1932

Abstract

Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-050158
2018-08-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-050158.html?itemId=/content/journals/10.1146/annurev-phyto-080417-050158&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J et al. 2017. RNA targeting with CRISPR-Cas13. Nature 550:280–44
    [Google Scholar]
  2. 2.  Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:5573–673
    [Google Scholar]
  3. 3.  Acevedo-Garcia J, Kusch S, Panstruga R 2014. Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–81
    [Google Scholar]
  4. 4.  Agius F, Kapoor A, Zhu J-K 2006. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. PNAS 103:11796–801
    [Google Scholar]
  5. 5.  Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM 2015. CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238
    [Google Scholar]
  6. 6.  Anders C, Bargsten K, Jinek M 2016. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61:895–902
    [Google Scholar]
  7. 7.  Andolfo G, Iovieno P, Frusciante L, Ercolano MR 2016. Genome-editing technologies for enhancing plant disease resistance. Front. Plant Sci. 7:1813
    [Google Scholar]
  8. 8.  Antony G, Zhou J, Huang S, Li T, Liu B et al. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. . Plant Cell 22:3864–76
    [Google Scholar]
  9. 9.  Araki M, Ishii T 2015. Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–49
    [Google Scholar]
  10. 10.  Ashby JA, Stevenson CE, Jarvis GE, Lawson DM, Maule AJ 2011. Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. PLOS ONE 6:e15873
    [Google Scholar]
  11. 11.  Bae S, Park J, Kim JS 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–75
    [Google Scholar]
  12. 12.  Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A et al. 2007. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol. Plant-Microbe Interact. 21:30–39
    [Google Scholar]
  13. 13.  Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN et al. 2015. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1:15145
    [Google Scholar]
  14. 14.  Barakate A, Stephens J 2016. An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant-pathogen interactions for better crop protection. Front. Plant Sci. 7:765
    [Google Scholar]
  15. 15.  Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12
    [Google Scholar]
  16. 16.  Barrangou R, Horvath P 2017. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2:17092
    [Google Scholar]
  17. 17.  Bastet A, Robaglia C, Gallois JL 2017. eIF4E resistance: natural variation should guide gene editing. Trends Plant Sci 22:411–19
    [Google Scholar]
  18. 18. BBSRC. 2014. New Techniques for Genetic Crop Improvement Swindon, UK: BBSRC
  19. 19.  Begemann MB, Gray BN, January E, Gordon GC, He Y et al. 2017. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci. Rep. 7:11606
    [Google Scholar]
  20. 20.  Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V 2015. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32:76–84
    [Google Scholar]
  21. 21.  Berrocal-Lobo M, Molina A, Solano R 2002. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32
    [Google Scholar]
  22. 22.  Bezrutczyk M, Yang J, Eom JS, Prior M, Sosso D et al. 2017. Sugar flux and signaling in plant-microbe interactions. Plant J 93:675–85
    [Google Scholar]
  23. 23.  Bhaya D, Davison M, Barrangou R 2011. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45:273–97
    [Google Scholar]
  24. 24.  Bialas A, Zess EK, De la Concepcion JC, Franceschetti M, Pennington HG et al. 2018. Lessons in effector and NLR biology of plant-microbe systems. Mol. Plant-Microbe Interact. 31:34–45
    [Google Scholar]
  25. 25.  Blanvillain-Baufume S, Reschke M, Sole M, Auguy F, Doucoure H et al. 2017. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 15:306–17
    [Google Scholar]
  26. 26.  Boch J, Bonas U 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48:419–36
    [Google Scholar]
  27. 27.  Boch J, Bonas U, Lahaye T 2014. TAL effectors: pathogen strategies and plant resistance engineering. New Phytol 204:823–32
    [Google Scholar]
  28. 28.  Boch J, Scholze H, Schornack S, Landgraf A, Hahn S et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12
    [Google Scholar]
  29. 29.  Bogdanove AJ, Schornack S, Lahaye T 2010. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13:394–401
    [Google Scholar]
  30. 30.  Bogdanove AJ, Voytas DF 2011. TAL effectors: customizable proteins for DNA targeting. Science 333:1843–46
    [Google Scholar]
  31. 31.  Bortesi L, Zhu C, Zischewski J, Perez L, Bassie L et al. 2016. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol. J. 14:2203–16
    [Google Scholar]
  32. 32.  Bozkurt TO, Belhaj K, Dagdas YF, Chaparro-Garcia A, Wu CH et al. 2015. Rerouting of plant late endocytic trafficking toward a pathogen interface. Traffic 16:204–26
    [Google Scholar]
  33. 33.  Brooks C, Nekrasov V, Lippman ZB, Van Eck J 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–97
    [Google Scholar]
  34. 34. Bundesamt Verbrauch. Lebensm. 2012. Position Statement of the ZKBS on New Plant Breeding Techniques Berlin: BVL
  35. 35. Bundesamt Verbrauch. Lebensm. 2017. Opinion on the Legal Classification of New Plant Breeding Techniques, in Particular ODM and CRISPR-Cas9 Berlin: BVL
    [Google Scholar]
  36. 36.  Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K et al. 2017. New CRISPR-Cas systems from uncultivated microbes. Nature 542:237–41
    [Google Scholar]
  37. 37.  Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M et al. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705
    [Google Scholar]
  38. 38.  Cao Y, Wu Y, Zheng Z, Song F 2005. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol. Mol. Plant Pathol. 67:202–11
    [Google Scholar]
  39. 39.  Cavatorta JR, Savage AE, Yeam I, Gray SM, Jahn MM 2008. Positive Darwinian selection at single amino acid sites conferring plant virus resistance. J. Mol. Evol. 67:551–59
    [Google Scholar]
  40. 40.  Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C et al. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–81
    [Google Scholar]
  41. 41.  Chandran D 2015. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life 67:461–71
    [Google Scholar]
  42. 42.  Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17:1140–53
    [Google Scholar]
  43. 43.  Chaparro-Garcia A, Kamoun S, Nekrasov V 2015. Boosting plant immunity with CRISPR/Cas. Genome Biol 16:254
    [Google Scholar]
  44. 44.  Charron C, Nicolai M, Gallois JL, Robaglia C, Moury B et al. 2008. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54:56–68
    [Google Scholar]
  45. 45.  Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–91
    [Google Scholar]
  46. 46.  Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–32
    [Google Scholar]
  47. 47.  Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE et al. 2015. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27:607–19
    [Google Scholar]
  48. 48.  Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7:46545–56
    [Google Scholar]
  49. 49.  Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–61
    [Google Scholar]
  50. 50.  Collonnier C, Guyon-Debast A, Maclot F, Mara K, Charlot F, Nogue F 2017. Towards mastering CRISPR-induced gene knock-in in plants: survey of key features and focus on the model Physcomitrella patens. . Methods 121–122:103–17
    [Google Scholar]
  51. 51.  Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  52. 52.  Conko G, Kershen DL, Miller H, Parrott WA 2016. A risk-based approach to the regulation of genetically engineered organisms. Nat. Biotechnol. 34:493–503
    [Google Scholar]
  53. 53.  Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J et al. 2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet. 38:716–20
    [Google Scholar]
  54. 54.  Dangl JL, Horvath DM, Staskawicz BJ 2013. Pivoting the plant immune system from dissection to deployment. Science 341:746–51
    [Google Scholar]
  55. 55.  Deng W, Shi X, Tjian R, Lionnet T, Singer RH 2015. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. PNAS 112:11870–75
    [Google Scholar]
  56. 56.  de Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz BJ 2016. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv 064824. https://doi.org/10.1101/064824
    [Crossref]
  57. 57.  Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R et al. 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol Chem. 274:34993–5004
    [Google Scholar]
  58. 58.  Dey S, Corina Vlot A 2015. Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Front. Plant Sci. 6:640
    [Google Scholar]
  59. 59.  Dodds PN, Rathjen JP 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48
    [Google Scholar]
  60. 60.  Dong D, Ren K, Qiu X, Zheng J, Guo M et al. 2016. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532:522–26
    [Google Scholar]
  61. 61.  Dong S, Raffaele S, Kamoun S 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr. Opin. Genet. Dev. 35:57–65
    [Google Scholar]
  62. 62.  Doudna JA, Charpentier E 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    [Google Scholar]
  63. 63.  Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C 2002. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32:927–34
    [Google Scholar]
  64. 64. EASAC. 2013. Planting the Future: Opportunities and Challenges for Using Crop Genetic Improvement Technologies for Sustainable Agriculture Halle (Saale), Ger.: EASAC
  65. 65.  Eckerstorfer M, Miklau M, Gaugitsch H 2014. New plant breeding techniques and risks associated with their application Umweltbundesamt Rep., Band 0477, Environ. Agency Austria Vienna, Austria:
  66. 66. EFSA. 2012. Scientific opinion addressing the safety assessment of plants developed using zinc finger nuclease 3 and other site-directed nucleases with similar function. EFSA J 10:2943
    [Google Scholar]
  67. 67.  Endo A, Masafumi M, Kaya H, Toki S 2016. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 6:38169
    [Google Scholar]
  68. 68. FAO. 2016. State of Food Security and Nutrition in the World. Building Resilience for Peace and Food Security. Rome: FAO
  69. 69.  Fauser F, Schiml S, Puchta H 2014. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. . Plant J 79:348–59
    [Google Scholar]
  70. 70.  Feng Z, Mao Y, Xu N, Zhang B, Wei P et al. 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. . PNAS 111:4632–37
    [Google Scholar]
  71. 71.  Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94
    [Google Scholar]
  72. 72.  Fladung M 2016. Cibus' herbicide-resistant canola in European limbo. Nat. Biotechnol. 34:473–74
    [Google Scholar]
  73. 73.  Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–26
    [Google Scholar]
  74. 74.  Fukuoka S, Saka N, Koga H, Ono K, Shimizu T et al. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001
    [Google Scholar]
  75. 75.  Gaj T, Gersbach CA, Barbas CF3rd. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405
    [Google Scholar]
  76. 76.  Gallois JL, Charron C, Sanchez F, Pagny G, Houvenaghel MC et al. 2010. Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. J. Gen. Virol. 91:288–93
    [Google Scholar]
  77. 77.  Gamas P, de Carvalho Niebel F, Lescure N, Cullimore JV 1996. Use of substractive hybrdization approach to identify new Medicago truncatula genes induced during root nodule development. Mol. Plant-Microbe Interact. 9:223–42
    [Google Scholar]
  78. 78.  Giannakopoulou A, Bialas A, Kamoun S, Vleeshouwers VG 2016. Plant immunity switched from bacteria to virus. Nat. Biotechnol. 34:391–92
    [Google Scholar]
  79. 79.  Giannakopoulou A, Steele JF, Segretin ME, Bozkurt TO, Zhou J et al. 2015. Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum. Mol. Plant-Microbe Interact. 28:1316–29
    [Google Scholar]
  80. 80.  Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51
    [Google Scholar]
  81. 81.  Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV et al. 2017. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–62
    [Google Scholar]
  82. 82.  Giner A, Pascual L, Bourgeois M, Gyetvai G, Rios P et al. 2017. A mutation in the melon Vacuolar Protein Sorting 41 prevents systemic infection of Cucumber mosaic virus. Sci. Rep. 7:10471
    [Google Scholar]
  83. 83.  Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–42
    [Google Scholar]
  84. 84.  Gu YQ 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. . Plant Cell Online 14:817–31
    [Google Scholar]
  85. 85.  Guilinger JP, Thompson DB, Liu DR 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32:577–82
    [Google Scholar]
  86. 86.  Guo Z-J, Chen X-J, Wu X-L, Ling J-Q, Xu P 2004. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol. Biol. 55:607–18
    [Google Scholar]
  87. 87.  Gutierrez C, Ramirez-Parra E, Mar Castellano M, Sanz-Burgos AP, Luque A, Missich R 2004. Geminivirus DNA replication and cell cycle interactions. Vet. Microbiol. 98:111–19
    [Google Scholar]
  88. 88.  Harris CJ, Slootweg EJ, Goverse A, Baulcombe DC 2013. Stepwise artificial evolution of a plant disease resistance gene. PNAS 110:21189–94
    [Google Scholar]
  89. 89.  Hartung F, Schiemann J 2014. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742–52
    [Google Scholar]
  90. 90.  Hedden P, Phillips AL 2000. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–30
    [Google Scholar]
  91. 91.  Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510–17
    [Google Scholar]
  92. 92.  Hinnebusch AG 2014. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83:779–812
    [Google Scholar]
  93. 93.  Hofinger BJ, Russell JR, Bass CG, Baldwin T, dos Reis M et al. 2011. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20:3653–68
    [Google Scholar]
  94. 94.  Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. . PNAS 110:15644–49
    [Google Scholar]
  95. 95.  Hsu PD, Lander ES, Zhang F 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78
    [Google Scholar]
  96. 96.  Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–32
    [Google Scholar]
  97. 97.  Huang PY, Catinot J, Zimmerli L 2016. Ethylene response factors in Arabidopsis immunity. J. Exp. Bot. 67:1231–41
    [Google Scholar]
  98. 98.  Humphry M, Consonni C, Panstruga R 2006. mlo-Based powdery mildew immunity: silver bullet or simply non-host resistance?. Mol. Plant Pathol. 7:605–10
    [Google Scholar]
  99. 99.  Hutin M, Perez-Quintero AL, Lopez C, Szurek B 2015. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6:535
    [Google Scholar]
  100. 100.  Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B 2015. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84:694–703
    [Google Scholar]
  101. 101. ISAAA. 2016. Global status of commercialized biotech/GM crops: 2016 ISAAA Briefs 52 ISAAA Ithaca, NY:
  102. 102.  Ishii T, Araki M 2016. Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35:1507–18
    [Google Scholar]
  103. 103.  Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. . BMC Biol 14:84
    [Google Scholar]
  104. 104.  Ji X, Zhang H, Zhang Y, Wang Y, Gao C 2015. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1:15144
    [Google Scholar]
  105. 105.  Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  106. 106.  Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J 2013. RNA-programmed genome editing in human cells. eLife 2:e00471
    [Google Scholar]
  107. 107.  Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997
    [Google Scholar]
  108. 108.  Jones HD 2015. Future of breeding by genome editing is in the hands of regulators. GM Crops Food 6:223–32
    [Google Scholar]
  109. 109.  Jones HD 2015. Regulatory uncertainty over genome editing. Nat. Plants 1:14011
    [Google Scholar]
  110. 110.  Jones JD, Vance RE, Dangl JL 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  111. 111.  Jørgensen JH 1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–52
    [Google Scholar]
  112. 112.  Joung JK, Sander JD 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49–55
    [Google Scholar]
  113. 113.  Jupe J, Stam R, Howden AJM, Morris JA, Zhang R et al. 2013. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biol 14:R63
    [Google Scholar]
  114. 114.  Kawai Y, Ono E, Mizutani M 2014. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–43
    [Google Scholar]
  115. 115.  Kaya H, Mikami M, Endo A, Endo M, Toki S 2016. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 6:26871
    [Google Scholar]
  116. 116.  Kim DS, Hwang BK 2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J 72:843–55
    [Google Scholar]
  117. 117.  Kim H, Kim JS 2014. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15:321–34
    [Google Scholar]
  118. 118.  Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG 2017. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8:14406
    [Google Scholar]
  119. 119.  Kim MC, Panstruga R, Elliott C, Müller J, Devoto A et al. 2002. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–51
    [Google Scholar]
  120. 120.  Kim SH, Qi D, Ashfield T, Helm M, Innes RW 2016. Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351:684–87
    [Google Scholar]
  121. 121.  Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–85
    [Google Scholar]
  122. 122.  Knoll A, Fauser F, Puchta H 2014. DNA recombination in somatic plant cells: mechanisms and evolutionary consequences. Chromosome Res 22:191–201
    [Google Scholar]
  123. 123.  Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–24
    [Google Scholar]
  124. 124.  Koonin EV, Makarova KS, Zhang F 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37:67–78
    [Google Scholar]
  125. 125.  Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel K-H 2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–33
    [Google Scholar]
  126. 126.  Kusch S, Panstruga R 2017. mlo-Based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol. Plant-Microbe Interact. 30:179–89
    [Google Scholar]
  127. 127.  Kusch S, Pesch L, Panstruga R 2016. Comprehensive Phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol. Evol. 8:878–95
    [Google Scholar]
  128. 128.  Kuzma J, Kokotovich A 2011. Renegotiating GM crop regulation. Targeted gene-modification technology raises new issues for the oversight of genetically modified crops. EMBO Rep 12:883–88
    [Google Scholar]
  129. 129.  Kweon J, Jang AH, Kim DE, Yang JW, Yoon M et al. 2017. Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat. Commun. 8:1723
    [Google Scholar]
  130. 130.  Lapin D, Van den Ackerveken G 2013. Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–54
    [Google Scholar]
  131. 131.  Li H, Kondo H, Kuhne T, Shirako Y 2016. Barley yellow mosaic virus VPg is the determinant protein for breaking eIF4E-mediated recessive resistance in barley plants. Front. Plant Sci. 7:1449
    [Google Scholar]
  132. 132.  Li J, Meng X, Zong Y, Chen K, Zhang H et al. 2016. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plants 2:16139
    [Google Scholar]
  133. 133.  Li JF, Norville JE, Aach J, McCormack M, Zhang D et al. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688–91
    [Google Scholar]
  134. 134.  Li T, Liu B, Spalding MH, Weeks DP, Yang B 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:390–92
    [Google Scholar]
  135. 135.  Li W, Zhu Z, Chern M, Yin J, Yang C et al. 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170:114–26.e15
    [Google Scholar]
  136. 136.  Li Z, Zhang D, Xiong X, Yan B, Xie W et al. 2017. A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants 3:930–36
    [Google Scholar]
  137. 137.  Lieber MR 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181–211
    [Google Scholar]
  138. 138.  Liu D, Chen X, Liu J, Ye J, Guo Z 2012. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J. Exp. Bot. 63:3899–911
    [Google Scholar]
  139. 139.  Liu D, Hu R, Palla KJ, Tuskan GA, Yang X 2016. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr. Opin. Plant Biol. 30:70–77
    [Google Scholar]
  140. 140.  Liu L, Chen P, Wang M, Li X, Wang J et al. 2017. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell 65:310–22
    [Google Scholar]
  141. 141.  Lombardo L, Coppola G, Zelasco S 2016. New technologies for insect-resistant and herbicide-tolerant plants. Trends Biotechnol 34:49–57
    [Google Scholar]
  142. 142.  Lu Y, Zhu JK 2017. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 System. Mol. Plant 10:523–25
    [Google Scholar]
  143. 143.  Lusser M, Davies HV 2013. Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnol 30:437–46
    [Google Scholar]
  144. 144.  Ma X, Zhu Q, Chen Y, Liu Y-G 2016. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol. Plant 9:961–74
    [Google Scholar]
  145. 145.  Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM et al. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31:294–301
    [Google Scholar]
  146. 146.  Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:833–38
    [Google Scholar]
  147. 147.  Mali P, Yang L, Esvelt KM, Aach J, Guell M et al. 2013. RNA-Guided human genome engineering via Cas9. Science 339:823–26
    [Google Scholar]
  148. 148.  Maqbool A, Saitoh H, Franceschetti M, Stevenson CE, Uemura A et al. 2015. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4:308709
    [Google Scholar]
  149. 149.  Mazier M, Flamain F, Nicolai M, Sarnette V, Caranta C 2011. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLOS ONE 6:e29595
    [Google Scholar]
  150. 150.  Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA et al. 2013. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol. Biol. Rep. 40:2369–88
    [Google Scholar]
  151. 151.  Michelmore R, Coaker G, Bart R, Beattie G, Bent A et al. 2017. Foundational and translational research opportunities to improve plant health. Mol. Plant-Microbe Interact. 30:515–16
    [Google Scholar]
  152. 152.  Mikheikin A, Olsen A, Leslie K, Russell-Pavier F, Yacoot A et al. 2017. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat. Commun. 8:1665
    [Google Scholar]
  153. 153.  Miller JC, Tan S, Qiao G, Barlow KA, Wang J et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29:143–48
    [Google Scholar]
  154. 154.  Mitsunobu H, Teramoto J, Nishida K, Kondo A 2017. Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol 35:983–96
    [Google Scholar]
  155. 155.  Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819:86–96
    [Google Scholar]
  156. 156.  Moscou MJ, Bogdanove AJ 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501
    [Google Scholar]
  157. 157.  Moury B, Charron C, Janzac B, Simon V, Gallois JL et al. 2014. Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): a game of mirrors impacting resistance spectrum and durability. Infect. Genet. Evol. 27:472–80
    [Google Scholar]
  158. 158.  Muller M, Munne-Bosch S 2015. Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41
    [Google Scholar]
  159. 159.  Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG 2017. The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol. Cell 68:15–25
    [Google Scholar]
  160. 160.  Nakano T, Suzuki K, Fujimura T, Shinshi H 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–32
    [Google Scholar]
  161. 161.  Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:691–93
    [Google Scholar]
  162. 162.  Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7:482
    [Google Scholar]
  163. 163.  Nelles DA, Fang MY, Aigner S, Yeo GW 2015. Applications of Cas9 as an RNA-programmed RNA-binding protein. BioEssays 37:732–39
    [Google Scholar]
  164. 164.  Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–96
    [Google Scholar]
  165. 165.  Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P 2018. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19:21–33
    [Google Scholar]
  166. 166.  Nicaise V, German-Retana S, Sanjuán R, Dubrana M-P, Mazier M et al. 2003. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. . Plant Physiol 132:1272–82
    [Google Scholar]
  167. 167.  Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–49
    [Google Scholar]
  168. 168.  O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–66
    [Google Scholar]
  169. 169.  Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J et al. 2017. Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell 29:156–68
    [Google Scholar]
  170. 170.  Paques F, Duchateau P 2007. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr. Gene Ther. 7:49–66
    [Google Scholar]
  171. 171.  Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B et al. 2015. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom 16:520
    [Google Scholar]
  172. 172.  Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31:839–43
    [Google Scholar]
  173. 173.  Pavan S, Jacobsen E, Visser RG, Bai Y 2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25:1–12
    [Google Scholar]
  174. 174.  Peng A, Chen S, Lei T, Xu L, He Y et al. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLob1 promoter in citrus. Plant Biotechnol. J. 15:1509–19
    [Google Scholar]
  175. 175.  Peterson BA, Haak DC, Nishimura MT, Teixeira PJ, James SR et al. 2016. Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. . PLOS ONE 11:e0162169
    [Google Scholar]
  176. 176.  Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A et al. 2015. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13:578–89
    [Google Scholar]
  177. 177.  Podevin N, Devos Y, Davies HV, Nielsen KM 2012. Transgenic or not? No simple answer! New biotechnology-based plant breeding techniques and the regulatory landscape. EMBO Rep 13:1057–61
    [Google Scholar]
  178. 178.  Prykhozhij SV, Rajan V, Gaston D, Berman JN 2015. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLOS ONE 10:e0119372
    [Google Scholar]
  179. 179.  Puchta H 2005. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56:1–14
    [Google Scholar]
  180. 180.  Puchta H 2017. Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr. Opin. Plant Biol. 36:1–8
    [Google Scholar]
  181. 181.  Puchta H, Fauser F 2014. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–41
    [Google Scholar]
  182. 182.  Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–89
    [Google Scholar]
  183. 183.  Roane CW 1973. Trends in breeding for disease resistant crops. Annu. Rev. Phytopathol. 11:463–86
    [Google Scholar]
  184. 184.  Rodriguez-Hernandez AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V 2012. Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 13:755–63
    [Google Scholar]
  185. 185.  Ronald PC 2014. Lab to farm: applying research on plant genetics and genomics to crop improvement. PLOS Biol 12:e1001878
    [Google Scholar]
  186. 186.  Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C 2006. Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Gen. Virol. 87:2089–98
    [Google Scholar]
  187. 187.  Sander JD, Joung JK 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–55
    [Google Scholar]
  188. 188.  Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV 2016. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14:8
    [Google Scholar]
  189. 189.  Schaart JG, van de Wiel CC, Lotz LA, Smulders MJ 2016. Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–49
    [Google Scholar]
  190. 190.  Schaeffer SM, Nakata PA 2016. The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Rep 35:1451–68
    [Google Scholar]
  191. 191.  Scheben A, Wolter F, Batley J, Puchta H, Edwards D 2017. Towards CRISPR/Cas crops: bringing together genomics and genome editing. New Phytol 216:682–98
    [Google Scholar]
  192. 192.  Schornack S, Moscou MJ, Ward ER, Horvath DM 2013. Engineering plant disease resistance based on TAL effectors. Annu. Rev. Phytopathol. 51:383–406
    [Google Scholar]
  193. 193. SECB. 2015. Bericht der EFBS zu neuen Pflanzenzuchtverfahren. Bern, Switz.: SECB
    [Google Scholar]
  194. 194.  Shan Q, Wang Y, Li J, Zhang Y, Chen K et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:686–88
    [Google Scholar]
  195. 195.  Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T et al. 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35:441–43
    [Google Scholar]
  196. 196.  Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60:385–97
    [Google Scholar]
  197. 197.  Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N et al. 2017. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15:169–82
    [Google Scholar]
  198. 198.  Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88
    [Google Scholar]
  199. 199.  Slewinski TL 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol. Plant 4:641–62
    [Google Scholar]
  200. 200.  Smith J, Grizot S, Arnould S, Duclert A, Epinat JC et al. 2006. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149
    [Google Scholar]
  201. 201.  Sorek R, Lawrence CM, Wiedenheft B 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82:237–66
    [Google Scholar]
  202. 202.  Sprink T, Eriksson D, Schiemann J, Hartung F 2016. Regulatory hurdles for genome editing: process- versus product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493–506
    [Google Scholar]
  203. 203.  Steinert J, Schiml S, Fauser F, Puchta H 2015. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. . Plant J 84:1295–305
    [Google Scholar]
  204. 204.  Stella S, Alcon P, Montoya G 2017. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat. Struct. Mol. Biol. 24:882–92
    [Google Scholar]
  205. 205.  Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67
    [Google Scholar]
  206. 206.  Stirnweis D, Milani SD, Jordan T, Keller B, Brunner S 2014. Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3F resistance spectrum in wheat. Mol. Plant-Microbe Interact. 27:265–76
    [Google Scholar]
  207. 207.  Acad Swiss 2016. New plant breeding techniques for Swiss agriculture – significant potential, uncertain future Swiss Acad. Factsheet 11 Swiss Acad. Arts Sci. Bern, Switz.:
    [Google Scholar]
  208. 208.  Symington LS, Gautier J 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247–71
    [Google Scholar]
  209. 209.  Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X et al. 2017. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3:17018
    [Google Scholar]
  210. 210.  Terns MP, Terns RM 2011. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14:321–27
    [Google Scholar]
  211. 211.  Thakore PI, Black JB, Hilton IB, Gersbach CA 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13:127–37
    [Google Scholar]
  212. 212.  Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK et al. 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12:1143–49
    [Google Scholar]
  213. 213.  Thomma BP, Nurnberger T, Joosten MH 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15
    [Google Scholar]
  214. 214.  Tian Z, He Q, Wang H, Liu Y, Zhang Y et al. 2015. The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. Plant Cell Physiol 56:992–1005
    [Google Scholar]
  215. 215.  Torrance L, Andreev IA, Gabrenaite-Verhovskaya R, Cowan G, Makinen K, Taliansky ME 2006. An unusual structure at one end of potato potyvirus particles. J. Mol. Biol. 357:1–8
    [Google Scholar]
  216. 216.  Tripathi S, Suzuki J, Gonsalves D 2007. Development of genetically engineered resistant papaya for papaya ringspot virus in a timely manner. Plant-Pathogen Interactions: Methods and Protocols PC Ronald 197–240 Totowa, NJ: Humana Press
    [Google Scholar]
  217. 217.  Tsai SQ, Joung JK 2016. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17:300–12
    [Google Scholar]
  218. 218.  Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:187–97
    [Google Scholar]
  219. 219.  Tycko J, Myer VE, Hsu PD 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell 63:355–70
    [Google Scholar]
  220. 220.  Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636–46
    [Google Scholar]
  221. 221.  Van Damme M, Andel A, Huibers RP, Panstruga R, Weisbeek PJ, Van den Ackerveken G 2005. Identification of Arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. Mol. Plant-Microbe Interact. 18:583–92
    [Google Scholar]
  222. 222.  Van Damme M, Huibers RP, Elberse J, Van den Ackerveken G 2008. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J 54:785–93
    [Google Scholar]
  223. 223.  van der Hoorn RA, Kamoun S 2008. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–17
    [Google Scholar]
  224. 224.  van de Wiel CCM, Schaart JG, Lotz LAP, Smulders MJM 2017. New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol. Rep. 11:1–8
    [Google Scholar]
  225. 225.  van Schie CC, Takken FL 2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–81
    [Google Scholar]
  226. 226.  Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R et al. 2011. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49:507–31
    [Google Scholar]
  227. 227.  Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P et al. 2016. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–28
    [Google Scholar]
  228. 228.  Voytas DF 2013. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64:327–50
    [Google Scholar]
  229. 229.  Voytas DF, Gao C 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLOS Biol 12:e1001877
    [Google Scholar]
  230. 230.  Wang A 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53:45–66
    [Google Scholar]
  231. 231.  Wang F, Wang C, Liu P, Lei C, Hao W et al. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. . PLOS ONE 11:e0154027
    [Google Scholar]
  232. 232.  Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu JK 2017. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol. Plant 10:1007–10
    [Google Scholar]
  233. 233.  Wang M, Mao Y, Lu Y, Tao X, Zhu JK 2017. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol. Plant 10:1011–13
    [Google Scholar]
  234. 234.  Wang Y, Cheng X, Shan Q, Zhang Y, Liu J et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32:947–51
    [Google Scholar]
  235. 235.  Win J, Chaparro-Garcia A, Belhaj K, Saunders DG, Yoshida K et al. 2012. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77:235–47
    [Google Scholar]
  236. 236.  Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33:1162–64
    [Google Scholar]
  237. 237.  Xiao A, Cheng Z, Kong L, Zhu Z, Lin S et al. 2014. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–82
    [Google Scholar]
  238. 238.  Xu R, Qin R, Li H, Li D, Li L et al. 2017. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. 15:713–17
    [Google Scholar]
  239. 239.  Yang B, Sugio A, White FF 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. PNAS 103:10503–8
    [Google Scholar]
  240. 240.  Yang YX, Wang MM, Yin YL, Onac E, Zhou GF et al. 2015. RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genom 16:120
    [Google Scholar]
  241. 241.  Yeam I, Cavatorta JR, Ripoll DR, Kang BC, Jahn MM 2007. Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19:2913–28
    [Google Scholar]
  242. 242.  Yin K, Gao C, Qiu JL 2017. Progress and prospects in plant genome editing. Nat. Plants 3:17107
    [Google Scholar]
  243. 243.  Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H et al. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. . Plant Cell 21:1573–91
    [Google Scholar]
  244. 244.  Yu Y, Streubel J, Balzergue S, Champion A, Boch J et al. 2011. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol. Plant-Microbe Interact. 24:1102–13
    [Google Scholar]
  245. 245.  Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S 2014. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. J. Integr. Plant Biol. 56:559–70
    [Google Scholar]
  246. 246.  Zaidi SS, Mahfouz MM, Mansoor S 2017. CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550–53
    [Google Scholar]
  247. 247.  Zaidi SS, Tashkandi M, Mansoor S, Mahfouz MM 2016. Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front. Plant Sci. 7:1673
    [Google Scholar]
  248. 248.  Zeilmaker T, Ludwig NR, Elberse J, Seidl MF, Berke L et al. 2015. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. . Plant J 81:210–22
    [Google Scholar]
  249. 249.  Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–71
    [Google Scholar]
  250. 250.  Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J et al. 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35:31–34
    [Google Scholar]
  251. 251.  Zhang H, Hong Y, Huang L, Li D, Song F 2016. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. . Sci. Rep. 6:30251
    [Google Scholar]
  252. 252.  Zhang Y, Bai Y, Wu G, Zou S, Chen Y et al. 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–24
    [Google Scholar]
  253. 253.  Zhang Y, Ge X, Yang F, Zhang L, Zheng J et al. 2014. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci. Rep. 4:5405
    [Google Scholar]
  254. 254.  Zhou H, Liu B, Weeks DP, Spalding MH, Yang B 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–14
    [Google Scholar]
  255. 255.  Zhu X, Qi L, Liu X, Cai S, Xu H et al. 2014. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol 164:1499–514
    [Google Scholar]
  256. 256.  Zong Y, Wang Y, Li C, Zhang R, Chen K et al. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35:438–40
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-050158
Loading
/content/journals/10.1146/annurev-phyto-080417-050158
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error