1932

Abstract

Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-045931
2018-08-25
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-045931.html?itemId=/content/journals/10.1146/annurev-phyto-080417-045931&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Avalos J, Estrada AF 2010. Regulation by light in Fusarium. Fungal Genet.. Biol 47:930–38
    [Google Scholar]
  2. 2.  Bai YN, Rottwinkel G, Feng J, Liu YY, Lamparter T 2016. Bacteriophytochromes control conjugation in Agrobacterium fabrum. J. Photochem. Photobiol. B 161:192–99
    [Google Scholar]
  3. 3.  Ballaré CL 2014. Light regulation of plant defense. Annu. Rev. Plant Biol. 65:335–63
    [Google Scholar]
  4. 4.  Bayram Ö, Braus GH, Fischer R, Rodriguez-Romero J 2010. Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet. Biol. 47:900–8
    [Google Scholar]
  5. 5.  Bhardwaj V, Meier S, Petersen LN, Ingle RA, Roden LC 2011. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLOS ONE 6:e26968
    [Google Scholar]
  6. 6.  Bhoo S-H, Davis SJ, Walker J, Karniol B, Vierstra RD 2001. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414:776–79
    [Google Scholar]
  7. 7.  Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D et al. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15:1833–38
    [Google Scholar]
  8. 8.  Bonomi HR, Posadas DM, Paris G, Carrica MC, Frederickson M et al. 2012. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. PNAS 109:12135–40
    [Google Scholar]
  9. 9.  Bonomi HR, Toum L, Sycz G, Sieira R, Toxcani AM et al. 2016. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep 17:1565–77
    [Google Scholar]
  10. 10.  Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N 2008. The fungal phytochrome FphA from Aspergillus nidulans. J. Biol.. Chem 283:34605–14
    [Google Scholar]
  11. 11.  Brewer CA, Smith WK, Vogelmann TC 1991. Functional interaction between leaf trichomes, leaf wettability and the optical-properties of water droplets. Plant Cell Environ 14:955–62
    [Google Scholar]
  12. 12.  Briggs WR 2006. The LOV domain: a chromophore module servicing multiple photoreceptors. J. Biomed. Sci. 14:499–504
    [Google Scholar]
  13. 13.  Brych A, Mascarenhas J, Jaeger E, Charkiewicz E, Pokorny R et al. 2016. White collar 1–induced photolyase expression contributes to UV-tolerance of Ustilago maydis.. Microbiology 5:224–43
    [Google Scholar]
  14. 14.  Burger L, van Nimwegen E 2008. Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol. Syst. Biol. 4:165
    [Google Scholar]
  15. 15.  Buttani V, Losi A, Eggert T, Krauss U, Jaeger K-E et al. 2007. Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV-LOV dimerization and interdomain interactions. Photochem. Photobiol. Sci. 6:41–49
    [Google Scholar]
  16. 16.  Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF 2013. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar complex. PLOS ONE 8:e84223
    [Google Scholar]
  17. 17.  Cao Z, Buttani V, Losi A, Gärtner W 2008. A blue light inducible two-component signal transduction system in the plant pathogen Pseudomonas syringae pv. tomato. Biophys. J. 94:897–905
    [Google Scholar]
  18. 18.  Castillon A, Shen H, Huq E 2009. Blue light induces degradation of the negative regulator Phytochrome Interacting Factor 1 to promote photomorphogenic development of Arabidopsis seedlings. Genetics 182:161–71
    [Google Scholar]
  19. 19.  Chatterjee A, Cui YY, Yang HL, Collmer A, Alfano JR, Chatterjee AK 2003. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol. Plant-Microbe Interact. 16:1106–17
    [Google Scholar]
  20. 20.  Chen M, Blankenship RE 2011. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–31
    [Google Scholar]
  21. 21.  Cho M-H, Yoo Y, Bhoo SH, Lee S-W 2011. Purification and characterization of a recombinant bacteriophytochrome of Xanthomonas oryzae pathovar oryzae.. Protein J. 30:124–31
    [Google Scholar]
  22. 22.  Cui M, Vogelmann TC, Smith WK 1991. Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea.. Plant Cell Environ 14:493–500
    [Google Scholar]
  23. 23.  Dasgupta A, Fuller KK, Dunlap JC, Loros JJ 2016. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ. Microbiol. 18:5–20
    [Google Scholar]
  24. 24.  Davis SJ, Vener AV, Vierstra RD 1999. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–20
    [Google Scholar]
  25. 25.  de Wit M Spoel SH, Sanchez-Perez GF, Gommers CMM, Pieterse CMJ et al. 2013. Perception of low red:far-red ratio compromises both salicylic acid– and jasmonic acid–dependent pathogen defences in Arabidopsis.. Plant J 75:90–103
    [Google Scholar]
  26. 26.  Eichenberg K, Bäurle I, Paulo N, Sharrock RA, Rüdiger W, Schäfer E 2000. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett 470:107–12
    [Google Scholar]
  27. 27.  Escobar FV, Piwowarski P, Salewski J, Michael N, Lopez MF et al. 2015. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes. Nat. Chem. 7:423–30
    [Google Scholar]
  28. 28.  Estrada AF, Avalos J 2008. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet. Biol. 45:705–18
    [Google Scholar]
  29. 29.  Falciatore A, Bowler C 2005. The evolution and function of blue and red light photoreceptors. Curr. Top. Dev. Biol. 68:317–50
    [Google Scholar]
  30. 30.  Fiedler B, Börner T, Wilde A 2005. Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem. Photobiol. 81:1481–88
    [Google Scholar]
  31. 31.  Franklin KA, Larner VS, Whitelam GC 2005. The signal transducing photoreceptors of plants. Int. J. Dev. Biol. 49:653–64
    [Google Scholar]
  32. 32.  Freeman BC, Chen CL, Yu XL, Nielsen L, Peterson K, Beattie GA 2013. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J. Bacteriol. 195:4742–52
    [Google Scholar]
  33. 33.  Fuller KK, Dunlap JC, Loros JJ 2016. Fungal light sensing at the bench and beyond. Adv. Genet. 96:1–51
    [Google Scholar]
  34. 34.  Fuller KK, Loros JJ, Dunlap JC 2015. Fungal photobiology: visible light as a signal for stress, space and time. Curr. Genet. 61:275–88
    [Google Scholar]
  35. 35.  Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC 2013. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio 4:e00142
    [Google Scholar]
  36. 36.  Gambetta GA, Lagarias JC 2001. Genetic engineering of phytochrome biosynthesis in bacteria. PNAS 98:10566–71
    [Google Scholar]
  37. 37.  Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B et al. 2002. Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417:202–5
    [Google Scholar]
  38. 38.  Giraud E, Zappa S, Vuillet L, Adriano J-M, Hannibal L et al. 2005. A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. J. Biol.. Chem 280:32389–97
    [Google Scholar]
  39. 39.  Gomelsky M, Hoff WD 2011. Light helps bacteria make important lifestyle decisions. Trends Microbiol 19:441–48
    [Google Scholar]
  40. 40.  Gonzalez-Sanchez MB, Lanucara F, Helm M, Eyers CE 2013. Attempting to rewrite history: challenges with the analysis of histidine-phosphorylated peptides. Biochem. Soc. Transact. 41:1089–95
    [Google Scholar]
  41. 41.  Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R 2015. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar–regulated histone H3 acetylation. Mol. Microbiol. 97:733–45
    [Google Scholar]
  42. 42.  Hu Y, He J, Wang Y, Zhu P, Zhang C et al. 2014. Disruption of a phytochrome-like histidine kinase gene by homologous recombination leads to a significant reduction in vegetative growth, sclerotia production, and the pathogenicity of Botrytis cinerea. Physiol. Mol.. Plant Pathol 85:25–33
    [Google Scholar]
  43. 43.  Ichiro T, Hiroki O, Takashi F, Riichi O 2016. Light environment within a leaf. II. Progress in the past one-third century. J. Plant Res. 129:353–63
    [Google Scholar]
  44. 44.  Idnurm A, Verma S, Corrochano LM 2010. A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet.. Biol 47:881–92
    [Google Scholar]
  45. 45.  Jaubert M, Vuillet L, Hannibal L, Adriano J-M, Fardoux J et al. 2008. Control of peripheral light-harvesting complex synthesis by a bacteriophytochrome in the aerobic photosynthetic bacterium Bradyrhizobium strain BTAi1. J. Bacteriol. 190:5824–31
    [Google Scholar]
  46. 46.  Jentzsch K, Wirtz A, Circolone F, Drepper T, Losi A et al. 2009. Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida.. Biochemistry 48:10321–33
    [Google Scholar]
  47. 47.  Kangasjärvi S, Neukermans J, Li SC, Aro E-M, Noctor G 2012. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63:1619–36
    [Google Scholar]
  48. 48.  Karniol B, Vierstra RD 2003. The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties. PNAS 100:2807–12
    [Google Scholar]
  49. 49.  Karniol B, Vierstra RD 2004. The HWE histidine kinases, a new family of bacterial two-component sensor kinases with potentially diverse roles in environmental signaling. J. Bacteriol. 186:445–53
    [Google Scholar]
  50. 50.  Karniol B, Wagner JR, Walker JM, Vierstra RD 2005. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem. J. 392:103–16
    [Google Scholar]
  51. 51.  Kim H, Ridenour JB, Dunkle LD, Bluhm BH 2011. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?. PLOS Pathog 7:e1002113
    [Google Scholar]
  52. 52.  Kim S, Singh P, Park J, Park S, Friedman A et al. 2011. Genetic and molecular characterization of a blue light photoreceptor MGWC-1 in Magnaporthe oryzae. Fungal Genet.. Biol 48:400–7
    [Google Scholar]
  53. 53.  Klinke S, Otero LH, Rinaldi J, Sosa S, Guimarães BG et al. 2014. Crystallization and preliminary X-ray characterization of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris pv. campestris. Acta Crystallogr. F 70:1636–39
    [Google Scholar]
  54. 54.  Kraiselburd I, Alet AI, Tondo ML, Petrocelli S, Daurelio LD et al. 2012. A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization. PLOS ONE 7:e38226
    [Google Scholar]
  55. 55.  Kraiselburd I, Daurelio LD, Tondo ML, Merelo P, Cortadi AA et al. 2013. The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker. PLOS ONE 8:e80930
    [Google Scholar]
  56. 56.  Kraiselburd I, Moyano L, Carrau A, Tano J, Orellano EG 2017. Bacterial photosensory proteins and their role in plant-pathogen interactions. Photochem. Photobiol. 93:666–74
    [Google Scholar]
  57. 57.  Kumar S, Kateriya S, Singh VS, Tanwar M, Agarwal S et al. 2012. Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. Sci. Rep. 2:1–10
    [Google Scholar]
  58. 58.  Lamparter T, Carrascal M, Michael N, Martinez E, Rottwinkel G, Abian J 2004. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. Biochemistry 43:3659–69
    [Google Scholar]
  59. 59.  Lamparter T, Krauss N, Scheerer P 2017. Phytochromes from Agrobacterium fabrum. Photochem.. Photobiol 93:642–55
    [Google Scholar]
  60. 60.  Lamparter T, Michael N, Mittmann F, Esteban B 2002. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. PNAS 99:11628–33
    [Google Scholar]
  61. 61.  Landgraf FT, Forreiter C, Picó AH, Lamparter T, Hughes J 2001. Recombinant holophytochrome in Escherichia coli.. FEBS Lett 508:459–62
    [Google Scholar]
  62. 62.  Lavin JL, Ramírez L, Pisabarro AG, Oguiza JA 2015. Genomewide analysis of phytochrome proteins in the phylum Basidiomycota. J. Basic Microbiol. 55:1141–47
    [Google Scholar]
  63. 63.  Lee H-J, Ha J-H, Kim S-G, Choi H-K, Kim ZH et al. 2016. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci. Signal. 9:ra106
    [Google Scholar]
  64. 64.  Lee K, Singh P, Chung W-C, Ash J, Kim TS et al. 2006. Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet. Biol. 43:694–706
    [Google Scholar]
  65. 65.  Levin-Karp A, Barenholz U, Bareia T, Dayagi M, Zelcbuch L et al. 2013. Quantifying translational coupling in E. coli synthetic operons using RBS modulation and fluorescent reporters. ACS Synth. Biol. 2:327–36
    [Google Scholar]
  66. 66.  Lokhandwala J, Hopkins HC, Rodriguez-Iglesias A, Dattenböck C, Schmoll M, Zoltowski BD 2015. Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionarily conserved pathway integrating light and oxidative stress. Structure 23:116–25
    [Google Scholar]
  67. 67.  Losi A, Gärtner W 2012. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu. Rev. Plant Biol. 63:49–72
    [Google Scholar]
  68. 68.  Losi A, Mandalari C, Gärtner W 2015. The evolution and functional role of flavin-based prokaryotic photoreceptors. Photochem. Photobiol. 91:1021–31
    [Google Scholar]
  69. 69.  Lukens RJ 1965. Reversal by red light of blue light inhibition of sporulation in Alternaria solani.. Phytopathology 55:1032
    [Google Scholar]
  70. 70.  Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M 2010. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–72
    [Google Scholar]
  71. 71.  Mandalari C, Losi A, Gärtner W 2013. Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Photochem. Photobiol. Sci. 12:1144–57
    [Google Scholar]
  72. 72.  Mao DQ, Tao J, Li CX, Luo C, Zheng LL, He CZ 2012. Light signalling mediated by Per-ARNT-Sim domain-containing proteins in Xanthomonas campestris pv. campestris. FEMS Microbiol. Lett. 326:31–39
    [Google Scholar]
  73. 73.  Mathews S 2006. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol. Ecol. 15:3483–503
    [Google Scholar]
  74. 74.  McGrane RS 2015. Elucidation of a bacteriophytochrome-regulated signal transduction pathway in Pseudomonas syringae that contributes to leaf colonization, virulence, and swarming motility PhD Diss., Iowa State Univ Ames, IA:
    [Google Scholar]
  75. 75.  McGrane R, Beattie GA 2017. Pseudomonas syringae pv. syringae B728a regulates multiple stages of plant colonization via the bacteriphytochrome BphP1. mBio 8:e01178–17
    [Google Scholar]
  76. 76.  Moriconi V, Sellaro R, Ayub N, Soto G, Rugnone M et al. 2013. LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves. Plant J 76:322–31
    [Google Scholar]
  77. 77.  Muramoto T, Kohchi T, Yokota A, Hwang IH, Goodman HM 1999. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–47
    [Google Scholar]
  78. 78.  Noack S, Michael N, Rosen R, Lamparter T 2007. Protein conformational changes of Agrobacterium phytochrome Agp1 during chromophore assembly and photoconversion. Biochemistry 46:4164–76
    [Google Scholar]
  79. 79.  Oberpichler I, Molina I, Neubauer O, Lamparter T 2006. Phytochromes from Agrobacterium tumefaciens: difference spectroscopy with extracts of wild type and knockout mutants. FEBS Lett 580:437–42
    [Google Scholar]
  80. 80.  Oberpichler I, Rosen R, Rasouly A, Vugman M, Ron EZ, Lamparter T 2008. Light affects motility and infectivity of Agrobacterium tumefaciens. Environ.. Microbiol 10:2020–29
    [Google Scholar]
  81. 81.  Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM 2010. A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet.. Biol 47:352–63
    [Google Scholar]
  82. 82.  Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM 2013. Regulation of transcription by light in Neurospora crassa: a model for fungal photobiology?. Fungal Biol. Rev. 27:10–18
    [Google Scholar]
  83. 83.  Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA et al. 2016. Structure of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris provides clues to its long-range signaling mechanism. J. Mol. Biol. 428:3702–20
    [Google Scholar]
  84. 84.  Park C-M, Shim J-Y, Yang S-S, Kang J-G, Kim J-I et al. 2000. Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1. Biochemistry 39:6349–56
    [Google Scholar]
  85. 85.  Purcell EB, McDonald CA, Palfey BA, Crosson S 2010. An analysis of the solution structure and signaling mechanism of Lovk, a sensor histidine kinase integrating light and redox signals. Biochemistry 49:6761–70
    [Google Scholar]
  86. 86.  Purschwitz J, Müller S, Kastner C, Schöser M, Haas H et al. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr.. Biol 18:255–59
    [Google Scholar]
  87. 87.  Qiu L, Wang J-J, Chu Z-J, Ying S-H, Feng M-G 2014. Phytochrome controls conidiation in response to red/far-red light and daylight length and regulates multistress tolerance in Beauveria bassiana. Environ. Microbiol. 16:2316–28
    [Google Scholar]
  88. 88.  Ricci A, Dramis L, Shah R, Gärtner W, Losi A 2015. Visualizing the relevance of bacterial blue- and red-light receptors during plant-pathogen interaction. Environ. Microbiol. Rep. 7:795–802
    [Google Scholar]
  89. 89.  Río-Álvarez I, Rodríguez-Herva JJ, Martínez PM, González-Melendi P, García-Casado G et al. 2014. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000. Environ. Microbiol. 16:2072–85
    [Google Scholar]
  90. 90.  Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC et al. 2014. Eukaryotic algal phytochromes span the visible spectrum. PNAS 111:3871–76
    [Google Scholar]
  91. 91.  Rockwell NC, Lagarias JC 2010. A brief history of phytochromes. ChemPhysChem 11:1172–80
    [Google Scholar]
  92. 92.  Rockwell NC, Su Y-S, Lagarias JC 2006. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837–58
    [Google Scholar]
  93. 93.  Roden LC, Ingle RA 2009. Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21:2546–52
    [Google Scholar]
  94. 94.  Röhrig J, Kastner C, Fischer R 2013. Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr.. Genet 59:55–62
    [Google Scholar]
  95. 95.  Rottwinkel G, Oberpichler I, Lamparter T 2010. Bathy phytochromes in rhizobial soil bacteria. J. Bacteriol. 192:5124–33
    [Google Scholar]
  96. 96.  Ruiz-Roldán MC, Garre V, Guarro J, Marine M, Roncero MIG 2008. Role of the White Collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot.. Cell 7:1227–30
    [Google Scholar]
  97. 97.  Sano S, Aoyama M, Nakai K, Shimotani K, Yamasaki K et al. 2014. Light-dependent expression of flg22-induced defense genes in Arabidopsis. Front.. Plant Sci 5:531
    [Google Scholar]
  98. 98.  Shah R, Pathak G, Drepper T, Gärtner W 2016. Selective photoreceptor gene knock-out reveals a regulatory role for the growth behavior of Pseudomonas syringae. Photochem.. Photobiol 92:571–78
    [Google Scholar]
  99. 99.  Shah R, Schwach J, Frankenberg-Dinkel N, Gärtner W 2012. Complex formation between heme oxygenase and phytochrome during biosynthesis in Pseudomonas syringae pv. tomato. Photochem. Photobiol. Sci. 11:1026–31
    [Google Scholar]
  100. 100.  Shimazaki K-I, Doi M, Assmann SM, Kinoshita T 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58:219–47
    [Google Scholar]
  101. 101.  Shimomura A, Naka A, Miyazaki N, Moriuchi S, Arima S et al. 2016. Blue light perception by both roots and rhizobia inhibits nodule formation in Lotus japonicus. Mol.. Plant-Microbe Interact 29:786–96
    [Google Scholar]
  102. 102.  Smith H 2000. Phytochromes and light signal perception by plants: an emerging synthesis. Nature 407:585–91
    [Google Scholar]
  103. 103.  Spitschan M, Aguirre GK, Brainard DH, Sweeney AM 2016. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci. Rep. 6:26756
    [Google Scholar]
  104. 104.  Sun Q, Yoda K, Suzuki H 2005. Internal axial light conduction in the stems and roots of herbaceous plants. J. Exp. Bot. 56:191–203
    [Google Scholar]
  105. 105.  Sun Q, Yoda K, Suzuki M, Suzuki H 2003. Vascular tissue in the stem and roots of woody plants can conduct light. J. Exp. Bot. 54:1627–35
    [Google Scholar]
  106. 106.  Suzuki A, Suriyagoda L, Shigeyama T, Tominaga A, Sasaki M et al. 2011. Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. PNAS 108:16837–42
    [Google Scholar]
  107. 107.  Swartz TE, Tseng T-S, Frederickson MA, Paris G, Comerci DJ et al. 2007. Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317:1090–93
    [Google Scholar]
  108. 108.  Sweeney AM, Boch CA, Johnsen S, Morse DE 2011. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Bot. 214:770–77
    [Google Scholar]
  109. 109.  Takala H, Niebling S, Berntsson O, Björling A, Lehtivuori H et al. 2016. Light-induced structural changes in a monomeric bacteriophytochrome. Struct. Dyn. 3:054701
    [Google Scholar]
  110. 110.  Tan KK 1974. Red–far-red reversible photoreaction in recovery from blue-light inhibition of sporulation in Botrytis cinerea. J. Gen.. Microbiol 82:201–2
    [Google Scholar]
  111. 111.  Tasler R, Moises T, Frankenberg-Dinkel N 2005. Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa.. FEBS J 272:1927–36
    [Google Scholar]
  112. 112.  Van Buskirk EK, Decker PV, Chen M 2012. Photobodies in light signaling. Plant Physiol 158:52–60
    [Google Scholar]
  113. 113.  Vierstra RD, Quail PH 1983. Purification and initial characterization of 124-kilodalton phytochrome from Avena.. Biochemistry 22:2498–505
    [Google Scholar]
  114. 114.  Vogelmann TC 1989. Penetration of light into plants. Photochem. Photobiol. 50:895–902
    [Google Scholar]
  115. 115.  Vogelmann TC, Bjorn LO 1986. Plants as light traps. Physiol. Plant. 68:704–8
    [Google Scholar]
  116. 116.  Vogelmann TC, Bornman JF, Yates DJ 1996. Focusing of light by leaf epidermal cells. Physiol. Plant. 98:43–56
    [Google Scholar]
  117. 117.  Vogelmann TC, Evans JR 2002. Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25:1313–23
    [Google Scholar]
  118. 118.  Vogelmann TC, Gorton HL 2014. Leaf: light capture in the photosynthetic organ. Adv. Photosynth. Resp. 39:363–77
    [Google Scholar]
  119. 119.  Wang Z, Li N, Li JG, Dunlap JC, Trail F, Townsend JP 2016. The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa.. mBio 7:e02148–15
    [Google Scholar]
  120. 120.  Wilde A, Fiedler B, Börner T 2002. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol. Microbiol. 44:981–88
    [Google Scholar]
  121. 121.  Wittmann C, Pfanz H 2016. The optical, absorptive and chlorophyll fluorescence properties of young stems of five woody species. Environ. Exp. Bot. 121:83–93
    [Google Scholar]
  122. 122.  Wu L, McGrane RS, Beattie GA 2013. Light regulation of swarming motility in Pseudomonas syringae integrates signaling pathways mediated by a bacteriophytochrome and a LOV protein. mBio 4:e00334–13
    [Google Scholar]
  123. 123.  Xu Y, Parks BM, Short TW, Quail PH 1995. Missense mutations define a restricted segment in the C-terminal domain of Phytochrome A critical to its regulatory activity. Plant Cell 7:1433–43
    [Google Scholar]
  124. 124.  Yang Y-X, Wang M-M, Yin Y-L, Onac E, Zhou G-F et al. 2015. RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genom 16:120
    [Google Scholar]
  125. 125.  Yu ZZ, Armant O, Fischer R 2016. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat. Microbiol. 1:16019
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-045931
Loading
/content/journals/10.1146/annurev-phyto-080417-045931
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error