1932

Abstract

Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the streptomycin-resistance genes occur in , , and , and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-045946
2018-08-25
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-045946.html?itemId=/content/journals/10.1146/annurev-phyto-080417-045946&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Allen HK, Cloud-Hansen KA, Wolinski JM, Guan CH, Greene S et al. 2009. Resident microbiota of the gypsy moth midgut harbors antibiotic resistance determinant. DNA Cell Biol 28:109–17
    [Google Scholar]
  2. 2.  Anderson HW, Gottleib D 1952. Plant disease control with antibiotics. Econ. Bot. 6:294–308
    [Google Scholar]
  3. 3.  Barlow M, Hall BG 2002. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrob. . Agents Chemother 46:1190–98
    [Google Scholar]
  4. 4.  Barza M, Gorbach SL 2002. The need to improve antimicrobial use in agriculture: ecological and human health consequences. Clin. Infect. Dis. 34:S71–144
    [Google Scholar]
  5. 5.  Beneviste R, Davies J 1973. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. PNAS 70:2276–80
    [Google Scholar]
  6. 6.  Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED et al. 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLOS ONE 7:e34953
    [Google Scholar]
  7. 7.  Broderson DE, Clemons WM, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–54
    [Google Scholar]
  8. 8.  Burdett V 1993. Transfer-RNA modification activity is necessary for Tet(M)-mediated tetracycline resistance. J. Bacteriol. 175:7209–15
    [Google Scholar]
  9. 9.  Burdett V 1996. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J. Bacteriol. 178:3246–51
    [Google Scholar]
  10. 10.  Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F et al. 2013. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front. Microbiol. 4:96
    [Google Scholar]
  11. 11.  Carter AP, Clemons WM, Broderson DE, Morgan-Warren RJ, Wimberly BT et al. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48
    [Google Scholar]
  12. 12.  Chen QL, An XL, Zhu YG, Su JQ, Gillings MR et al. 2017. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere. Environ. Sci. Technol. 51:8149–57
    [Google Scholar]
  13. 13.  Chiou C-S, Jones AL 1993. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175:732–40
    [Google Scholar]
  14. 14.  Chiou C-S, Jones AL 1995. Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. . Phytopathology 85:324–28
    [Google Scholar]
  15. 15.  Chopra I, Roberts M 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232–60
    [Google Scholar]
  16. 16.  Clark RB, Hunt DK, He M, Achorn C, Chen CL et al. 2012. Fluorocyclines. 2: Optimization of the C-9 side-chain for antibacterial activity and oral efficacy. J. Med. Chem. 55:606–22
    [Google Scholar]
  17. 17.  Christiano RSC, Reilly CC, Miller WP, Scherm H 2010. Oxytetracycline dynamics on peach leaves in relation to temperature, sunlight, and simulated rain. Plant Dis 94:1213–18
    [Google Scholar]
  18. 18.  Connell SR, Tracz DM, Nierhaus KH, Taylor DE 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47:3675–81
    [Google Scholar]
  19. 19.  Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH 2003. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J 22:945–53
    [Google Scholar]
  20. 20.  Cunha BA, Sibley CM, Ristuccia AM 1982. Doxycycline. Ther. Drug Monit. 4:115–35
    [Google Scholar]
  21. 21.  Davies J, Davies D 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:417–33
    [Google Scholar]
  22. 22.  D'Costa VM, King CE, Kalan L, Morar M, Sung WWL et al. 2011. Antibiotic resistance is ancient. Nature 477:457–61
    [Google Scholar]
  23. 23.  Doyle D, McDowall KJ, Butler MJ, Hunter IS 1991. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. . Mol. Microbiol. 5:2923–33
    [Google Scholar]
  24. 24.  Duffy B, Holliger E, Walsh F 2014. Streptomycin use in apple orchards did not increase abundance of mobile resistance genes. FEMS Microbiol. Lett. 350:180–89
    [Google Scholar]
  25. 25.  Duggar BM 1948. Aureomycin: a product of the continuing search for new antibiotics. Ann. N.Y. Acad. Sci. 51:177–81
    [Google Scholar]
  26. 26.  Escudero JA, Loot C, Nivina A, Mazel D 2015. The integron: adaptation on demand. Microbiol. Spectr. 3:MDNA3–0019-2014
    [Google Scholar]
  27. 27.  Feller G, Sonnet P, Gerday C 1995. The β-lactamase secreted by the Antarctic psychrophile Psychrobacter immobilis A8. Appl. Environ. Microbiol. 61:4474–76
    [Google Scholar]
  28. 28.  Finlay AC, Hobby GL, P'an SY, Regna PP, Routien JB et al. 1950. Terramycin, a new antibiotic. Science 111:85
    [Google Scholar]
  29. 29.  Fitzpatrick D, Walsh F 2016. Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol. Ecol. 92:fiv168
    [Google Scholar]
  30. 30.  Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R et al. 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–16
    [Google Scholar]
  31. 31.  Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–11
    [Google Scholar]
  32. 32.  Förster H, McGhee GC, Sundin GW, Adaskaveg JE 2015. Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology 105:1302–10
    [Google Scholar]
  33. 33.  Garcia-Migura L, Hendriksen RS, Fraile L, Aarestrup FM 2014. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet. Microbiol. 170:1–9
    [Google Scholar]
  34. 34.  Gibson MK, Forsberg KJ, Dantas G 2015. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 9:207–16
    [Google Scholar]
  35. 35.  Gillespie SH 2002. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob. Agents Chemother. 46:267–74
    [Google Scholar]
  36. 36.  Grossman TH 2016. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 6:a025387
    [Google Scholar]
  37. 37.  Guillaume G, Ledent V, Moens W, Collard J-M 2004. Phylogeny of efflux-mediated tetracycline resistance genes and related proteins revisited. Microb. Drug Res. 10:11–26
    [Google Scholar]
  38. 38.  Hall RM, Collis CM 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol. Microbiol. 15:593–600
    [Google Scholar]
  39. 39.  Han HS, Koh YJ, Hur J-S, Jung JS 2004. Occurrence of the strA-strB streptomycin resistance genes in Pseudomonas species isolated from kiwifruit plants. J. Microbiol. 42:365–68
    [Google Scholar]
  40. 40.  Hawkey OM, Jones AM 2009. The changing epidemiology of resistance. J. Antimicrob. Chemother. 64:Suppl. 1i3–10
    [Google Scholar]
  41. 41.  Hikitchi Y, Egami H, Ogure Y, Okino T 1998. Fitness for survival of Burkholderia glumae resistant to oxolinic acid in rice plant. Ann. Phytopathol. Soc. Jpn. 64:147–52
    [Google Scholar]
  42. 42.  Hollingshead S, Vapnek D 1985. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenyltransferase. Plasmid 13:17–30
    [Google Scholar]
  43. 43.  Hori T, Kuroda T, Ishikawa K 2007. Occurrence of kasugamycin-resistant Burkholderia glumae. Ann. Phytopathol. Soc. . Jpn 73:278
    [Google Scholar]
  44. 44.  Hu J, Jiang J, Wang N 2018. Control of citrus Huanglongbing (HLB) via trunk injection of plant activators and antibiotics. Phytopathology 108:186–95
    [Google Scholar]
  45. 45.  Hu J, Wang N 2016. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus Huanglongbing via trunk injection. Phytopathology 106:1495–503
    [Google Scholar]
  46. 46.  Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A 2002. β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother. 45:3045–49
    [Google Scholar]
  47. 47.  Hwang MS, Morgan RI, Sarkar SF, Wang PW, Guttman DS 2005. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl. Environ. . Microbiol 71:5182–91
    [Google Scholar]
  48. 48.  Hyun J-W, Kim H-J, Yi P-H, Hwang R-Y, Park E-W 2012. Mode of action of streptomycin resistance in the citrus canker pathogen (Xanthomonas smithii subsp. citri) in Jeju Island. Plant Pathol. J. 28:207–11
    [Google Scholar]
  49. 49.  Ishiyama T, Hara I, Matsuoka M, Sato K, Shimada S et al. 1965. Studies on preventive effect of kasugamycin on rice blast. J. Antibiot. 18:115–19
    [Google Scholar]
  50. 50.  Jain R, Rivera MC, Moore JE, Lake JA 2003. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20:1598–602
    [Google Scholar]
  51. 51.  Jarolmen H, Hewel D, Kain E 1970. Activity of minocycline against R factor–carrying Enterobacteriaceae. Infect. Immun. 1:321–26
    [Google Scholar]
  52. 52.  Jones AL, Norelli JL, Ehret GR 1991. Detection of streptomycin-resistant Pseudomonas syringae pv. papulans in Michigan apple orchards. Plant Dis 75:529–31
    [Google Scholar]
  53. 53.  Kleitman F, Shtienberg D, Blachinsky D, Oppenheim D, Zilberstaine M et al. 2005. Erwinia amylovora populations resistant to oxolinic acid in Israel: prevalence, persistence and fitness. Plant Pathol 54:108–15
    [Google Scholar]
  54. 54.  Knapp CW, Dolfing J, Ehlert PA, Graham DW 2010. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44:580–87
    [Google Scholar]
  55. 55.  Leben C, Keitt GW 1954. Antibiotics and plant disease: effects of antibiotics in control of plant diseases. Agric. Food Chem. 2:234–39
    [Google Scholar]
  56. 56.  Levy SB 1985. Ecology of antibiotic resistance determinants. Banbury Rep 24:17–30
    [Google Scholar]
  57. 57.  Levy SB 2002. The Antibiotic Paradox: How Misuse of Antibiotics Destroys Their Curative Powers Cambridge, MA: Perseus
  58. 58.  Loper JE, Henkels MD, Roberts RG, Grove GG, Willet MJ, Smith TJ 1991. Evaluation of streptomycin, oxytetracycline, and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant Dis 75:287–90
    [Google Scholar]
  59. 59.  Luo Z-Q, Farrand SK 1999. Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J. Bacteriol. 181:618–26
    [Google Scholar]
  60. 60.  Manulis S, Kleitman F, Dror O, Shabi E 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC WPRS Bull 23:89–92
    [Google Scholar]
  61. 61.  Manulis S, Kleitman F, Shtienberg D, Schwartz H, Oppenheim D et al. 2003. Changes in the sensitivity of Erwinia amylovora populations to streptomycin and oxolinic acid in Israel. Plant Dis 87:650–54
    [Google Scholar]
  62. 62.  Mazodier P, Cossart P, Giraud E, Gasser F 1985. Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res 13:195–205
    [Google Scholar]
  63. 63.  McGhee GC, Guasco J, Bellomo LM, Blumer-Schuette SE, Shane WW et al. 2011. Genetic analysis of streptomycin-resistant (SmR) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of SmRE. amylovora in Michigan. Phytopathology 192:182–91
    [Google Scholar]
  64. 64.  McGhee GC, Sundin GW 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. . Phytopathology 101:192–204
    [Google Scholar]
  65. 65.  McManus PS, Jones AL 1994. Epidemiology and genetic analysis of streptomycin-resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology 84:627–33
    [Google Scholar]
  66. 66.  McManus PS, Stockwell VO, Sundin GW, Jones AL 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443–65
    [Google Scholar]
  67. 67.  McMurry LM, Levy SB 1998. Revised sequence of OtrB (tet347) tetracycline efflux protein from Streptomyces rimosus. Antimicrob. . Agents Chemother 42:3050
    [Google Scholar]
  68. 68.  Moazed D, Noller HF 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–94
    [Google Scholar]
  69. 69.  Moller WJ, Schroth MN, Thomson SJ 1981. The scenario of fire blight and streptomycin resistance. Plant Dis 65:563–68
    [Google Scholar]
  70. 70.  Munck C, Albertsen M, Telke A, Ellabaan M, Nielsen PH, Sommer MO 2015. Limited dissemination of the wastewater treatment plant core resistome. Nat. Commun. 6:8452
    [Google Scholar]
  71. 71.  Munita JM, Arias CA 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4:2VMBF-0016-2015
    [Google Scholar]
  72. 72.  Nelson ML, Levy SB 2011. The history of the tetracyclines. Ann. N.Y. Acad. Sci. 1241:17–32
    [Google Scholar]
  73. 73.  Nguyen F, Starosta AL, Arenz S, Sohmen D, Donhofer A, Wilson DN 2014. Tetracycline antibiotics and resistance mechanisms. Biol. Chem. 395:559–75
    [Google Scholar]
  74. 74.  Nikaido H, Thanassi DG 1993. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracycline and fluoroquinolines as examples. Antimicrob. Agents Chemother. 37:1393–99
    [Google Scholar]
  75. 75.  Norelli JL, Burr TJ, Lo Cicero AM, Gilbert MT, Katz BH 1991. Homologous streptomycin resistance gene present among diverse gram-negative bacteria in New York state apple orchards. Appl. Environ. Microbiol. 57:486–91
    [Google Scholar]
  76. 76.  Oehler R, Polacek N, Steiner G, Barta A 1997. Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli. . Nucleic Acids Res 25:1219–24
    [Google Scholar]
  77. 77.  Ohnuki T, Katoh T, Imanaka T, Aiba S 1985. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes. J. Bacteriol. 161:1010–16
    [Google Scholar]
  78. 78.  Ozaki M, Mizushima S, Nomura M 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. . Nature 222:333–39
    [Google Scholar]
  79. 79.  Pages JM, James CE, Winterhalter M 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6:893–903
    [Google Scholar]
  80. 80.  Palmer EL, Teviotdale BL, Jones AL 1997. A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora. Appl. Environ. . Microbiol 63:4604–7
    [Google Scholar]
  81. 81.  Palumbi SR 2001. Evolution: humans as the world's greatest evolutionary force. Science 293:1786–90
    [Google Scholar]
  82. 82.  Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M 1997. Antibiotic resistance spread in food. Nature 389:801–2
    [Google Scholar]
  83. 83.  Perry J, Waglechner N, Wright G 2016. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6:a025197
    [Google Scholar]
  84. 84.  Petrova M, Gorlenko Z, Mindlin S 2009. Molecular structure and translocation of a multiple antibiotic resistance region of a Psychrobacter psychophilus permafrost bacterium. FEMS Microbiol. Lett. 296:190–97
    [Google Scholar]
  85. 85.  Petrova MA, Gorlenko ZM, Soina VS, Mindlin SZ 2008. Association of the strA-strB genes with plasmids and transposons in the present-day bacteria and in bacterial strains from permafrost. Russ. J. Genet. 44:1116–20
    [Google Scholar]
  86. 86.  Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M et al. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–39
    [Google Scholar]
  87. 87.  Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P 2005. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 49:3523–25
    [Google Scholar]
  88. 88.  Projan SJ, Moghazeh S, Novick RP 1988. Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus. . Nucleic Acids Res 16:2179–87
    [Google Scholar]
  89. 89.  Rezzonico F, Stockwell VO, Duffy F 2009. Plant agricultural streptomycin formulations do not carry antibiotic resistance genes. Antimicrob. Agents Chemother. 53:3173–77
    [Google Scholar]
  90. 90.  Rodriguez-Sanchez C, Altendorf K, Smalla K, Lipski A 2008. Spraying of oxytetracycline and gentamicin onto field-grown coriander did not affect the abundance of resistant bacteria, resistance genes, and broad host range plasmids detected in tropical soil bacteria. Biol. Fertil. Soils 44:589–96
    [Google Scholar]
  91. 91.  Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA et al. 2015. Gut microbiome of an 11th-century AD Pre-Columbian Andean mummy. PLOS ONE 10:e0138135
    [Google Scholar]
  92. 92.  Schatz A, Bugie E, Waksman SA 1944. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55:66–69
    [Google Scholar]
  93. 93.  Scheck HJ, Pscheidt JW, Moore LW 1996. Copper and streptomycin resistance in strains of Pseudomonas syringae from Pacific Northwest nurseries. Plant Dis 80:1034–39
    [Google Scholar]
  94. 94.  Scherer A, Vogt H-R, Vilei EM, Frey J, Perreten V 2013. Enhanced antibiotic multi-resistance in nasal and faecal bacteria after agricultural use of streptomycin. Environ. Microbiol. 15:297–304
    [Google Scholar]
  95. 95.  Schnabel EL, Jones AL 1999. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl. Environ. Microbiol. 65:4898–907
    [Google Scholar]
  96. 96.  Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E 1989. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75:271–88
    [Google Scholar]
  97. 97.  Schroth MN, Thomson SV, Moller WJ 1979. Streptomycin resistance in Erwinia amylovora. Phytopathology 69:565–68
    [Google Scholar]
  98. 98.  Sesma A, Sundin GW, Murillo J 1998. Closely related plasmid replicons coexisting in the phytopathogen Pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behavior. Appl. Environ. Microbiol. 64:3948–53
    [Google Scholar]
  99. 99.  Shade A, Klimowicz AK, Spear RN, Linske M, Donato JJ et al. 2013. Streptomycin application has no detectable effect on bacterial community structure in apple orchard soil. Appl. Environ. Microbiol. 79:6617–25
    [Google Scholar]
  100. 100.  Shaw KJ, Rather PN, Hare RS, Miller GH 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138–63
    [Google Scholar]
  101. 101.  Shtienberg D, Zilberstaine M, Oppenheim D, Herzog Z, Manulis S et al. 2001. Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica 29:143–54
    [Google Scholar]
  102. 102.  Sobiczewski P, Chiou CS, Jones AL 1991. Streptomycin-resistant epiphytic bacteria with homologous DNA for streptomycin resistance in Michigan apple orchards. Plant Dis 75:1110–13
    [Google Scholar]
  103. 103.  Spadafora VJ, Orr G, Wade L, Wiglesworth M 2010. Kasugamycin: a novel antibiotic for North American agriculture. Phytopathology 100:S166
    [Google Scholar]
  104. 104.  Speer KP, Quarles LD, Harrelson JM, Nunley JA 1991. Tetracycline labeling of the femoral head following acute intracapsular fracture of the femoral neck. Clin. Orthop. Relat. Res. 267:224–27
    [Google Scholar]
  105. 105.  Spotts RA, Cervantes LA 1995. Copper, oxytetracycline, and streptomycin resistance of Pseudomonas syringae pv. syringae strains from pear orchards in Oregon and Washington. Plant Dis 79:1132–35
    [Google Scholar]
  106. 106.  Srinivasan V, Nam H-M, Sawant AA, Headrick SI, Nguyen LT, Oliver SP 2008. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils. Microb. Ecol. 55:184–93
    [Google Scholar]
  107. 107.  Steiner PW 1969. The Distribution of Spray Materials between Target and Non-Target Areas of a Mature Apple Orchard by Airblast Equipment MS Thesis Cornell Univ. Ithaca, NY:
  108. 108.  Sundin GW 2000. Examination of base pair variants of the strA-strB streptomycin resistance genes from bacterial pathogens of humans, animals, and plants. J. Antimicrob. Chemother. 46:848–49
    [Google Scholar]
  109. 109.  Sundin GW 2002. Distinct recent lineages of the strA-strB streptomycin resistance genes in clinical and environmental bacteria. Curr. Microbiol. 45:63–69
    [Google Scholar]
  110. 110.  Sundin GW 2007. Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annu. Rev. Phytopathol. 45:129–51
    [Google Scholar]
  111. 111.  Sundin GW, Bender CL 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59:1018–24
    [Google Scholar]
  112. 112.  Sundin GW, Bender CL 1994. Relative fitness in vitro and in planta of Pseudomonas syringae strains containing copper and streptomycin resistance plasmids. Can. J. Microbiol. 40:279–85
    [Google Scholar]
  113. 113.  Sundin GW, Bender CL 1995. Expression of the strA-strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris. Appl. Environ. . Microbiol 61:2891–97
    [Google Scholar]
  114. 114.  Sundin GW, Bender CL 1996. Dissemination of the strA-strB streptomycin resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol. Ecol. 5:133–43
    [Google Scholar]
  115. 115.  Sundin GW, Bender CL 1996. Molecular analysis of closely related copper- and streptomycin-resistance plasmids in Pseudomonas syringae pv. syringae. Plasmid 35:98–107
    [Google Scholar]
  116. 116.  Sundin GW, Monks DE, Bender CL 1995. Distribution of the streptomycin-resistance transposon Tn5393 among phylloplane and soil bacteria from managed agricultural habitats. Can. J. Microbiol. 41:792–99
    [Google Scholar]
  117. 117.  Takeuchi T, Tamura O 1991. Occurrence of kasugamycin-resistant Acidovorax avenae ssp. avenae. Ann. Phytopathol. Soc. Jpn. 57:117–18
    [Google Scholar]
  118. 118.  Tancos KA, Cox KD 2017. Effects of consecutive streptomycin and kasugamycin applications on epiphytic bacteria in the apple phyllosphere. Plant Dis 101:158–64
    [Google Scholar]
  119. 119.  Tancos KA, Villani S, Kuehne S, Borejsza-Wysocka E, Breth D et al. 2016. Prevalence of streptomycin-resistant Erwinia amylovora in New York apple orchards. Plant Dis 100:802–9
    [Google Scholar]
  120. 120.  Thanassi DG, Suh GS, Nikaido H 1995. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. J. . Bacteriol 177:998–1007
    [Google Scholar]
  121. 121.  Thanner S, Drissner D, Walsh F 2016. Antimicrobial resistance in agriculture. mBio 7:e02227–15
    [Google Scholar]
  122. 122.  Trieber CA, Burkhardt N, Nierhaus KH, Taylor DE 1998. Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent. Biol. Chem. 379:847–55
    [Google Scholar]
  123. 123.  Van Overbeek LS, Wellington EMH, Egan S, Smalla K, Heuer H et al. 2002. Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol. Ecol. 42:277–88
    [Google Scholar]
  124. 124.  Vidaver AM 2002. Use of antimicrobials in plant agriculture. Clin. Infect. Dis. 34:Suppl.S107–10
    [Google Scholar]
  125. 125.  Waksman SA, Flynn JE 1973. History of the word ‘antibiotic’. J. Hist. Med. Allied Sci. 28:284–86
    [Google Scholar]
  126. 126.  Walsh CT 2003. Antibiotics: Actions, Origins, Resistance Washington, DC: ASM Press
    [Google Scholar]
  127. 127.  Walsh F, Duffy B 2013. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. PLOS ONE 8:e65567
    [Google Scholar]
  128. 128.  Walsh F, Smith DP, Owens SM, Duffy B, Frey JE 2014. Restricted streptomycin use in apple orchards did not adversely affect the soil bacteria communities. Front. Microbiol. 4:383
    [Google Scholar]
  129. 129.  Wang N, Pierson EA, Setubal JC, Xu J, Levy JG et al. 2017. The Candidatus Liberibacter–host interface: insights into pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 55:451–82
    [Google Scholar]
  130. 130.  Wang N, Stelinski LL, Pelz-Stelinski KS, Graham JH, Zhang Y 2017. Tale of the Huanglongbing disease pyramid in the context of the citrus microbiome. Phytopathology 107:380–87
    [Google Scholar]
  131. 131.  Wiener P, Egan S, Wellington EMH 1998. Evidence for transfer of antibiotic-resistance genes in soil populations of streptomycetes. Mol. Ecol. 7:1205–16
    [Google Scholar]
  132. 132.  Wright GD 2007. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5:175–86
    [Google Scholar]
  133. 133.  Wright GD 2010. Antibiotic resistance in the environment: a link to the clinic?. Curr. Opin. Microbiol. 13:589–94
    [Google Scholar]
  134. 134.  Xu Y, Luo Q, Zhou M 2013. Identification and characterization of integron-mediated antibiotic resistance in the phytopathogen Xanthomonas oryzae pv. oryzae. PLOS ONE 8:e55962
    [Google Scholar]
  135. 135.  Yang W, Moore LF, Koteva KP, Bareich DC, Hughes DW, Wright GD 2004. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279:52346–52
    [Google Scholar]
  136. 136.  Yashiro E, McManus PS 2012. Effect of streptomycin treatment on bacterial community structure in the apple phyllosphere. PLOS ONE 7:e37131
    [Google Scholar]
  137. 137.  Ye Z-L, Deng Y, Lou Y, Ye X, Zhang J, Chen S 2017. Adsorption behavior of tetracyclines by struvite particles in the process of phosphorus recovery from synthetic swine wastewater. Chem. Eng. J. 313:1633–38
    [Google Scholar]
  138. 138.  Yoshii A, Moriyama H, Fukuhara T 2012. The novel kasugamycin 2-N-acetyltransferase gene aac(2)-IIa, carried by the IncP island, convers kasugamycin resistance to rice-pathogenic bacteria. Appl. Environ. Microbiol. 78:5555–64
    [Google Scholar]
  139. 139.  Yoshii A, Omatsu T, Katayama Y, Koyama S, Mizutani T et al. 2015. Two types of genetic carrier, the IncP genomic island and the novel IncP-1β plasmid, for the aac(2)-IIa gene that confers kasugamycin resistance in Acidovorax avenae ssp. avenae. Mol. Plant Pathol. 16:288–300
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-045946
Loading
/content/journals/10.1146/annurev-phyto-080417-045946
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error