1932

Abstract

Assessment of crop loss due to multiple diseases and pests (D&P) is a necessary step in designing sustainable crop management systems. Understanding the drivers of D&P development and yield loss helps identify leverage points for crop health management. Crop loss assessment is also necessary for the quantification of D&P regulation service to identify promising systems where ecosystem service provision is optimized. In perennial crops, assessment of crop losses due to D&P is difficult, as injuries can affect yield over years. In coffee, one of the first perennials in which crop loss trials were implemented, crop losses concurrent with injuries were found to be approximately 50% lower than lagged losses that originated following the death of productive branches due to D&P. Crop losses can be assessed by field trials and surveys, where yield reduction factors such as the number of productive branches that have died are quantified, and by modeling, where damage mechanisms for each injury are considered over several years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-050117
2018-08-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-050117.html?itemId=/content/journals/10.1146/annurev-phyto-080417-050117&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Allinne C, Savary S, Avelino J 2016. Delicate balance between pest and disease injuries, yield performance, and other ecosystem services in the complex coffee-based systems of Costa Rica. Agric. Ecosyst. Environ. 222:1–12
    [Google Scholar]
  2. 2.  Almeida VFd, Campos VP, Lima RDd 1987. Population fluctuations of Meloidogyne exigua in coffee rhizophere. Nematol. Bras. 11:159–75
    [Google Scholar]
  3. 3.  Anthony F, Bertrand B, Etienne H, Lashermes P 2011. Coffea and Psilanthus. Wild Crop Relatives: Genomic and Breeding Resources, Plantation and Ornamental Crops C Kole 41–60 Berlin: Springer-Verlag
    [Google Scholar]
  4. 4.  Avelino J, Bouvret M-E, Salazar L, Cilas C 2009. Relationships between agro-ecological factors and population densities of Meloidogyne exigua and Pratylenchus coffeae sensu lato in coffee roots, in Costa Rica. Appl. Soil Ecol. 43:95–105
    [Google Scholar]
  5. 5.  Avelino J, Cabut S, Barboza B, Barquero M, Alfaro R et al. 2007. Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 97:1532–42
    [Google Scholar]
  6. 6.  Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L et al. 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7:303–21
    [Google Scholar]
  7. 7.  Avelino J, Muller RA, Cilas C, Velasco Pascual H 1991. Development and behavior of coffee orange rust (Hemileia vastatrix Berk. and Br.) in plantations undergoing modernization, planted with dwarf varieties in South-East Mexico. Café Cacao Thé 35:21–37
    [Google Scholar]
  8. 8.  Avelino J, Savary S 2002. Rational and optimized chemical control of coffee leaf rust (Hemileia vastatrix). Plantations, Recherche, Développement: Recherche et Caféiculture134–43 Montpellier, Fr: Agric. Res. Dev. (CIRAD)
    [Google Scholar]
  9. 9.  Avelino J, Ten Hoopen GM, DeClerck FAJ 2011. Ecological mechanisms for pest and disease control in coffee and cacao agroecosystems of the Neotropics. Ecosystem Services from Agriculture and Agroforestry Measurement and Payment B Rapidel, FAJ DeClerck, J-F Le Coq, J Beer 91–117 London: Earthscan
    [Google Scholar]
  10. 10.  Avelino J, Willocquet L, Savary S 2004. Effects of crop management patterns on coffee rust epidemics. Plant Pathol 53:541–47
    [Google Scholar]
  11. 11.  Avelino J, Zelaya H, Merlo A, Pineda A, Ordonez M, Savary S 2006. The intensity of a coffee rust epidemic is dependent on production situations. Ecol. Model. 197:431–47
    [Google Scholar]
  12. 12.  Baeza-Aragon CA, Benavides-Gomez M, Leguizamon-Caicedo JE 1978. Host plants of Meloidogyne spp. in the coffee growing area of Colombia. Cenicafe 29:35–45
    [Google Scholar]
  13. 13.  Barradas VL, Fanjul L 1986. Microclimatic characterization of shaded and open-grown coffee (Coffea arabica L.) plantations in Mexico. Agric. For. Meteorol. 38:101–12
    [Google Scholar]
  14. 14.  Bastiaans L 1993. Effects of leaf blast on growth and production of a rice crop. 2. Analysis of the reduction in dry matter production, using two models with different complexity. Neth. J. Plant Pathol. 99:19–28
    [Google Scholar]
  15. 15.  Bebber DP, Castillo AD, Gurr SJ 2016. Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Philos. Trans. R. Soc. B 371:20150458
    [Google Scholar]
  16. 16.  Becker S, Kranz J 1977. Comparative studies on the dispersal of Hemileia vastatrix in Kenya. Z. Pflanzenkrankh. Pflanzenschutz [J. Plant Dis. Prot.] 84:526–39
    [Google Scholar]
  17. 17.  Beer J, Muschler R, Kass D, Somarriba E 1998. Shade management in coffee and cacao plantations. Agrofor. Syst. 38:139–64
    [Google Scholar]
  18. 18.  Benchimol RL, Poltronieri LS, Trindade DR, Albuquerque FC 2001. White-thread blight: five new hosts in the state of Para, Brazil. Fitopatol. Bras. 26:778
    [Google Scholar]
  19. 19.  Bertrand B, Ramirez G, Topart P, Anthony F 2002. Resistance of cultivated coffee (Coffea arabica and C. canephora) trees to corky-root caused by Meloidogyne arabicida and Fusarium oxysporum, under controlled and field conditions. Crop. Prot. 21:713–19
    [Google Scholar]
  20. 20.  Bevacqua D, Grechi I, Genard M, Lescourret F 2016. The consequences of aphid infestation on fruit production become evident in a multi-year perspective: insights from a virtual experiment. Ecol. Model. 338:11–16
    [Google Scholar]
  21. 21.  Bock KR 1962. Seasonal periodicity of coffee leaf rust and factors affecting the severity of outbreaks in Kenya Colony. Trans. Br. Mycol. Soc. 45:289–300
    [Google Scholar]
  22. 22.  Boote KJ, Jones JW, Mishoe JW, Berger RD 1983. Coupling pests to crop growth simulators to predict yield reductions. Phytopathology 73:1581–87
    [Google Scholar]
  23. 23.  Bravo-Monroy L, Potts SG, Tzanopoulos J 2016. Drivers influencing farmer decisions for adopting organic or conventional coffee management practices. Food Policy 58:49–61
    [Google Scholar]
  24. 24.  Breman H, de Wit CT 1983. Rangeland productivity and exploitation in the Sahel. Science 221:1341–47
    [Google Scholar]
  25. 25.  Brown JS, Kenny MK, Whan JH, Merriman PR 1995. The effect of temperature on the development of epidemics of coffee leaf rust in Papua New Guinea. Crop. Prot. 14:671–76
    [Google Scholar]
  26. 26.  Campos VP, Villain L 2005. Nematode parasites of coffee and cocoa. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture M Luc, RA Sikora, J Bridge 529–80 London: Cent. Adv. Biomed. Imaging
    [Google Scholar]
  27. 27.  Cannell MGR 1985. Physiology of the coffee crop. Coffee: Botany, Biochemistry and Production of Beans and Beverage MN Clifford, K Wilson 108–34 London: Croom Helm
    [Google Scholar]
  28. 28.  Cardoso RMD, Chaves JCD, Fantin D, Lourenco V 2013. Efficiency of green manures for Cercospora leaf spot management in coffee plants. Trop. Plant Pathol. 38:122–27
    [Google Scholar]
  29. 29.  Cerda R 2017. Assessment of yield and economic losses caused by pests and diseases in a range of management strategies and production situations in coffee agroecosystems PhD Thesis. Montpellier SupAgro, Montpellier, Fr.
  30. 30.  Cerda R, Allinne C, Gary C, Tixier P, Harvey CA et al. 2017. Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur. J. Agron. 82:308–19
    [Google Scholar]
  31. 31.  Cerda R, Avelino J, Gary C, Tixier P, Lechevallier E, Allinne C 2017. Primary and secondary yield losses caused by pests and diseases: assessment and modeling in coffee. PLOS ONE 12:e0169133
    [Google Scholar]
  32. 32.  Cerdán CR, Rebolledo MC, Soto G, Rapidel B, Sinclair FL 2012. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric. Syst. 110:119–30
    [Google Scholar]
  33. 33.  Cheatham MR, Rouse MN, Esker PD, Ignacio S, Pradel W et al. 2009. Beyond yield: plant disease in the context of ecosystem services. Phytopathology 99:1228–36
    [Google Scholar]
  34. 34.  Chen ZJ, Ribeiro A, Silva MC, Santos P, Guerra-Guimaraes L et al. 2003. Heat shock-induced susceptibility of green coffee leaves and berries to Colletotrichum gloeosporioides and its association to PR and hsp70 gene expression. Physiol. Mol. Plant Pathol. 63:181–90
    [Google Scholar]
  35. 35.  Chevaugeon J 1956. Enquête phytopathologique dans le bassin du Cavallly. Suppl. Colon. Rev. Mycol. 21:57–86
    [Google Scholar]
  36. 36.  DaMatta FM 2004. Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:99–114
    [Google Scholar]
  37. 37.  Damon A 2000. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull. Entomol. Res. 90:453–65
    [Google Scholar]
  38. 38.  de Aquino AM, Filho ED, Ricci MDF, Casanoves F 2008. Earthworms populations in agroforestry systems with conventional and organic coffee. Ciencia Agrotecnol 32:1184–88
    [Google Scholar]
  39. 39.  Echandi E 1957. La quema de los cafetos causada por Phoma costarricensis n. sp. Rev. Biol. Trop. 5:81–102
    [Google Scholar]
  40. 40.  Echandi E 1969. La chasparria de los cafetos causada por el hongo Cercospora coffeicola Berk. & Cooke. Turrialba 9:54–67
    [Google Scholar]
  41. 41.  Ferrandino FJ 2008. Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores. Phytopathology 98:492–503
    [Google Scholar]
  42. 42.  Freitas RL, Maciel-Zambolim E, Zambolim L, Lelis DT, Caixeta ET et al. 2013. Colletotrichum boninense causing anthracnose on coffee trees in Brazil. Plant Disease 97:1255–55
    [Google Scholar]
  43. 43.  Fresco LO, Kroonenberg SB 1992. Time and spatial scales in ecological sustainability. Land Use Policy 9:155–68
    [Google Scholar]
  44. 44.  Gaitán AL, Cristancho MA, Castro Caicedo BL, Rivillas CA, Gómez GC 2016. Part II: Pests. Compendium of Coffee Diseases and Pests LCC Bertha, AR Carlos, AC Marco, LG Alvaro, CG Gabriel 45–60 St. Paul, MN: Am. Phytopatholog. Soc.
    [Google Scholar]
  45. 45.  Girma A, Million A, Hindorf H, Arega Z, Teferi D, Jefuka C 2009. Coffee wilt disease in Ethiopia. Coffee Wilt Disease J Flood 50–68 London: Cent. Adv. Biomed. Imaging
    [Google Scholar]
  46. 46.  Gomez-Delgado F, Roupsard O, Le Maire G, Taugourdeau S, Perez A et al. 2011. Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica. Hydrol. Earth Syst. Sci. 15:369–92
    [Google Scholar]
  47. 47.  Goulart da Silva M, Pozza EA, Pereira Monteiro F, Rodrigues Vaz de Lima CV 2016. Effect of light and temperature on Cercospora coffeicola and Coffea arabica pathosystem. Coffee Sci 11:148–60
    [Google Scholar]
  48. 48.  Granados Montero MdM 2015. Estudio de la epidemiología y alternativas de manejo agroecológico del ojo de gallo (Mycena citricolor) en cafeto bajo sistemas agroforestales en Costa Rica PhD Thesis. Univ. Costa Rica, San Pedro Costa Rica:
  49. 49.  Griffiths E, Waller JM 1971. Rainfall and cropping patterns in relation to coffee berry disease. Ann. Appl. Biol. 67:75–91
    [Google Scholar]
  50. 50.  Gueule D, Fourny G, Ageron E, Le Fleche-Mateos A, Vandenbogaert M et al. 2015. Pantoea coffeiphila sp. nov., cause of the ‘potato taste’ of Arabica coffee from the African Great Lakes region. Int. J. Syst. Evol. Microbiol. 65:23–29
    [Google Scholar]
  51. 51.  Haggar J, Barrios M, Bolaños M, Merlo M, Moraga P et al. 2011. Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor. Syst. 82:285–301
    [Google Scholar]
  52. 52.  Hairiah K, Sulistyani H, Suprayogo D, Widianto, Pumomosidhi P et al. 2006. Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. For. Ecol. Manag. 224:45–57
    [Google Scholar]
  53. 53.  Hakiza GJ, Kyetere DT, Musoli P, Wetala P, Njuki J et al. 2009. Coffee wilt disease in Uganda. Coffee Wilt Disease J Flood 28–49 London: Cent. Adv. Biomed. Imaging
    [Google Scholar]
  54. 54.  Herrera I, Bryngelsson T, Monzón A 2011. Occurence of Meloidgyne sp. and Pratylenchus sp. in conventional and organic coffee systems in Nicaragua. Nematropica 41:82–90
    [Google Scholar]
  55. 55.  Herve G, Bertrand B, Villain L, Licardie D, Cilas C 2005. Distribution analyses of Meloidogyne spp. and Pratylenchus coffeae sensu lato in coffee plots in Costa Rica and Guatemala. Plant Pathol 54:471–75
    [Google Scholar]
  56. 56.  Hindorf H, Omondi CO 2011. A review of three major fungal diseases of Coffea arabica L. in the rainforests of Ethiopia and progress in breeding for resistance in Kenya. J. Adv. Res. 2:109–20
    [Google Scholar]
  57. 57.  Inomoto MM, Oliveira CMG 2008. Coffee-associated Pratylenchus spp.—ecology and interactions with plants. Plant-Parasitic Nematodes of Coffee RM Souza 51–64 Berlin: Springer
    [Google Scholar]
  58. 58.  Int. Coffee Organ. 2017. Annual Review 2015–2016 International Coffee Organization London: Int. Coffee Organ.
  59. 59.  Int. Coffee Organ. 2017. Historical data on the global coffee trade. International Coffee Organization http://www.ico.org/new_historical.asp?section=Statistic s
  60. 60.  Jeger MJ 2000. Bottlenecks in IPM. Crop. Prot. 19:787–92
    [Google Scholar]
  61. 61.  Johnson KB 1992. Evaluation of a mechanistic model that describes potato crop losses caused by multiple pests. Phytopathology 82:363–69
    [Google Scholar]
  62. 62.  Lamouroux N, Pellegrin F, Nandris D, Kohler F 1995. The Coffea arabica fungal pathosystem in New Caledonia: interaction at two different spatial scales. J. Phytopathol. 143:403–13
    [Google Scholar]
  63. 63.  Lashermes P, Combes M-C, Robert J, Trouslot P, D'Hont A et al. 1999. Molecular characterisation and origin of the Coffea arabica L. genome. Mol. Gen. Genet. MGG 261:259–66
    [Google Scholar]
  64. 64.  Leakey RRB 2014. The role of trees in agroecology and sustainable agriculture in the tropics. Annu. Rev. Phytopathol. 52:113–33
    [Google Scholar]
  65. 65.  Liebig T, Jassogne L, Rahn E, Läderach P, Poehling H-M et al. 2016. Towards a collaborative research: a case study on linking science to farmers’ perceptions and knowledge on Arabica coffee pests and diseases and Its management. PLOS ONE 11:e0159392
    [Google Scholar]
  66. 66.  Lin BB 2007. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric. For. Meteorol. 144:85–94
    [Google Scholar]
  67. 67.  Locatelli B, Imbach P, Vignola R, Metzger MJ, Hidalgo EJL 2011. Ecosystem services and hydroelectricity in Central America: modelling service flows with fuzzy logic and expert knowledge. Reg. Environ. Change 11:393–404
    [Google Scholar]
  68. 68.  Lopez-Bravo DF, Virginio-Filho EDM, Avelino J 2012. Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop. Prot. 38:21–29
    [Google Scholar]
  69. 69.  Lott JE, Ong CK, Black CR 2009. Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agric. For. Meteorol. 149:1140–51
    [Google Scholar]
  70. 70.  Mayne WW 1930. Seasonal periodicity of coffee leaf disease (Hemileia vastatrix B. & Br.). Mysore Coffee Exper. Stn. Bull. No 4 Mysore India:
    [Google Scholar]
  71. 71.  McCook S 2006. Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. J. Glob. Hist. 1:177–95
    [Google Scholar]
  72. 72.  McCook S, Vandermeer J 2015. The big rust and the red queen: long-term perspectives on coffee rust research. Phytopathology 105:1164–73
    [Google Scholar]
  73. 73.  McRoberts N, Hall C, Madden LV, Hughes G 2011. Perceptions of disease risk: from social construction of subjective judgments to rational decision making. Phytopathology 101:654–65
    [Google Scholar]
  74. 74.  McRoberts N, Hughes G, Savary S 2003. Integrated approaches to understanding and control of diseases and pests in field crops. Australas. Plant Pathol. 32:167–80
    [Google Scholar]
  75. 75.  Millenn. Ecosyst. Assess. 2005. Ecosystems and Human Wellbeing: Synthesis Washington, DC: Island Press
  76. 76.  Mônaco APdA, Carneiro RG, Kranz WM, Gomes JC, Scherer A, Santiago DC 2009. Reaction of weed species to Meloidogyne incognita races 1 and 3, M. javanica and M. paranaensis. . Nematol. Bras 33:235–42
    [Google Scholar]
  77. 77.  Montagnini F, Nair PKR 2004. Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 61–62:281–95
    [Google Scholar]
  78. 78.  Mouen Bedimo JA, Bieysse D, Nyasse S, Notteghem JL, Cilas C 2010. Role of rainfall in the development of coffee berry disease in Coffea arabica caused by Colletotrichum kahawae, in Cameroon. Plant Pathol 59:324–29
    [Google Scholar]
  79. 79.  Mouen Bedimo JA, Cilas C, Nottéghem JL, Bieysse D 2012. Effect of temperatures and rainfall variations on the development of coffee berry disease caused by Colletotrichum kahawae. Crop. . Prot 31:125–31
    [Google Scholar]
  80. 80.  Mouen Bedimo JA, Njiayouom I, Bieysse D, Nkeng MN, Cilas C, Notteghem JL 2008. Effect of shade on Arabica coffee berry disease development: toward an agroforestry system to reduce disease impact. Phytopathology 98:1320–25
    [Google Scholar]
  81. 81.  Muller RA, Berry D, Avelino J, Bieysse D 2004. Coffee diseases. Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers JN Wintgens 491–545 Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  82. 82.  Muschler RG 2001. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor. Syst. 51:131–39
    [Google Scholar]
  83. 83.  Nutman FJ, Roberts FM 1960. Investigations on a disease of Coffea arabica caused by a form of Colletotrichum coffeanum Noack: II. Some factors affecting germination and infection, and their relation to disease distribution. Trans. Br. Mycol. Soc. 43:643–59
    [Google Scholar]
  84. 84.  Osorio N 2002. The global coffee crisis: a threat to sustainable development Paper presented at the World Summit on Sustainable Development, Johannesburg, S. Afr., Aug. 26–Sept. 4
  85. 85.  Padovan MP, Cortez VJ, Navarrete LF, Navarrete ED, Deffner AC et al. 2015. Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agrofor. Syst. 89:857–68
    [Google Scholar]
  86. 86.  Paiva BRTL, de Souza PE, Scalco MS, Alvarenga Santos L 2011. Progress of rust in coffee plants in various densities of cultivation in irrigated planting after pruning. Cienc. Agrotecnol. 35:137–43
    [Google Scholar]
  87. 87.  Panhuysen S, Pierrot J 2014. Coffee Barometer 2014 The Hague, Neth./Amsterdam/The Hague Neth./Utrecht, Neth: Hivos/IUCN Nederland/Oxfam Novib/Solidaridad
  88. 88.  Penning de Vries FWT 1982. Systems analysis and models of crop growth. Simulation of Plant Growth and Crop Production FWT Penning de Vries, HH van Laar 9–19 Wageningen, Neth: Cent. Agric. Publ. Doc.
    [Google Scholar]
  89. 89.  Philpott SM, Armbrecht I 2006. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol. Entomol. 31:369–77
    [Google Scholar]
  90. 90.  Phiri NA, Hillocks RJ, Jeffries P 2001. Incidence and severity of coffee diseases in smallholder plantations in northern Malawi. Crop. Prot. 20:325–32
    [Google Scholar]
  91. 91.  Pinard F, Makune SE, Campagne P, Mwangi J 2016. Spatial distribution of Coffee Wilt Disease under roguing and replanting conditions: a case study from Kaweri estate in Uganda. Phytopathology 106:1291–99
    [Google Scholar]
  92. 92.  Pinnschmidt HO, Batchelor WD, Teng PS 1995. Simulation of multiple species pest damage in rice using CERES-rice. Agric. Syst. 48:193–222
    [Google Scholar]
  93. 93.  Pretty J 2008. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. B 363:447–65
    [Google Scholar]
  94. 94.  Primiano IV, Loehrer M, Amorim L, Schaffrath U 2017. Asian grapevine leaf rust caused by Phakopsora euvitis: an important disease in Brazil. Plant Pathol 66:691–701
    [Google Scholar]
  95. 95.  Prot JC, Van Gundy SD 1981. Effect of soil texture and the clay component on migration of Meloidogyne incognita second-stage juveniles. J. Nematol. 13:213–17
    [Google Scholar]
  96. 96.  Quintero M, Wunder S, Estrada RD 2009. For services rendered? Modeling hydrology and livelihoods in Andean payments for environmental services schemes. For. Ecol. Manag. 258:1871–80
    [Google Scholar]
  97. 97.  Rabbinge R, de Wit CT 1989. Systems, models and simulation. Simulation and Systems Management in Crop Protection R Rabbinge, SA Ward, HH van Laar 3–15 Wageningen, Neth: Cent. Agric. Publ. Doc.
    [Google Scholar]
  98. 98.  Rabbinge R, Rijsdijk FH 1981. Disease and crop physiology: a modeler's point of view. Effects of Disease on the Physiology of the Growing Plants PG Ayres 201–20 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  99. 99.  Rabbinge R, Vereyken PH 1980. The effect of diseases or pests upon the host. Z. Pflanzenkrankh. Pflanzenschutz [J. Plant Dis. Prot.] 87:409–22
    [Google Scholar]
  100. 100.  Rapidel B, Ripoche A, Allinne C, Metay A, Deheuvels O et al. 2015. Analysis of ecosystem services trade-offs to design agroecosystems with perennial crops. Agron. Sustain. Dev. 35:1373–90
    [Google Scholar]
  101. 101.  Ribeyre F, Avelino J 2012. Impact of field pests and diseases on coffee quality. Specialty Coffee: Managing Quality T Oberthür, P Läderach, HAJ Pohlan, JH Cock 151–76 Peachtree Corners, GA: Int. Plant Nutr. Inst., Southeast Asia Prog.
    [Google Scholar]
  102. 102.  Rice RA 2008. Agricultural intensification within agroforestry: the case of coffee and wood products. Agric. Ecosyst. Environ. 128:212–18
    [Google Scholar]
  103. 103.  Rodríguez D, Cure JR, Cotes JM, Gutierrez AP, Cantor F 2011. A coffee agroecosystem model: I. Growth and development of the coffee plant. Ecol. Model. 222:3626–39
    [Google Scholar]
  104. 104.  Rodríguez D, Cure JR, Gutierrez AP, Cotes JM, Cantor F 2012. A coffee agroecosystem model: II. Dynamics of coffee berry borer. Ecol. Model. 248:203–14
    [Google Scholar]
  105. 105.  Rossing WAH 1991. Simulation of damage in winter wheat caused by the grain aphid Sitobion avenae. 2. Construction and evaluation of a simulation model. Neth. J. Plant Pathol. 97:25–54
    [Google Scholar]
  106. 106.  Rutherford MA 2006. Current knowledge of coffee wilt disease, a major constraint to coffee production in Africa. Phytopathology 96:663–66
    [Google Scholar]
  107. 107.  Rutherford MA, Bieysse D, Lepoint P, Maraite HMM 2009. Biology, taxonomy and epidemiology of the coffee wilt pathogen Gibberella xylarioides sensu lato. Coffee Wilt Disease J Flood 99–119 London: Cent. Adv. Biomed. Imaging
    [Google Scholar]
  108. 108.  Savary S, de Jong PD, Rabbinge R, Zadoks JC 1990. Dynamic simulation of groundnut rust: a preliminary model. Agric. Syst. 32:113–41
    [Google Scholar]
  109. 109.  Savary S, Janeau JL, Allorent D, Escalante M, Avelino J, Willocquet L 2004. Effects of simulated rainfall events on spore dispersal and spore stocks in three tropical pathosystems. Phytopathology 94:S92
    [Google Scholar]
  110. 110.  Savary S, McRoberts N, Esker PD, Willocquet L, Teng PS 2017. Production situations as drivers of crop health: evidence and implications. Plant Pathol 66:867–76
    [Google Scholar]
  111. 111.  Savary S, Srivastava RK, Singh HM, Elazegui FA 1997. A characterisation of rice pests and quantification of yield losses in the rice-wheat system of India. Crop. Prot. 16:387–98
    [Google Scholar]
  112. 112.  Savary S, Teng PS, Willocquet L, Nutter FW 2006. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44:89–112
    [Google Scholar]
  113. 113.  Savary S, Willocquet L 2014. Simulation modeling in botanical epidemiology and crop loss analysis. Plant Health Instr https://doi.org/10.1094/PHI-A-2014-0314-01
    [Crossref]
  114. 114.  Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS 2000. Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84:357–69
    [Google Scholar]
  115. 115.  Savary S, Willocquet L, Elazegui FA, Teng PS, Van Du P et al. 2000. Rice pest constraints in tropical Asia: characterization of injury profiles in relation to production situations. Plant Dis 84:341–56
    [Google Scholar]
  116. 116.  Schroth G, Krauss U, Gasparotto L, Aguilar JAD, Vohland K 2000. Pests and diseases in agroforestry systems of the humid tropics. Agrofor. Syst. 50:199–241
    [Google Scholar]
  117. 117.  Schuppener H, Harr J, Sequeira F, González A 1977. First occurence of the coffee leaf rust Hemileia vastatrix in Nicaragua, 1976, and its control. Café Cacao Thé 21:197–202
    [Google Scholar]
  118. 118.  Segura HR, Barrera JF, Morales H, Nazar A 2004. Farmers’ perceptions, knowledge, and management of coffee pests and diseases and their natural enemies in Chiapas, Mexico. J. Econ. Entomol. 97:1491–99
    [Google Scholar]
  119. 119.  Sequeira L 1958. The host range of Mycena citricolor (Berk & Curt) Sacc. Turrialba 8:136–47
    [Google Scholar]
  120. 120.  Siddiqui ZA, Mahmood I 1998. Effect of a plant growth promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl. Soil Ecol. 8:77–84
    [Google Scholar]
  121. 121.  Siles P, Harmand JM, Vaast P 2010. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor. Syst. 78:269–86
    [Google Scholar]
  122. 122.  Silva MdC, Varzea V, Guerra-Guimaraes L, Azinheira HG, Fernandez D et al. 2006. Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz. J. Plant Physiol. 18:119–47
    [Google Scholar]
  123. 123.  Silva RA, Inomoto MM 2002. Host-range characterization of two Pratylenchus coffeae isolates from Brazil. J. Nematol. 34:135–39
    [Google Scholar]
  124. 124.  Soto-Pinto L, Perfecto I, Caballero-Nieto J 2002. Shade over coffee: its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agrofor. Syst. 55:37–45
    [Google Scholar]
  125. 125.  Soto-Pinto L, Romero-Alvarado Y, Caballero-Nieto J, Warnholtz GS 2001. Woody plant diversity and structure of shade-grown-coffee plantations in Northern Chiapas, Mexico. Rev. Biol. Trop. 49:977–87
    [Google Scholar]
  126. 126.  Souza RM, Bressan-Smith R 2008. Coffee-associated Meloidogyne spp.—ecology and interactions with plants. Plant-Parasitic Nematodes of Coffee RM Souza 123–47 Berlin: Springer
    [Google Scholar]
  127. 127.  Souza RM, Volpato AR, Viana AP 2008. Epidemiology of Meloidogyne exigua in an upland coffee plantation in Brazil. Nematol. Mediterr. 36:13–17
    [Google Scholar]
  128. 128.  Staver C, Guharay F, Monterroso D, Muschler RG 2001. Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor. Syst. 53:151–70
    [Google Scholar]
  129. 129.  Talbot JM 2004. Grounds for Agreement: The Political Economy of the Coffee Commodity Chain Lanham, MD: Rowman Littlefield
  130. 130.  Toledo VM, Moguel P 2012. Coffee and sustainability: the multiple values of traditional shaded coffee. J. Sustainable Agric. 36:353–77
    [Google Scholar]
  131. 131.  Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H et al. 2011. Multifunctional shade-tree management in tropical agroforestry landscape—a review. J. Appl. Ecol. 48:619–29
    [Google Scholar]
  132. 132.  Vaast P, Bertrand B, Perriot JJ, Guyot B, Genard M 2006. Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sci. Food Agric. 86:197–204
    [Google Scholar]
  133. 133.  van der Vossen H, Bertrand B, Charrier A 2015. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204:243–56
    [Google Scholar]
  134. 134.  van Oijen M, Dauzat J, Harmand JM, Lawson G, Vaast P 2010. Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor. Syst. 80:361–78
    [Google Scholar]
  135. 135.  Vega FE, Infante F, Castillo A, Jaramillo J 2009. The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae): a short review, with recent findings and future research directions. Terr. Arthropod Rev. 2:129–47
    [Google Scholar]
  136. 136.  Verbist B, Poesen J, van Noordwijk M, Widianto, Suprayogo D et al. 2010. Factors affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic agroforestry landscape. Catena 80:34–46
    [Google Scholar]
  137. 137.  Villain L 2008. Economic importance, epidemiology and management of Pratylenchus sp. in coffee plantations. Plant-Parasitic Nematodes of Coffee RM Souza 65–84 Berlin: Springer
    [Google Scholar]
  138. 138.  Villain L, Molina A, Sierra S, Decazy B, Sarah JL 2000. Effect of grafting and nematicide treatments on damage by root-lesion nematodes (Pratylenchus spp.) to Coffea arabica L. in Guatemala. Nematropica 30:87–100
    [Google Scholar]
  139. 139.  Villain L, Sarah JL, Hernández A, Bertrand B, Anthony F et al. 2013. Diversity of root-knot nematodes associated with coffee orchards in Central America. Nematropica 43:194–206
    [Google Scholar]
  140. 140.  Waller JM 1971. The incidence of climatic conditions favourable to coffee berry disease in Kenya. Exp. Agric. 7:303–14
    [Google Scholar]
  141. 141.  Waller JM 1972. Water-borne spore dispersal in coffee berry disease and its relation to control. Ann. Appl. Biol. 71:1–18
    [Google Scholar]
  142. 142.  Waller JM 1982. Coffee rust—epidemiology and control. Crop. Prot. 1:385–404
    [Google Scholar]
  143. 143.  Waller JM, Bigger M, Hillocks RJ 2007. Coffee Pests, Diseases and their Management London: Cent. Adv. Biomed. Imaging
    [Google Scholar]
  144. 144.  Wang A, Avelino J 1999. El ojo de gallo del cafeto (Mycena citricolor). Desafíos de la Caficultura en Centroamérica B Bertrand, B Rapidel 243–60 San José, Costa Rica: Inst. Int. Coop. Agric.
    [Google Scholar]
  145. 145.  Wellman FL 1950. Dissemination of Omphalia leaf spot of coffee. Turrialba 1:12–27
    [Google Scholar]
  146. 146.  Wellman FL 1970. The rust Hemileia vastatrix now firmly established on coffee in Brazil. Plant Dis. Rep. 54:539–41
    [Google Scholar]
  147. 147.  Widmer TL, Mitkowski NA, Abawi GS 2002. Soil organic matter and management of plant-parasitic nematodes. J. Nematol. 34:289–95
    [Google Scholar]
  148. 148.  Willocquet L, Aubertot JN, Lebard S, Robert C, Lannou C, Savary S 2008. Simulating multiple pest damage in varying winter wheat production situations. Field Crops Res 107:12–28
    [Google Scholar]
  149. 149.  Willocquet L, Elazegui FA, Castilla N, Fernandez L, Fischer KS et al. 2004. Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology 94:672–82
    [Google Scholar]
  150. 150.  Zadoks JC, Schein RD 1979. Epidemiology and Plant Disease Management New York: Oxford Univ. Press
  151. 151.  Zambolim L, Silva-Acuña R, Do Vale FXR, Chaves GM 1992. Influencia da produção do cafeeiro sobre o desenvolvimento da ferrugem (Hemileia vastatrix). Fitopatol. Bras. 17:32–35
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-050117
Loading
/content/journals/10.1146/annurev-phyto-080417-050117
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error