1932

Abstract

The origin of RNA interference (RNAi), the cell sentinel system widely shared among eukaryotes that recognizes RNAs and specifically degrades or prevents their translation in cells, is suggested to predate the last eukaryote common ancestor (138). Of particular relevance to plant pathology is that in plants, but also in some fungi, insects, and lower eukaryotes, RNAi is a primary and effective antiviral defense, and recent studies have revealed that small RNAs (sRNAs) involved in RNAi play important roles in other plant diseases, including those caused by cellular plant pathogens. Because of this, and because RNAi can be manipulated to interfere with the expression of endogenous genes in an intra- or interspecific manner, RNAi has been used as a tool in studies of gene function but also for plant protection. Here, we review the discovery of RNAi, canonical mechanisms, experimental and translational applications, and new RNA-based technologies of importance to plant pathology.

Keyword(s): dsRNAHIGSRNAismall RNAVIGS
Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-050044
2018-08-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-050044.html?itemId=/content/journals/10.1146/annurev-phyto-080417-050044&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG et al. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–43
    [Google Scholar]
  2. 2.  Achkar NP, Cambiagno DA, Manavella PA 2016. miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21:1034–44
    [Google Scholar]
  3. 3.  Allen E, Xie Z, Gustafson AM, Carrington JC 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–21
    [Google Scholar]
  4. 4.  Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG et al. 2012. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLOS Pathog 8:e1002941
    [Google Scholar]
  5. 5.  Axtell MJ, Jan C, Rajagopalan R, Bartel DP 2006. A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–77
    [Google Scholar]
  6. 6.  Bally J, McIntyre GJ, Doran RL, Lee K, Perez A et al. 2016. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts. Front. Plant Sci. 7:1453
    [Google Scholar]
  7. 7.  Bao D, Ganbaatar O, Cui X, Yu R, Bao W et al. 2018. Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean. Mol. Plant Pathol. 19:948–60
    [Google Scholar]
  8. 8.  Bao N, Lye KW, Barton MK 2004. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7:653–62
    [Google Scholar]
  9. 9.  Bargmann CI 2001. High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. . Genome Biol 2:1005.1
    [Google Scholar]
  10. 10.  Bastet A, Robaglia C, Gallois JL 2017. eIF4E resistance: natural variation should guide gene editing. Trends Plant Sci 22:411–19
    [Google Scholar]
  11. 11.  Baulcombe DC 2015. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. Curr. Opin. Plant Biol. 26:141–46
    [Google Scholar]
  12. 12.  Beachy RN, Loesch-Fries S, Tumer NE 1990. Coat protein–mediated resistance against virus infection. Annu. Rev. Phytopathol. 28:451–74
    [Google Scholar]
  13. 13.  Becher H, Ma L, Kelly LJ, Kovarik A, Leitch IJ, Leitch AR 2014. Endogenous pararetrovirus sequences associated with 24 nt small RNAs at the centromeres of Fritillaria imperialis L. (Liliaceae), a species with a giant genome. Plant J 80:823–33
    [Google Scholar]
  14. 14.  Bergua M, Kang SH, Folimonova SY 2016. Understanding superinfection exclusion by complex populations of Citrus tristeza virus. . Virology 499:331–39
    [Google Scholar]
  15. 15.  Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena SF, Folimonova SY 2014. A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level. J. Virol. 88:11327–38
    [Google Scholar]
  16. 16.  Beyene G, Chauhan RD, Ilyas M, Wagaba H, Fauquet CM et al. 2016. A virus-derived stacked RNAi construct confers robust resistance to cassava brown streak disease. Front. Plant Sci. 7:2052
    [Google Scholar]
  17. 17.  Borel B 2017. When the pesticides run out. Nature 543:302–4
    [Google Scholar]
  18. 18.  Bouche N, Lauressergues D, Gasciolli V, Vaucheret H 2006. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–56
    [Google Scholar]
  19. 19.  Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–46
    [Google Scholar]
  20. 20.  Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RGF et al. 2014. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. PNAS 111:12942–47
    [Google Scholar]
  21. 21.  Cao M, Du P, Wang X, Yu YQ, Qiu YH et al. 2014. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. . PNAS 111:14613–18
    [Google Scholar]
  22. 22.  Carbonell A, Daros J-A 2017. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. Mol. Plant Pathol. 18:746–53
    [Google Scholar]
  23. 23.  Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE 2004. RNA silencing genes control de novo DNA methylation. Science 303:1336
    [Google Scholar]
  24. 24.  Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH 2010. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. PNAS 107:15269–74
    [Google Scholar]
  25. 25.  Colhoun J 2003. Effects of environmental factors on plant disease. Annu. Rev. Phytopathol. 11:343–64
    [Google Scholar]
  26. 26.  Cooper B, Campbell KB 2017. Protection against common bean rust conferred by a gene-silencing method. Phytopathology 107:920–27
    [Google Scholar]
  27. 27.  Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT et al. 2010. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat. Struct. Mol. . Biol 17:997–1003
    [Google Scholar]
  28. 28.  de la Luz Gutierrez-Nava M, Aukerman MJ, Sakai H, Tingey SV, Williams RW 2008. Artificial trans-acting siRNAs confer consistent and effective gene silencing. Plant Physiol 147:543–51
    [Google Scholar]
  29. 29.  Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71
    [Google Scholar]
  30. 30.  deZoeten GA, Fulton RW 1975. Understanding generates possibilities. Phytopathology 65:221–22
    [Google Scholar]
  31. 31.  Diaz-Pendon JA, Li F, Li WX, Ding SW 2007. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–63
    [Google Scholar]
  32. 32.  Doudna JA, Charpentier E 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    [Google Scholar]
  33. 33.  Dougherty WG, Parks TD 1995. Transgenes and gene suppression: telling us something new?. Curr. Opin. Cell Biol. 7:399–405
    [Google Scholar]
  34. 34.  El-Shami M, Pontier D, Lahmy S, Braun L, Picart C et al. 2007. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev 21:2539–44
    [Google Scholar]
  35. 35.  EPA Press Off. 2017. EPA registers innovative tool to control corn rootworm Press Release, June 15. https://www.epa.gov/newsreleases/epa-registers-innovative-tool-control-corn-rootworm
  36. 36.  Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM 2001. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. PNAS 98:13437–42
    [Google Scholar]
  37. 37.  Escobar MA, Dandekar AM 2003. Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–86
    [Google Scholar]
  38. 38.  Escobar MA, Leslie CA, McGranahan GH, Dandekar AM 2002. Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci 163:591–97
    [Google Scholar]
  39. 39.  Faria J, Aragao F, Souza T, Quintela E, Kitajima E, Ribeiro S 2016. Golden mosaic of common beans in Brazil: management with a transgenic approach. APSnet Feat https://doi.org/10.1094/APSFeature-2016-10
    [Crossref]
  40. 40.  Fei Q, Xia R, Meyers BC 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–15
    [Google Scholar]
  41. 41.  Felippes FF, Wang JW, Weigel D 2012. MIGS: miRNA-induced gene silencing. Plant J 70:541–47
    [Google Scholar]
  42. 42.  Fritz JH, Girardin SE, Philpott DJ 2006. Innate immune defense through RNA interference. Sci. STKE 2006:pe27
    [Google Scholar]
  43. 43.  Fuentes A, Carlos N, Ruiz Y, Callard D, Sanchez Y et al. 2016. Field trial and molecular characterization of RNAi-transgenic tomato plants that exhibit resistance to tomato yellow leaf curl geminivirus. Mol. Plant-Microbe Interact. 29:197–209
    [Google Scholar]
  44. 44.  Fulton RW 1986. Practices and precautions in the use of cross protection for plant virus disease control. Annu. Rev. Phytopathol. 24:67–81
    [Google Scholar]
  45. 45.  Ganbaatar O, Cao B, Zhang Y, Bao D, Bao W, Wuriyanghan H 2017. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol 17:9
    [Google Scholar]
  46. 46.  Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N et al. 2010. Arabidopsis RNA-dependent RNA polymerases and Dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell 22:481–96
    [Google Scholar]
  47. 47.  Gasciolli V, Mallory AC, Bartel DP, Vaucheret H 2005. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15:1494–500
    [Google Scholar]
  48. 48.  Gerik JS, Duffus JE, Perry R, Stenger DC, Van Maren AF 1990. Etiology of tomato plant decline in the California desert. Phytopathology 80:1352–56
    [Google Scholar]
  49. 49.  Ghag SB 2017. Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiol. Mol. Plant Pathol. 100:242–54
    [Google Scholar]
  50. 50.  Ghoshal B, Sanfaçon H 2014. Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology 456:188–97
    [Google Scholar]
  51. 51.  Gilbertson RL, Batuman O, Webster CG, Adkins S 2015. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2:67–93
    [Google Scholar]
  52. 52.  Gonsalves D, Gonsalves C, Ferriera S, Pitz K, Fitch MM et al. 2004. Transgenic virus resistant papaya: from hope to reality for controlling Papaya ringspot virus in Hawaii. APSnet. Feat. https://doi.org/10.1094/APSnetFeature-2004-0704
    [Crossref]
  53. 53.  Grens K 2017. Cross-Kingdom swap meet. Scientist 31:36–42
    [Google Scholar]
  54. 54.  Guo H, Song X, Wang G, Yang K, Wang Y et al. 2014. Plant-generated artificial small RNAs mediated aphid resistance. PLOS ONE 9:e97410
    [Google Scholar]
  55. 55.  Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S 2014. Citrus tristeza virus–based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J. Biotechnol. 176:42–49
    [Google Scholar]
  56. 56.  Hewezi T, Maier TR, Nettleton D, Baum TJ 2012. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159:321–35
    [Google Scholar]
  57. 57.  Hine RB, Osborne WE, Dennis RE 1970. Elevation and temperature effects on severity of maize dwarf mosaic virus in sorghum in Arizona. Plant Dis. Rep. 22:14–16
    [Google Scholar]
  58. 58.  Hnatuszko-Konka K, Kowalczyk T, Gerszberg A, Wiktorek-Smagur A, Kononowicz AK 2014. Phaseolus vulgaris: recalcitrant potential. Biotechnol. Adv. 32:1205–15
    [Google Scholar]
  59. 59.  Huang G, Allen R, Davis EL, Baum TJ, Hussey RS 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. PNAS 103:14302–6
    [Google Scholar]
  60. 60.  Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS 2006. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol. Plant-Microbe Interact. 19:463–70
    [Google Scholar]
  61. 61.  Huang J, Yang M, Zhang X 2016. The function of small RNAs in plant biotic stress response. J. Integr. Plant Biol. 58:312–27
    [Google Scholar]
  62. 62.  Jacobs TB, Lawler NJ, LaFayette PR, Vodkin LO, Parrott WA 2016. Simple gene silencing using the trans-acting siRNA pathway. Plant Biotechnol. J. 14:117–27
    [Google Scholar]
  63. 63.  Jahan SN, Asman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C 2015. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J. Exp. . Bot 66:2785–94
    [Google Scholar]
  64. 64.  Jaubert M, Bhattacharjee S, Mello AF, Perry KL, Moffett P 2011. ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. . Plant Physiol 156:1556–64
    [Google Scholar]
  65. 65.  Jia X, Yan J, Tang G 2011. MicroRNA-mediated DNA methylation in plants. Front. Biol. 6:133–39
    [Google Scholar]
  66. 66.  Johnson J 1922. The relation of air temperature to the mosaic disease of potatoes and other plants. Phytopathology 12:438–40
    [Google Scholar]
  67. 67.  Johnson J 1937. An acquired partial immunity to tobacco streak disease. Trans. Wis. Acad. Sci. Arts Lett. 30:27–34
    [Google Scholar]
  68. 68.  Johnson SR, Strom S, Grillo K 2007. Quantification of the impacts on US agriculture of biotechnology-derived crops planted in 2006. National Center for Food and Agriculture Policy SR Johnson, S Strom, K Grillo 1–15 Washington, DC: Natl. Cent. Food Agric. Policy
    [Google Scholar]
  69. 69.  Kamath RS, Ahringer J 2003. Genome-wide RNAi screening in Caenorhabditis elegans. . Methods 30:313–21
    [Google Scholar]
  70. 70.  Kaniewski WK, Thomas PE 2004. The potato story. AgBioForum 7:41–46
    [Google Scholar]
  71. 71.  Kassanis B 1950. Heat inactivation of leaf-roll virus in potato tubers. Ann. Appl. Biol. 37:339–41
    [Google Scholar]
  72. 72.  Kassanis B 1957. Effects of changing temperature on plant virus diseases. Adv. Virus Res. 4:221–41
    [Google Scholar]
  73. 73.  Khan AM, Ashfaq M, Kiss Z, Khan AA, Mansoor S, Falk BW 2013. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLOS ONE 8:e73657
    [Google Scholar]
  74. 74.  Knip M, Constantin ME, Thordal-Christensen H 2014. Trans-kingdom cross-talk: small RNAs on the move. PLOS Genet 10:e1004602
    [Google Scholar]
  75. 75.  Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O et al. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLOS Pathog 12:e1005901
    [Google Scholar]
  76. 76.  Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. PNAS 92:1679–83
    [Google Scholar]
  77. 77.  Kumar P, Pandit SS, Baldwin IT 2012. Tobacco rattle virus vector: a rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLOS ONE 7:e31347
    [Google Scholar]
  78. 78.  Lafforgue G, Martinez F, Niu QW, Chua NH, Daros JA, Elena SF 2013. Improving the effectiveness of artificial microRNA (amiR)-mediated resistance against Turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. J. Virol. 87:8254–56
    [Google Scholar]
  79. 79.  Li J, Zhang Y, Chen K, Liang Z 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:686
    [Google Scholar]
  80. 80.  Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W 2012. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLOS ONE 7:e39650
    [Google Scholar]
  81. 81.  Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM 2010. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–31
    [Google Scholar]
  82. 82.  Lin HX, Rubio L, Smythe A, Jiminez M, Falk BW 2003. Genetic diversity and biological variation among California isolates of Cucumber mosaic virus. J. Gen. Virol. 84:249–58
    [Google Scholar]
  83. 83.  Lindbo JA, Dougherty WG 1992. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–33
    [Google Scholar]
  84. 84.  Lindbo JA, Falk BW 2017. The impact of “coat protein-mediated virus resistance” in applied plant pathology and basic research. Phytopathology 107:624–34
    [Google Scholar]
  85. 85.  Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–59
    [Google Scholar]
  86. 86.  Lingel A, Simon B, Izaurralde E, Sattler M 2004. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol. 11:576–77
    [Google Scholar]
  87. 87.  Lu B, Stubbs G, Culver JN 1998. Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology 248:188–98
    [Google Scholar]
  88. 88.  Lv DQ, Liu SW, Zhao JH, Zhou BJ, Wang SP et al. 2016. Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Sci. Rep. 6:35751
    [Google Scholar]
  89. 89.  Ma JB, Ye K, Patel DJ 2004. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–22
    [Google Scholar]
  90. 90.  Malamy J, Hennig J, Klessig DF 1992. Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4:359
    [Google Scholar]
  91. 91.  Mari-Ordonez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O 2013. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 45:1029–39
    [Google Scholar]
  92. 92.  Matsoukas IG 2018. Commentary: RNA editing with CRISPR-Cas13. Front. Genet. 9:134
    [Google Scholar]
  93. 93.  Matsumura EE, Coletta-Filho HD, Nouri S, Falk BW, Nerva L et al. 2017. Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death–affected area reveals diverse known and putative novel viruses. Viruses 9:pii:E92
    [Google Scholar]
  94. 94.  Matthew L 2004. RNAi for plant functional genomics. Comp. Funct. Genom. 5:240–44
    [Google Scholar]
  95. 95.  McKinney HH 1929. Mosaic disease in the Canary Islands, West Africa, and Gibraltar. J. Agric. Res. 39:557–78
    [Google Scholar]
  96. 96.  Meijer HA, Smith EM, Bushell M 2014. Regulation of miRNA strand selection: Follow the leader?. Biochem. Soc. Trans. 42:1135–40
    [Google Scholar]
  97. 97.  Miras M, Truniger V, Silva C, Verdaguer N, Aranda MA, Querol-Audi J 2017. Structure of eIF4E in complex with an eIF4G peptide supports a universal bipartite binding mode for protein translation. Plant Physiol 174:1476–91
    [Google Scholar]
  98. 98.  Mitter N, Worrall EA, Robinson KE, Li P, Jain RG et al. 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3:16207
    [Google Scholar]
  99. 99.  Mitter N, Worrall EA, Robinson KE, Xu ZP, Carroll BJ 2017. Induction of virus resistance by exogenous application of double-stranded RNA. Curr. Opin. Virol. 26:49–55
    [Google Scholar]
  100. 100.  Moissiard G, Voinnet O 2006. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. PNAS 103:19593–98
    [Google Scholar]
  101. 101.  Morris KV, Mattick JS 2014. The rise of regulatory RNA. Nat. Rev. Genet. 15:423
    [Google Scholar]
  102. 102.  Naito Y, Ui-Tei K 2012. siRNA design software for a target gene-specific RNA interference. Front. Genet. 3:102
    [Google Scholar]
  103. 103.  Naito Y, Yamada T, Matsumiya T, Ui-Tei K, Saigo K, Morishita S 2005. dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 33:W589–91
    [Google Scholar]
  104. 104.  Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–39
    [Google Scholar]
  105. 105.  Navarro L, Jay F, Nomura K, He SY, Voinnet O 2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–67
    [Google Scholar]
  106. 106.  Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W et al. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24:1420–28
    [Google Scholar]
  107. 107.  Novina CD, Sharp PA 2004. The RNAi revolution. Nature 430:161–64
    [Google Scholar]
  108. 108.  Nowara D, Gay A, Lacomme C, Shaw J, Ridout C et al. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. . Plant Cell 22:3130–41
    [Google Scholar]
  109. 109.  Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C et al. 2013. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant. Physiol. 162:116–31
    [Google Scholar]
  110. 110.  Palukaitis P, Zaitlin M 1984. A model to explain the “cross protection” phenomenon shown by plant viruses and viroids. Plant-Microbe Interactions 1 T Kosuge, EW Nester 420–29 New York: Macmillan
    [Google Scholar]
  111. 111.  Paprotka T, Deuschle K, Metzler V, Jeske H 2011. Conformation-selective methylation of geminivirus DNA. J. Virol. 85:12001–12
    [Google Scholar]
  112. 112.  Parker JS 2010. How to slice: snapshots of Argonaute in action. Silence 1:3
    [Google Scholar]
  113. 113.  Pelaez P, Sanchez F 2013. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Front. Plant Sci. 4:343
    [Google Scholar]
  114. 114.  Peng A, Chen S, Lei T, Xu L, He Y et al. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15:1509–19
    [Google Scholar]
  115. 115.  Piya S, Kihm C, Rice JH, Baum TJ, Hewezi T 2017. Cooperative regulatory functions of miR858 and MYB83 during cyst nematode parasitism. Plant Physiol 174:1897–912
    [Google Scholar]
  116. 116.  Pontier D, Picart C, Roudier F, Garcia D, Lahmy S et al. 2012. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol. Cell 48:121–32
    [Google Scholar]
  117. 117.  Powell PA, Sanders PR, Tumer N, Fraley RT, Beachy RN 1990. Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175:124–30
    [Google Scholar]
  118. 118.  Price DR, Gatehouse JA 2008. RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400
    [Google Scholar]
  119. 119.  Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M 2008. Strategies for antiviral resistance in transgenic plants. Mol. Plant Pathol. 9:73–83
    [Google Scholar]
  120. 120.  Qiao Y, Liu L, Xiong Q, Flores C, Wong J et al. 2013. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45:330–33
    [Google Scholar]
  121. 121.  Qu F, Ye XH, Hou GC, Sato S, Clemente TE, Morris TJ 2005. RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana. J. . Virol 79:15209–17
    [Google Scholar]
  122. 122.  Raja P, Sanville BC, Buchmann RC, Bisaro DM 2008. Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 82:8997–9007
    [Google Scholar]
  123. 123.  Ranjan A, Jayaraman D, Grau C, Hill JH, Whitham SA et al. 2018. The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases. Mol. Plant Pathol. 19:700–14
    [Google Scholar]
  124. 124.  Ratcliff F, Harrison BD, Baulcombe DC 1997. A similarity between viral defense and gene silencing in plants. Science 276:1558–60
    [Google Scholar]
  125. 125.  Ratcliff FG, MacFarlane SA, Baulcombe DC 1999. Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell 11:1207–16
    [Google Scholar]
  126. 126.  Reardon S 2016. Welcome to the CRISPR zoo. Nature 531:160–63
    [Google Scholar]
  127. 127.  Reichel M, Li Y, Li J, Millar AA 2015. Inhibiting plant microRNA activity: Molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol. J. 13:915–26
    [Google Scholar]
  128. 128.  Reis RS, Hart-Smith G, Eamens AL, Wilkins MR, Waterhouse PM 2015. Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat. Plants 1:14027
    [Google Scholar]
  129. 129.  Rodriguez-Hernandez AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V 2012. Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 13:755–63
    [Google Scholar]
  130. 130.  Rodriguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG 2013. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–75
    [Google Scholar]
  131. 131.  Rogers K, Chen X 2013. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–99
    [Google Scholar]
  132. 132.  Salaman RN 1933. Acquired immunity against the “Y” potato virus. Nature 139:924–25
    [Google Scholar]
  133. 133.  Sanford JC, Johnston SA 1985. The concept of parasite-derived resistance: deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113:395–405
    [Google Scholar]
  134. 134.  Sato F 2006. RNAi and functional genomics. Plant Tissue Cult. Lett. 22:431–42
    [Google Scholar]
  135. 135.  Scholthof HB, Alvarado VY, Vega-Arreguin JC, Ciomperlik J, Odokonyero D et al. 2011. Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana. . Plant Physiol 156:1548–55
    [Google Scholar]
  136. 136.  Scofield SR, Huang L, Brandt AS, Gill BS 2005. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–73
    [Google Scholar]
  137. 137.  Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J et al. 2013. Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum-from concept to product. Plant Cell Tissue Organ. Cult. 115:1–12
    [Google Scholar]
  138. 138.  Shabalina SA, Koonin EV 2008. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23:578–87
    [Google Scholar]
  139. 139.  Shahid S, Kim G, Johnson NR, Wafula E, Wang F et al. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:82–85
    [Google Scholar]
  140. 140.  Silva J, Chang K, Hannon GJ, Rivas FV 2004. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23:8401–9
    [Google Scholar]
  141. 141.  Song GQ, Sink KC, Walworth AE, Cook MA, Allison RF, Lang GA 2013. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnol. J. 11:702–8
    [Google Scholar]
  142. 142.  Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK et al. 2003. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10:1026–32
    [Google Scholar]
  143. 143.  Song JJ, Smith SK, Hannon GJ, Joshua-Tor L 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–37
    [Google Scholar]
  144. 144.  Song X, Li P, Zhai J, Zhou M, Ma L et al. 2012. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69:462–74
    [Google Scholar]
  145. 145.  Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A et al. 2003. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–40
    [Google Scholar]
  146. 146.  Tang G, Galili G, Zhuang X 2007. RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–69
    [Google Scholar]
  147. 147.  Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y 2010. Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol 153:632–41
    [Google Scholar]
  148. 148.  Tennant P, Fermin G, Fitch MM, Manshardt RM, Slightom JL, Gonsalves D 2001. Papaya ringspot virus resistance of transgenic Rainbow and SunbUp is affected by gene dosage, plant developement and coat protein homology. Eur. J. Plant Pathol. 107:645–53
    [Google Scholar]
  149. 149.  Teotia S, Singh D, Tang G 2017. DNA methylation in plants by microRNAs. Plant Epigenetics N Rajewsky, S Jurga, J Barciszewski 247–62 Cham, Switz.: Springer
    [Google Scholar]
  150. 150.  Teotia S, Singh D, Tang X, Tang G 2016. Essential RNA-based technologies and their applications in plant functional genomics. Trends Biotechnol 34:106–23
    [Google Scholar]
  151. 151.  Tolia NH, Joshua-Tor L 2007. Slicer and the argonautes. Nat. Chem. Biol. 3:36–43
    [Google Scholar]
  152. 152.  Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI 2008. Trans-specific gene silencing between host and parasitic plants. Plant J 56:389–97
    [Google Scholar]
  153. 153.  Tricoli DM, Carney KJ, Russell PF, McMaster JR, Groff DW et al. 1995. Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and/or zucchini yellow mosaic virus. Bio/Technology 13:1458–65
    [Google Scholar]
  154. 154.  Truniger V, Aranda MA 2009. Recessive resistance to plant viruses. Adv. Virus Res. 75:119–59
    [Google Scholar]
  155. 155.  Voloudakis AE, Holeva MC, Sarin LP, Bamford DH, Vargas M et al. 2015. Efficient double-stranded RNA production methods for utilization in plant virus control. Methods Mol. Biol. 1236:255–74
    [Google Scholar]
  156. 156.  Voytas DF, Gao C 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLOS Biol 12:e1001877
    [Google Scholar]
  157. 157.  Wagaba H, Beyene G, Aleu J, Odipio J, Okao-Okuja G et al. 2016. Field level RNAi-mediated resistance to cassava brown streak disease across multiple cropping cycles and diverse East African agro-ecological locations. Front. Plant Sci. 7:2060
    [Google Scholar]
  158. 158.  Walsh E, Elmore JM, Taylor CG 2017. Root-knot nematode parasitism suppresses host RNA silencing. Mol. Plant-Microbe Interact. 30:295–300
    [Google Scholar]
  159. 159.  Wang M, Soyano T, Machida S, Yang JY, Jung C et al. 2011. Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 25:64–76
    [Google Scholar]
  160. 160.  Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q et al. 2011. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative Argonautes in Arabidopsis thaliana. . Plant Cell 23:1625–38
    [Google Scholar]
  161. 161.  Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ 2008. Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–26
    [Google Scholar]
  162. 162.  Wang Y, Juranek S, Li H, Sheng G, Wardle GS et al. 2009. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461:754–61
    [Google Scholar]
  163. 163.  Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ 2008. Structure of the guide-strand-containing Argonaute silencing complex. Nature 456:209–13
    [Google Scholar]
  164. 164.  Wassenegger M, Heimes S, Riedel L, Sanger HL 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–76
    [Google Scholar]
  165. 165.  Waterhouse PM, Graham MW, Wang MB 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. PNAS 95:13959–64
    [Google Scholar]
  166. 166.  Wei W, Ba Z, Gao M, Wu Y, Ma Y et al. 2012. A role for small RNAs in DNA double-strand break repair. Cell 149:101–12
    [Google Scholar]
  167. 167.  Weiberg A, Wang M, Bellinger M, Jin H 2014. Small RNAs: a new paradigm in plant-microbe interactions. Annu. Rev. Phytopathol. 52:495–516
    [Google Scholar]
  168. 168.  WHO. 2011. Tuning in to secure food. Bull. World Health Organ. 89:86–87
    [Google Scholar]
  169. 169.  Wierzbicki AT, Ream TS, Haag JR, Pikaard CS 2009. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41:630–34
    [Google Scholar]
  170. 170.  Wingard SA 1928. Hosts and symptoms of ringspot, a virus disease of plants. J. Agric. Res. 37:127–53
    [Google Scholar]
  171. 171.  Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereitt A 2010. Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in East Africa. J. Gen. Virol. 91:1365–72
    [Google Scholar]
  172. 172.  Wuriyanghan H, Falk BW 2013. RNA interference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant Tobacco mosaic virus (TMV). PLOS ONE 8:e66050
    [Google Scholar]
  173. 173.  Wuriyanghan H, Rosa C, Falk BW 2011. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PLOS ONE 6:e27736
    [Google Scholar]
  174. 174.  Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD et al. 2004. Genetic and functional diversification of small RNA pathways in plants. PLOS Biol 2:E104
    [Google Scholar]
  175. 175.  Yamada T, Naito Y, Ui-Tei K, Morishita S, Saigo K 2005. Designing functional siRNA sequences. Seikagaku 77:1519–25
    [Google Scholar]
  176. 176.  Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM 2003. Structure and conserved RNA binding of the PAZ domain. Nature 426:468–74
    [Google Scholar]
  177. 177.  Yin C, Hulbert S 2015. Host induced gene silencing (HIGS), a promising strategy for developing disease resistant crops. Gene Technol 4:130
    [Google Scholar]
  178. 178.  Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S et al. 2004. A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000
    [Google Scholar]
  179. 179.  Yoshikawa M, Peragine A, Park MY, Poethig RS 2005. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. . Genes Dev 19:2164–75
    [Google Scholar]
  180. 180.  Zaitlin M 1976. Viral cross protection: More understanding is needed. Phytopathology 66:382–83
    [Google Scholar]
  181. 181.  Zhang C, Bradshaw JD, Whitham SA, Hill JH 2010. The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol 153:52–65
    [Google Scholar]
  182. 182.  Zhang H, Xia R, Meyers BC, Walbot V 2015. Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr. Opin. Plant Biol. 27:84–90
    [Google Scholar]
  183. 183.  Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R 2015. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–94
    [Google Scholar]
  184. 184.  Zhang S, Liu Y, Yu B 2015. New insights into pri-miRNA processing and accumulation in plants. Wiley Interdiscip. Rev. RNA 6:533–45
    [Google Scholar]
  185. 185.  Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y et al. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2:16153
    [Google Scholar]
  186. 186.  Zhang W, Gao S, Zhou X, Chellappan P, Chen Z et al. 2011. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol. Biol. 75:93–105
    [Google Scholar]
  187. 187.  Zhang X, Zhang X, Singh J, Li D, Qu F 2012. Temperature-dependent survival of Turnip crinkle virus–infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AG02, and HEN1. J. Virol. 86:6847–54
    [Google Scholar]
  188. 188.  Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S et al. 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42:356–66
    [Google Scholar]
  189. 189.  Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S et al. 2014. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157:1050–60
    [Google Scholar]
  190. 190.  Ziebell H, Carr JP 2009. Effects of Dicer-like endoribonucleases 2 and 4 on infection of Arabidopsis thaliana by cucumber mosaic virus and a mutant virus lacking the 2b counter-defence protein gene. J. Gen. Virol. 90:2288–92
    [Google Scholar]
  191. 191.  Ziebell H, Carr JP 2010. Cross-protection: a century of mystery. Adv. Virus Res. 76:211–64
    [Google Scholar]
  192. 192.  Ziebell H, Payne T, Berry JO, Walsh JA, Carr JP 2007. A cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. J. Gen. Virol. 88:2862–71
    [Google Scholar]
  193. 193.  Zilberman D, Cao X, Jacobsen SE 2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–19
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-050044
Loading
/content/journals/10.1146/annurev-phyto-080417-050044
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error