez G, Martínez-Gallardo NA et al. 2015. Infection by a coronatine-producing strain of Pectobacterium cacticidum isolated from sunflower plants in Mexico is characterized by soft rot and chlorosis. J. Gen. Plant Pathol. 81:368–81
    [Google Scholar]
  128. 128.  van der Wolf JM, de Haan EG, Kastelein P, Krijger M, de Haas BH et al. 2017. Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in the Netherlands. Plant Pathol 66:571–83
    [Google Scholar]
  129. 129.  van der Wolf JM, de Haas BH, van Hoof R, de Haan EG, van den Bovenkamp GW 2014. Development and evaluation of Taqman assays for the differentiation of Dickeya (sub)species. Eur. J. Plant Pathol. 138:695–709
    [Google Scholar]
  130. 130.  van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N et al. 2014. Dickeya solani sp nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 64:768–74
    [Google Scholar]
  131. 131.  Vegh A, Nemethy Z, Salamon P, Mandoki Z, Palkovics L 2014. First report of bacterial wilt on chrysanthemum caused by Dickeya chrysanthemi (syn. Erwinia chrysanthemi) in Hungary. Plant Dis 98:988
    [Google Scholar]
  132. 132.  Verbarg S, Frühling A, Cousin S, Brambilla E, Gronow S et al. 2008. Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae. Curr. Microbiol. 56:603–8
    [Google Scholar]
  133. 133.  Waleron M, Waleron K, Lojkowska E 2014. Characterization of Pectobacterium carotovorum subsp. odoriferum causing soft rot of stored vegetables. Eur. J. Plant Pathol. 139:457–69
    [Google Scholar]
  134. 134.  Wang J, Wang L, Wang F, Cao G, Rao GP et al. 2016. First report of bacterial soft rot on Anubias barteri var. nana caused by Dickeya dadantii in China. Plant Dis 100:519
    [Google Scholar]
  135. 135.  Wang J, Wang YH, Dai PG, Chen DX, Zhao TC et al. 2017. First report of tobacco bacterial leaf blight caused by Pectobacterium carotovorum subsp. brasiliense in China. Plant Dis 101:830
    [Google Scholar]
  136. 136.  Wei J-F, Wei J-H 2014. First report of bacterial soft rot of konnyaku caused by Dickeya dadantii in China. Plant Dis. 98:682
    [Google Scholar]
  137. 137.  Wu WX, Liu Y, Huang XQ, Zhang L 2017. First report of summer canker caused by Pectobacterium carotovorum subsp. actinidiae on kiwifruit in China's Sichuan Province. Plant Dis 101:1540–41
    [Google Scholar]
  138. 138.  Yap M-N, Barak JD, Charkowski AO 2004. Genomic diversity of Erwinia carotovora subsp. carotovora and its correlation with virulence. Appl. Environ. Microbiol. 70:3013–23
    [Google Scholar]
  139. 139.  Yap M-N, Yang CH, Barak JD, Jahn CE, Charkowski AO 2005. The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. J. Bacteriol. 187:639–48
    [Google Scholar]
  140. 140.  Ying FX, Hu XF, Chen JS 2007. First report of soft rot caused by Pectobacterium carotovorum on Pinellia ternata in China. Plant Dis 91:1359
    [Google Scholar]
  141. 141.  Yishay M, Burdman S, Valverde A, Luzzatto T, Ophir R, Yedidia I 2008. Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon. Environ. Microbiol. 10:2749–59
    [Google Scholar]
  142. 142.  Yoder MD, Keen NT, Jurnak F 1993. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science 260:1503–8
    [Google Scholar]
  143. 143.  Zhang CH, Lin T, Li JF, Ma GB, Wang YW et al. 2016. First report of the melon stem rot disease in protected cultivation caused by Pseudomonas fluorescens. J. Plant Dis. Prot. 123:247–55
    [Google Scholar]
  144. 144.  Zhang JX, Lin BR, Shen HF, Pu XM, Wang ZW et al. 2013. First report of bacterial soft rot on Tagetes patula caused by Dickeya dieffenbachiae in China. Plant Dis 97:282–83
    [Google Scholar]
  145. 145.  Zhang YC, Fan QR, Loria R 2016. A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst. Appl. Microbiol. 39:252–59
    [Google Scholar]
  146. 146.  Zhong L, Harijati N, Ding Y, Bao ZZ, Ke WD, Hu ZL 2015. First report of black rot of Sagittaria sagittifolia caused by Bacillus amyloliquefaciens in China. Plant Dis 99:1270
    [Google Scholar]
  147. 147.  Zhou JN, Lin BR, Shen HF, Pu XM, Chen ZN, Feng JJ 2012. First report of a soft rot of Phalaenopsis aphrodita caused by Dickeya dieffenbachiae in China. Plant Dis 96:760
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-045906
Loading
/content/journals/10.1146/annurev-phyto-080417-045906
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error