1932

Abstract

Plant disease detection represents a tremendous challenge for research and practical applications. Visual assessment by human raters is time-consuming, expensive, and error prone. Disease rating and plant protection need new and innovative techniques to address forthcoming challenges and trends in agricultural production that require more precision than ever before. Within this context, hyperspectral sensors and imaging techniques—intrinsically tied to efficient data analysis approaches—have shown an enormous potential to provide new insights into plant-pathogen interactions and for the detection of plant diseases. This article provides an overview of hyperspectral sensors and imaging technologies for assessing compatible and incompatible plant-pathogen interactions. Within the progress of digital technologies, the vision, which is increasingly discussed in the society and industry, includes smart and intuitive solutions for assessing plant features in plant phenotyping or for making decisions on plant protection measures in the context of precision agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-050100
2018-08-25
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-050100.html?itemId=/content/journals/10.1146/annurev-phyto-080417-050100&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Al Masri A, Hau B, Dehne HW, Mahlein AK, Oerke EC 2017. Impact of primary infection site of Fusarium species on head blight development in wheat ears evaluated by IR-thermography. Eur. J. Plant Pathol. 147:855–68
    [Google Scholar]
  2. 2.  Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44
    [Google Scholar]
  3. 3.  Arens N, Backhaus A, Döll S, Fischer S, Seiffert U, Mock HP 2016. Non-invasive presymptomatic detection of Cercospora beticola infection and identification of early metabolic responses in sugar beet. Front. Plant Sci. 7:1377
    [Google Scholar]
  4. 4.  Ashourloo D, Aghighi H, Matkan AA, Mobasheri MR, Rad AM 2016. An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9:94344–51
    [Google Scholar]
  5. 5.  Ashourloo D, Mobasheri MR, Huete A 2014. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote Sens 6:65107–23
    [Google Scholar]
  6. 6.  Ball D, Ross P, English A, Patten T, Upcroft B et al. 2015. Robotics for sustainable broad-acre agriculture. Field and Service Robotics: Results of the 9th International Conference, Vol. 105 L Mejias, P Corke, J Roberts 439–53 Cham, Switz.: Springer
    [Google Scholar]
  7. 7.  Baranowski P, Jedryczka M, Mazurek W, Babula-Skowronska D, Siedliska A, Kaczmarek J 2015. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria. . PLOS ONE 10:3e0122913
    [Google Scholar]
  8. 8.  Barnes RJ, Dhanoa MS, Lister SJ 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43:5772–77
    [Google Scholar]
  9. 9.  Bebber DP, Holmes T, Gurr SJ 2014. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23:1398–407
    [Google Scholar]
  10. 10.  Behmann J, Mahlein AK, Rumpf T, Römer C, Plümer L 2015. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 16:239–60
    [Google Scholar]
  11. 11.  Behmann J, Steinrücken J, Plümer L 2014. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 93:98–111
    [Google Scholar]
  12. 12.  Berdugo CA, Mahlein AK, Steiner U, Dehne HW, Oerke EC 2013. Sensors and imaging techniques for the assessment of the delay of wheat senescence induced by fungicides. Funct. Plant Biol. 40:677–89
    [Google Scholar]
  13. 13.  Bergsträsser S, Fanourakis D, Schmittgen S, Cendrero-Mateo MP, Jansen M et al. 2015. HyperArt: Non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging. Plant Methods 11:1
    [Google Scholar]
  14. 14.  Billingsley J, Visala A, Dunn M 2008. Robotics in agriculture and forestry. Springer Handbook of Robotics B Siciliano, O Khatib 1065–77 Berlin/Heidelberg: Springer
    [Google Scholar]
  15. 15.  Blackburn GA 2007. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 58:855–67
    [Google Scholar]
  16. 16.  Bock CH, Poole GH, Parker PE, Gottwald T 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 29:59–107
    [Google Scholar]
  17. 17.  Bogaerts J, Dierickx B, De Moor P, Tezcan DS, De Munck K, Van Hoof C 2005. High-end CMOS active pixel sensor for hyperspectral imaging. Proceedings of IEEE International Workshop on CCD and Advanced Image Sensors39–43 New York: IEEE
    [Google Scholar]
  18. 18.  Bogue R 2016. Robots poised to revolutionise agriculture. Ind. Robot 43:450–56
    [Google Scholar]
  19. 19.  Borlaug NE 2002. Feeding a world of 10 billion people: the miracle ahead. In Vitro Cell. Dev. Biol. Plant 38:221–28
    [Google Scholar]
  20. 20.  Bos L, Parlevliet JE 1995. Concepts and terminology on plant/pest relationships: toward consensus in plant pathology and crop protection. Annu. Rev. Phytopathol. 33:69–102
    [Google Scholar]
  21. 21.  Boyd LA, Ridout C, O'Sullivan DM, Leach JE, Leung H 2013. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–40
    [Google Scholar]
  22. 22.  Brasier CM 2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808
    [Google Scholar]
  23. 23.  Bravo C, Moshou D, West J, McCartney A, Ramon H 2003. Early disease detection in wheat fields using spectral reflectance. Biosyst. Eng. 84:137–45
    [Google Scholar]
  24. 24.  Brugger A, Kuska MT, Mahlein AK 2018. Impact of compatible and incompatible barley−Blumeria graminis f.sp. hordei interactions on chlorophyll fluorescence parameters. J. Plant Dis. Prot. 125:177–86
    [Google Scholar]
  25. 25.  Burkart A, Aasen H, Alonso L, Menz G, Bareth G, Rascher U 2015. Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sens. Environ. 7:725–46
    [Google Scholar]
  26. 26.  Deleted in proof
  27. 27.  Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA 2014. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31:145–54
    [Google Scholar]
  28. 28.  Candiago S, Remondino F, De Giglio M Dubbini M, Gattelli M 2015. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7:44026–47
    [Google Scholar]
  29. 29.  Carter GA, Knapp AK 2001. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentrations. Am. J. Bot. 88:677–84
    [Google Scholar]
  30. 30.  Chaerle L, van der Straeten D 2000. Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501
    [Google Scholar]
  31. 31.  Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL 2018. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40:834–48
    [Google Scholar]
  32. 32.  Chen S, Chen CT, Yang IC, Li MT, Huang CW et al. 2006. Precision greenhouse cultivation using multi-spectral imaging techniques. Proceedings of APO Multi-Country Study Mission on Precision Farming Taoyuan, Taiwan: Asian Product. Organ. Counc. Agric.
    [Google Scholar]
  33. 33.  Chen Y, Lin Z, Zhao X, Wang G, Gu Y 2014. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7:62094–107
    [Google Scholar]
  34. 34.  Cheng JH, Nicolai B, Sun DW 2017. Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle food: a review. Meat Sci 123:182–91
    [Google Scholar]
  35. 35.  Clarke KC 1986. Advances in geographic information systems. Comput. Environ. Urban Syst. 10:3–4175–84
    [Google Scholar]
  36. 36.  Coakley SM 1988. Variation in climate and prediction of disease in plants. Annu. Rev. Phytopathol. 26:163–81
    [Google Scholar]
  37. 37.  Corti M, Gallina PM, Cavalli D, Cabassi G 2017. Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. Biosyst. Eng. 158:38–50
    [Google Scholar]
  38. 38.  Curran PJ 1989. Remote sensing of foliar chemistry. Remote Sens. Environ. 30:271–78
    [Google Scholar]
  39. 39.  De Boer SH, López MM 2012. New grower-friendly methods for plant pathogen monitoring. Annu. Rev. Phytopathol. 50:197–218
    [Google Scholar]
  40. 40.  De Wolf ED, Isard SA 2007. Disease cycle approach to plant disease prediction. Annu. Rev. Phytopathol. 45:203–20
    [Google Scholar]
  41. 41.  Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R 2014. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–79
    [Google Scholar]
  42. 42.  Deichmann U, Goyal A, Mishra D 2016. Will digital technologies transform agriculture in developing countries?. Agric. Econ. 47:21–33
    [Google Scholar]
  43. 43.  Drew MS, Finlayson GD 2007. Analytic solution for separating spectra into illumination and surface reflectance components. J. Opt. Soc. Am. 24:2294–303
    [Google Scholar]
  44. 44.  Fahlgren N, Gehan MA, Baxter I 2015. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24:93–99
    [Google Scholar]
  45. 45.  Féret JB, Gitelson AA, Noble SD, Jacquemoud S 2017. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193:204–15
    [Google Scholar]
  46. 46.  Ferrari C, Foca G, Ulrici A 2013. Handling large datasets of hyperspectral images: reducing data size without loss of useful information. Anal. Chim. Acta 802:29–39
    [Google Scholar]
  47. 47.  Fiorani F, Rascher U, Jahnke S, Schurr U 2012. Imaging plant dynamics in heterogenic environments. Curr. Opin. Biotechnol. 23:227–35
    [Google Scholar]
  48. 48.  Fiorani F, Schurr U 2013. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64:267–91
    [Google Scholar]
  49. 49.  Fischer C, Kakoulli I 2006. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Rev. Conserv. 7:3–16
    [Google Scholar]
  50. 50.  Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94
    [Google Scholar]
  51. 51.  Fletcher J, Bender C, Budowle B, Cobb WT, Gold SE et al. 2006. Plant pathogen forensics: capabilities, needs, and recommendations. Microbiol. Mol. Biol. Rev. 70:450–71
    [Google Scholar]
  52. 52.  Friedli M, Kirchgessner N, Grieder C, Liebisch F, Mannale M, Walter A 2016. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods 12:9
    [Google Scholar]
  53. 53.  Fuentes A, Yoon S, Kim SC, Park DS 2017. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17:9E2022
    [Google Scholar]
  54. 54.  Furbank RT, Tester M 2011. Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–44
    [Google Scholar]
  55. 55.  Gamon JA, Surfus JS 1999. Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–17
    [Google Scholar]
  56. 56.  Gates DM, Keegan HJ, Schelter JC, Weidner VR 1965. Spectral properties of plants. Appl. Optics 4:11–20
    [Google Scholar]
  57. 57.  Gay A, Thomas H, Roca M, James C, Taylor J et al. 2008. Nondestructive analysis of senescence in mesophyll cells by spectral resolution of protein synthesis dependent pigment metabolism. New Phytol 179:663–74
    [Google Scholar]
  58. 58.  Gebbers R, Adamchuk VI 2010. Precision agriculture and food security. Science 327:828–31
    [Google Scholar]
  59. 59.  Gewin V 2003. Bioterrorism: agriculture shock. Nature 421:106–8
    [Google Scholar]
  60. 60.  Gitelson AA, Gritz Y, Merzlyak MN 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160:271–82
    [Google Scholar]
  61. 61.  Gitelson AA, Keydan GP, Merzlyak MN 2006. Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 33:11L11402
    [Google Scholar]
  62. 62.  Gitelson AA, Peng Y, Huemmrich KF 2014. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data. Remote Sens. Environ. 147:108–20
    [Google Scholar]
  63. 63.  Gonzalez-de-Soto M, Emmi L, Benavides C, Garcia I, Gonzalez-de-Santos P 2016. Reducing air pollution with hybrid-powered robotic tractors for precision agriculture. Biosyst. Eng. 143:79–94
    [Google Scholar]
  64. 64.  Gowen AA, O'Donnell CP, Cullen PJ, Downey G, Frias JM 2007. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18:590–98
    [Google Scholar]
  65. 65.  Guo W, Rage UK, Ninomiya S 2013. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agric. 96:58–66
    [Google Scholar]
  66. 66.  Ha JG, Moon H, Kwak JT, Hassan SI, Dang M et al. 2017. Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles. J. Appl. Remote Sens. 11:4042621
    [Google Scholar]
  67. 67.  He K, Zhang X, Ren S, Sun J 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition770–78 New York: IEEE
    [Google Scholar]
  68. 68.  Heim RHJ, Jürgens N, Große-Stoltenberg A, Oldeland J 2015. The effect of epidermal structures on leaf spectral signatures of ice plants (Aizoaceae). Remote Sens 7:16901–14
    [Google Scholar]
  69. 69.  Herrmann I, Berenstein M, Paz-Kagan T, Sade A, Karnieli A 2017. Spectral assessment of two-spotted spider mite damage levels in the leaves of greenhouse-grown pepper and bean. Biosyst. Eng. 157:72–85
    [Google Scholar]
  70. 70.  Hillnhütter C, Mahlein AK, Sikora RA, Oerke EC 2011. Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet field. Field Crop. Res. 122:70–77
    [Google Scholar]
  71. 71.  Hillnhütter C, Mahlein AK, Sikora RA, Oerke EC 2011. Use of imaging spectroscopy to discriminate symptoms caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. Precis. Agric. 13:117–32
    [Google Scholar]
  72. 71a.  Hindle PH 2008. Historical development. Handbook of Near-Infrared Analysis DA Burns, EW Ciurczak 3–6 Boca Raton, FL: CRC Press, 3rd ed..
    [Google Scholar]
  73. 72.  Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83:1195–213
    [Google Scholar]
  74. 73.  Jacquemoud S, Baret F 1990. PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34:75–91
    [Google Scholar]
  75. 74.  Jacquemoud S, Ustin SL 2001. Leaf optical properties: a state of the art. Proceedings of the 8th International Symposium Physical Measurements and Signatures in Remote Sensing (CNES)223–32 Paris: CNES
    [Google Scholar]
  76. 75.  James WC 1974. Assessment of plant diseases and losses. Annu. Rev. Phytopathol. 12:27–48
    [Google Scholar]
  77. 76.  Jay S, Bendoula R, Hadoux X, Féret JB, Gorretta N 2016. A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens. Environ. 177:220–36
    [Google Scholar]
  78. 77.  Jay S, Gorretta N, Morel J, Maupas F, Bendoula R et al. 2017. Estimating leaf chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery. Remote Sens. Environ. 198:173–86
    [Google Scholar]
  79. 78.  Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L 2014. Large-scale video classification with convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition1725–32 New York: IEEE
    [Google Scholar]
  80. 79.  Kersting K, Bauckhage C, Wahabzada M, Mahlein AK, Steiner U et al. 2016. Feeding the world with Big Data: uncovering spectral characteristics and dynamics of stressed plants. Computational Sustainability J Lässig, K Kersting, K Morik 99–120 Cham, Switz.: Springer Int.
    [Google Scholar]
  81. 80.  Kirchgessner N, Liebisch F, Yu K, Pfeifer J, Friedli M et al. 2017. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct. Plant Biol. 44:154–68
    [Google Scholar]
  82. 81.  Knauer U, Matros A, Petrovic T, Zanker T, Scott ES, Seiffert U 2017. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images. Plant Methods 13:147
    [Google Scholar]
  83. 82.  Kogan M 1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43:243–70
    [Google Scholar]
  84. 83.  Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K et al. 2015. Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions. Plant Methods 11:28
    [Google Scholar]
  85. 84.  Kuska MT, Brugger A, Thomas S, Wahabzada M, Kersting K et al. 2017. Spectral patterns reveal early resistance reactions of barley against Blumeria graminis f. sp. hordei. Phytopathology 107:1388–98
    [Google Scholar]
  86. 85.  Le Maire G, Francois C, Dufrêne E 2004. Towards universal deciduous broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 89:1–28
    [Google Scholar]
  87. 86.  LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:7553436–44
    [Google Scholar]
  88. 87.  Leucker M, Mahlein AK, Steiner U, Oerke EC 2017. Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot resistance. Funct. Plant Biol. 44:1–9
    [Google Scholar]
  89. 88.  Leucker M, Mahlein AK, Steiner U, Oerke EC 2016. Improvement of lesion phenotyping in Cercospora beticola-sugar beet interaction by hyperspectral imaging. Phytopathology 106:177–84
    [Google Scholar]
  90. 89.  Liebisch F, Kirchgessner N, Schneider D, Walter A, Hund A 2015. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11:9
    [Google Scholar]
  91. 90.  Lillesaeter O 1982. Spectral reflectance of partly transmitting leaves: laboratory measurements and mathematical modeling. Remote Sens. Environ. 12:247–54
    [Google Scholar]
  92. 91.  Lottes P, Hörferlin M, Sander S, Stachniss C 2016. Effective vision-based classification for separating sugar beets and weeds for precision farming. J. Field Robot. 34:1160–78
    [Google Scholar]
  93. 92.  Lowe A, Harrison N, French AP 2017. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13:180
    [Google Scholar]
  94. 93.  Ma X, Geng J, Wang H 2015. Hyperspectral image classification via contextual deep learning. EURASIP J. Image Video Process. 2015:120
    [Google Scholar]
  95. 94.  Mahlein AK 2016. Plant disease detection by imaging sensors—parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 2:241–51
    [Google Scholar]
  96. 95.  Mahlein AK, Rumpf T, Dehne HW, Plümer L, Steiner U, Oerke EC 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128:21–30
    [Google Scholar]
  97. 96.  Mahlein AK, Steiner U, Dehne HW, Oerke EC 2010. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11:413–31
    [Google Scholar]
  98. 97.  Mahlein AK, Steiner U, Hillnhütter C, Dehne HW, Oerke EC 2012. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8:3
    [Google Scholar]
  99. 98.  Martin DE, Latheef MA 2017. Remote sensing evaluation of two-spotted spider mite damage on greenhouse cotton. J. Vis. Exp. 122:e54314
    [Google Scholar]
  100. 99.  Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR 2008. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J. Exp. Bot. 59:3903–11
    [Google Scholar]
  101. 100.  Mewes T, Franke J, Menz G 2011. Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precis. Agric. 12:795
    [Google Scholar]
  102. 101.  Miedaner T 2017. Breeding strategies for improving plant resistance to diseases. Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits J Al-Khayri, S Jain, D Johnson 561–99 Cham, Switz.: Springer
    [Google Scholar]
  103. 102.  Miller SA, Beed FD, Harmon CL 2009. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47:15–38
    [Google Scholar]
  104. 103.  Mirik M, Jones DC, Price JA, Workneh F, Ansley RJ, Rush CM 2011. Satellite remote sensing of wheat infected by wheat streak mosaic virus. Phytopathology 95:4–12
    [Google Scholar]
  105. 104.  Mulla DJ 2013. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114:358–71
    [Google Scholar]
  106. 105.  Nagasubramanian K, Jones S, Singh AK, Singh A, Ganapathysubramanian B, Sarkar S 2017. Explaining hyperspectral imaging based plant disease identification: 3D CNN and saliency maps. Proceedings of the 31st Conference on Neural Information Processing Systems In press. http://www.interpretable-ml.org/nips2017workshop/papers/16.pdf
    [Google Scholar]
  107. 106.  Normann GG, Fritz NL 1965. Infrared photography as an indicator of disease and decline in citrus trees. Proceedings of the Florida State Horticultural Society 7859–63 Lake Alfred, FL: Fla. State Hortic. Soc.
    [Google Scholar]
  108. 107.  Nutter FW, Esker PD, Netto RAC 2006. Disease assessment concepts and the advancements made in improving the accuracy and precision of plant disease data. Eur. J. Plant Pathol. 115:95–103
    [Google Scholar]
  109. 108.  Nutter FW, Schultz PM 1995. Improving the accuracy and precision of disease assessments: selection of methods and use of computer-aided training programs. Can. J. Plant Pathol. 17:174–84
    [Google Scholar]
  110. 109.  Oberti R, Marchi M, Tirelli P, Calcante A, Iriti M et al. 2016. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 146:203–15
    [Google Scholar]
  111. 110.  Oerke EC, Dehne HW 2004. Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23:275–85
    [Google Scholar]
  112. 111.  Oerke EC, Herzog K, Toepfer R 2016. Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. J. Exp. Bot. 67:5529–43
    [Google Scholar]
  113. 112.  Pandey P, Ge Y, Stoerger V, Schnable JC 2017. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front. Plant Sci. 8:1348
    [Google Scholar]
  114. 113.  Parnell S, van den Bosch F, Gottwald T, Gilligan CA 2017. Surveillance to inform control of emerging plant diseases: an epidemiological perspective. Annu. Rev. Phytopathol. 55:591–610
    [Google Scholar]
  115. 114.  Petersson H, Gustafsson D, Bergstrom D 2016. Hyperspectral image analysis using deep learning—a review Paper presented at the 6th International Conference on Image Processing Theory Tools and Applications (IPTA 2016), Oulu, Finl., Dec 12–15 http://ieeexplore.ieee.org/document/7820963/
  116. 115.  Pinter PJ Jr., Hatfield JL, Schepers JS, Barnes EM, Moran MS et al. 2003. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 6:647–64
    [Google Scholar]
  117. 116.  Pretorius ZA, Singh RP, Wagoire WW, Payne TS 2000. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203.2
    [Google Scholar]
  118. 117.  Reina G, Milella A, Rouveure R, Nielsen M, Worst R, Blas MR 2016. Ambient awareness for agricultural robotic vehicles. Biosyst. Eng. 146:114–32
    [Google Scholar]
  119. 118.  Römer C, Wahabzada M, Ballvora A, Pinto F, Rossini M et al. 2012. Early drought stress detection in cereals: simplex volume maximization for hyperspectral image analysis. Funct. Plant Biol. 39:11878–90
    [Google Scholar]
  120. 119.  Rosenzweig C 2001. Climate change and extreme weather events—implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2:90–104
    [Google Scholar]
  121. 120.  Sankaran S, Mishra A, Ehsani R, Davis C 2010. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 72:1–13
    [Google Scholar]
  122. 121.  Schaart JG, van de Weil CCM, Lotz LAP, Smulders MJM 2016. Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–49
    [Google Scholar]
  123. 122.  Schor N, Berman S, Dombrovsky A, Elad Y, Ignat T, Bechar A 2017. Development of a robotic detection system for greenhouse pepper plant diseases. Precis. Agric. 18:394–409
    [Google Scholar]
  124. 123.  Seelig HD, Hoehn A, Stodieck LS, Klaus DM, Adams WW, Emery WJ 2008. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. Int. J. Remote Sens. 29:3701–13
    [Google Scholar]
  125. 124.  Sendin K, Williams PJ, Manley M 2016. Near infrared hyperspectral imaging in quality and safety evaluation of cereals. Crit. Rev. Food Sci. Nutr. 58:575–90
    [Google Scholar]
  126. 125.  Shimelis H, Laing M 2012. Timelines in conventional crop improvement: pre-breeding and breeding procedures. Aust. J. Crop Sci. 6:1542–49
    [Google Scholar]
  127. 126.  Silver D, Huang A, Maddison CJ, Guez A, Sifre L et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529:7587484–89
    [Google Scholar]
  128. 127.  Simko I, Jimenez-Berni JA, Sirault XRR 2017. Phenomic approaches and tools for phytopathologists. Phytopathology 107:6–17
    [Google Scholar]
  129. 128.  Singh A, Ganapathysubramanian B, Singh AK, Sarkar S 2016. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21:2110–24
    [Google Scholar]
  130. 129.  Sistler F 1987. Robotics and intelligent machines in agriculture. IEEE Robot. Autom. Mag. 3:3–6
    [Google Scholar]
  131. 130.  Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016:3289801
    [Google Scholar]
  132. 131.  Slaton MR, Hunt R, Smith WK 2001. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 88:278–84
    [Google Scholar]
  133. 132.  Stanghellini C, Kempkes FLK, Knies P 2003. Enhancing environmental quality in agricultural systems. International Symposium on Managing Greenhouse Crops in Saline Environment A Pardossi, G Serra, F Tognoni 277–83 Pisa, Italy: Int. Soc. Hortic. Sci.
    [Google Scholar]
  134. 133.  Steiner U, Bürling K, Oerke EC 2008. Sensorik für einen präzisierten Pflanzenschutz. Gesunde Pflanz 60:131–41
    [Google Scholar]
  135. 134.  Suomalainen J, Anders N, Iqbal S, Roerink G, Franke J et al. 2014. A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens 6:1111013–30
    [Google Scholar]
  136. 135.  Suprem A, Mahalik N, Kim K 2013. A review on application of technology systems, standards and interfaces for agriculture and food sector. Comput. Stand. Interfaces 35:355–64
    [Google Scholar]
  137. 136.  Taubenhaus JJ, Ezekiel WN, Neblette CB 1929. Airplane photography in the study of cotton root rot. Phytopathology 19:1025–29
    [Google Scholar]
  138. 137.  Thomas S, Kuska MT, Bohnenkamp D, Brugger A, Alisaac E et al. 2017. Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. J. Plant Dis. Prot. 125:5–20
    [Google Scholar]
  139. 138.  Thomas S, Wahabzada M, Kuska MT, Rascher U, Mahlein AK 2017. Observation of plant-pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct. Plant Biol. 44:23–34
    [Google Scholar]
  140. 139.  Thurau C, Kersting K, Bauckhage C 2010. Yes we can—simplex volume maximization for descriptive web-scale matrix factorization. Proceedings of the 19th ACM International Conference on Information and Knowledge Management1785–88 New York: ACM
    [Google Scholar]
  141. 140.  Travis JW, Latin RX 1991. Development, implementation, and adoption of expert systems in plant pathology. Annu. Rev. Phytopathol. 29:343–60
    [Google Scholar]
  142. 141.  Vereet JA, Klink H 2000. Regional monitoring for disease prediction and optimization of plant protection measures: the IPM wheat model. Plant Dis 84:816–26
    [Google Scholar]
  143. 142.  Veresoglou SD, Barto EK, Menexes G, Rillig MC 2000. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol 62:961–69
    [Google Scholar]
  144. 143.  Villa A, Chanussot J, Benediktsson JA, Jutten C, Dambreville R 2013. Unsupervised methods for the classification of hyperspectral images with low spatial resolution. Pattern Recogn 46:61556–68
    [Google Scholar]
  145. 144.  Virlet N, Sabermanesh P, Sadeghi-Tehran P, Hawkesford MJ 2017. Field scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 44:143–53
    [Google Scholar]
  146. 145.  Vukadinovic D, Polder G, Swinkels GJ 2016. Automated detection of Mycosphaerella melonis infected cucumber fruits. IFAC-PapersOnLine 49:16105–9
    [Google Scholar]
  147. 146.  Wahabzada M, Besser M, Khosravani M, Kuska MT, Kersting K et al. 2017. Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering. PLOS ONE 12:12e0186425
    [Google Scholar]
  148. 147.  Wahabzada M, Mahlein AK, Bauckhage C, Steiner U, Oerke EC, Kersting K 2015. Metro maps of plant disease dynamics—automated mining of differences using hyperspectral images. PLOS ONE 10:e0116902
    [Google Scholar]
  149. 148.  Wahabzada M, Mahlein AK, Bauckhage C, Steiner U, Oerke EC, Kersting K 2016. Plant phenotyping using probabilistic topic models: Uncovering the hyperspectral language of plants. Sci. Rep. 6:22482
    [Google Scholar]
  150. 149.  Walter A, Liebisch F, Hund A 2015. Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14
    [Google Scholar]
  151. 150.  Walters DR, Avrova A, Bingham IJ, Burnett FJ, Fountaine J 2012. Control of foliar diseases in barley: towards an integrated approach. Eur. J. Plant Pathol. 133:33–73
    [Google Scholar]
  152. 151.  Walters DR, Bingham IJ 2007. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann. Appl. Biol. 151:307–24
    [Google Scholar]
  153. 152.  Wendel A, Underwood J 2017. Illumination compensation in ground based hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 129:162–78
    [Google Scholar]
  154. 153.  Wenzel G 2006. Molecular plant breeding: achievements in green biotechnology and future perspectives. Appl. Microbiol. Biot. 70:642–50
    [Google Scholar]
  155. 154.  Wenzel G 1985. Strategies in unconventional breeding for disease resistance. Annu. Rev. Phytopathol. 23:149–72
    [Google Scholar]
  156. 155.  West JS, Bravo C, Oberti R, Lemaire D, Moshou D, McCartney HA 2003. The potential of optical canopy measurement for targeted control of field crop disease. Annu. Rev. Phytopathol. 41:593–614
    [Google Scholar]
  157. 156.  Wiesner-Hanks T, Nelson R 2016. Multiple disease resistance in plants. Annu. Rev. Phytopathol. 54:229–52
    [Google Scholar]
  158. 157.  Willocquet L, Savary S, Yuen J 2017. Multiscale phenotyping and decision strategies in breeding for resistance. Trends Plant Sci 22:420–32
    [Google Scholar]
  159. 158.  Wood RW 1911. Recent experiments with invisible light. Annu. Rep. Board Regents Smithson. Inst. 1911:155–66
    [Google Scholar]
  160. 159.  Yu K, Kirchgessner N, Grieder C, Walter A, Hund A 2017. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping. Plant Methods 13:15
    [Google Scholar]
  161. 160.  Zadoks JC, van den Bosch F 1994. On the spread of plant disease: a theory on foci. Annu. Rev. Phytopathol. 32:503–21
    [Google Scholar]
  162. 161.  Zhang JC, Pu RL, Wang JH, Huang WJ, Yuan L, Luo JH 2012. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 85:13–23
    [Google Scholar]
  163. 162.  Zhao YR, Li X, Yu KQ, Cheng F, He Y 2016. Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease. Sci. Rep. 6:27790
    [Google Scholar]
  164. 163.  Zhu H, Chu B, Zhang C, Liu F, Jiang L, He Y 2017. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Sci. Rep. 7:4125
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-050100
Loading
/content/journals/10.1146/annurev-phyto-080417-050100
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error