1932

Abstract

It is becoming abundantly clear that the microbes associated with plants and insects can profoundly influence plant-insect interactions. Here, we focus on recent findings and propose directions for future research that involve microbe-induced changes to plant defenses and nutritive quality as well as the consequences of these changes for the behavior and fitness of insect herbivores. Insect (herbivore and parasitoid)-associated microbes can favor or improve insect fitness by suppressing plant defenses and detoxifying defensive phytochemicals. Phytopathogens can influence or manipulate insect behavior and fitness by altering plant quality and defense. Plant-beneficial microbes can promote plant growth and influence plant nutritional and phytochemical composition that can positively or negatively influence insect fitness. Lastly, we suggest that entomopathogens have the potential to influence plant defenses directly as endophytes or indirectly by altering insect physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035319
2017-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035319.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035319&mimeType=html&fmt=ahah

Literature Cited

  1. Acevedo FE, Peiffer M, Tan C-W, Stanley B, Stanley A. 1.  et al. 2017. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant-Microbe Interact 30:127–37 [Google Scholar]
  2. Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH. 2.  et al. 2013. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 79:3468–75 [Google Scholar]
  3. Ahemad M, Kibret M. 3.  2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 26:1–20 [Google Scholar]
  4. Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH. 4.  1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–49 [Google Scholar]
  5. Al-Naemi F, Hatcher PE. 5.  2013. Contrasting effects of necrotrophic and biotrophic plant pathogens on the aphid Aphis fabae. . Entomol. Exp. Appl. 148:234–45 [Google Scholar]
  6. Ashley TR. 6.  1986. Geographical distributions and parasitization levels for parasitoids of the fall armyworm, Spodoptera frugiperda. Fla. Entomol. 69:516–24 [Google Scholar]
  7. Ashley TR, Barfield CS, Waddill VH, Mitchell ER. 7.  1983. Parasitization of fall armyworm larvae on volunteer corn, bermudagrass, and paragrass. Fla. Entomol. 66:267–71 [Google Scholar]
  8. Bansal R, Hulbert S, Schemerhorn B, Reese JC, Whitworth RJ. 8.  et al. 2011. Hessian fly-associated bacteria: transmission, essentiality, and composition. PLOS ONE 6:e23170 [Google Scholar]
  9. Barr KL, Hearne LB, Briesacher S, Clark TL, Davis GE. 9.  2010. Microbial symbionts in insects influence down-regulation of defense genes in maize. PLOS ONE 5:e11339 [Google Scholar]
  10. Batra LR, Batra SWT. 10.  1985. Floral mimicry induced by mummy-berry fungus exploits host's pollinators as vectors. Science 228:1011–13 [Google Scholar]
  11. Biere A, Honders SC. 11.  2006. Coping with third parties in a nursery pollination mutualism: Hadenabicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia. New Phytol 169:719–27 [Google Scholar]
  12. Biswas C, Dey P, Satpathy S, Satya P. 12.  2012. Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using SCAR marker. BioControl 57:565–71 [Google Scholar]
  13. Bitra K, Zhang S, Strand MR. 13.  2011. Transcriptomic profiling of Microplitis demolitor bracovirus reveals host, tissue and stage-specific patterns of activity. J. Gen. Virol. 92:2060–71 [Google Scholar]
  14. Bonaventure G, VanDoorn A, Baldwin IT. 14.  2011. Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16:294–99 [Google Scholar]
  15. Bosque-Pérez NA, Eigenbrode SD. 15.  2011. The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus Res 159:201–5 [Google Scholar]
  16. Brancalhão RMC, Torquato EFB, Fernandez MA. 16.  2009. Cytopathology of Bombyx mori (Lepidoptera: Bombycidae) silk gland caused by multiple nucleopolyhedrovirus. Genet. Mol. Res. 8:162–72 [Google Scholar]
  17. Brownbridge M, Reay SD, Nelson TL, Glare TR. 17.  2012. Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biol. Control 62:194–200 [Google Scholar]
  18. Cameron DD, Neal AL, van Wees SCM, Ton J. 18.  2013. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci 18:539–45 [Google Scholar]
  19. Cardoza YJ, Klepzig KD, Raffa KF. 19.  2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol. Entomol. 31:636–45 [Google Scholar]
  20. Cardoza YJ, Lait CG, Schmelz EA, Huang J, Tumlinson JH. 20.  2003. Fungus-induced biochemical changes in peanut plants and their effect on development of beet armyworm, Spodopteraexigua Hübner (Lepidoptera: Noctuidae) larvae. Environ. Entomol. 32:220–28 [Google Scholar]
  21. Cardoza YJ, Teal PEA, Tumlinson JH. 21.  2003. Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host-searching behavior by Cotesia marginiventris. Environ. Entomol 32:970–76 [Google Scholar]
  22. Casteel CL, Hansen AK, Walling LL, Paine TD. 22.  2012. Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PLOS ONE 7:e35191 [Google Scholar]
  23. Castillo Lopez D, Zhu-Salzman K, Ek-Ramos MJ, Sword GA. 23.  2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLOS ONE 9:e103891 [Google Scholar]
  24. Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian I. 24.  2014. GroEl from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. PNAS 111:8919–24 [Google Scholar]
  25. Choudhary DK, Varma A. 25. , eds. 2016. Microbial-Mediated Induced Systemic Resistance in Plants Singapore: Springer Singapore
  26. Chu C-C, Spencer JL, Curzi MJ, Zavala JA, Seufferheld MJ. 26.  2013. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. PNAS 110:11917–22 [Google Scholar]
  27. Chung SH, Felton GW. 27.  2011. Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species. J. Chem. Ecol. 37:378–86 [Google Scholar]
  28. Chung SH, Rosa C, Hoover K, Luthe DS, Felton GW. 28.  2013. Colorado potato beetle manipulates plant defenses in local and systemic leaves. Plant Signal. Behav. 8:e27592 [Google Scholar]
  29. Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF. 29.  et al. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. PNAS 110:15728–33 [Google Scholar]
  30. Chung SH, Scully ED, Peiffer M, Geib SM, Rosa C. 30.  et al. 2017. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci. Rep. 7:39690 [Google Scholar]
  31. Cooter RJ, Winder D, Chancellor TC. 31.  2000. Tethered flight activity of Nephotettix virescens (Hemiptera: Cicadellidae) in the Philippines. Bull. Entomol. Res. 90:49–56 [Google Scholar]
  32. Cory JS, Myers JH. 32.  2003. The ecology and evolution of insect baculoviruses. Annu. Rev. Ecol. Evol. Syst. 34:239–72 [Google Scholar]
  33. Csorba T, Kontra L, Burgyán J. 33.  2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103 [Google Scholar]
  34. Dashti N, Zhang F, Hynes R, Smith DL. 34.  1997. Application of plant growth–promoting rhizobacteria to soybean (Glycine max [L.] Merr.) increases protein and dry matter yield under short-season conditions. Plant Soil 188:33–41 [Google Scholar]
  35. Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK. 35.  2013. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39:840–59 [Google Scholar]
  36. Dicke M, Baldwin IT. 36.  2010. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.”. Trends Plant Sci 15:167–75 [Google Scholar]
  37. Dicke M, van Loon JJA. 37.  2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–49 [Google Scholar]
  38. Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W. 38.  et al. 1999. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem. Mol. Biol. 29:153–60 [Google Scholar]
  39. Douglas AE. 39.  2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17–34 [Google Scholar]
  40. Dowd PF, Shen SK. 40.  1990. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol. Exp. Appl. 56:241–48 [Google Scholar]
  41. Eichenseer H, Mathews MC, Powell JS, Felton GW. 41.  2010. Survey of a salivary effector in caterpillars: glucose oxidase variation and correlation with host range. J. Chem. Ecol. 36:885–97 [Google Scholar]
  42. Engelbrecht L, Orban U, Heese W. 42.  1969. Leaf-miner caterpillars and cytokinins in the “green islands” of autumn leaves. Nature 223:319–21 [Google Scholar]
  43. Farré-Armengol G, Filella I, Llusia J, Peñuelas J. 43.  2016. Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–60 [Google Scholar]
  44. Fathpour H, Dahlman DL. 44.  1995. Polydnavirus of Microplitis croceipes prolongs the larval period and changes hemolymph protein content of the host, Heliothis virescens. . Arch. Insect Biochem. Physiol. 28:33–48 [Google Scholar]
  45. Felton GW, Duffey SS. 45.  1990. Inactivation of baculovirus by quinones formed in insect-damaged plant tissues. J. Chem. Ecol. 16:1221–36 [Google Scholar]
  46. Felton GW, Tumlinson JH. 46.  2008. Plant-insect dialogs: complex interactions at the plant-insect interface. Curr. Opin. Plant Biol. 11:457–63 [Google Scholar]
  47. Fereres A, Kampmeier GE, Irwin ME. 47.  1999. Aphid attraction and preference for soybean and pepper plants infected with potyviridae. Ann. Entomol. Soc. Am. 92:542–48 [Google Scholar]
  48. Fereres A, Moreno A. 48.  2009. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–68 [Google Scholar]
  49. Giron D, Dedeine F, Dubreuil G, Huguet E, Mouton L. 49.  et al. 2017. Influence of microbial symbionts on plant-insect interactions. Adv. Bot. Res. 81:225–57 [Google Scholar]
  50. Giron D, Kaiser W, Imbault N, Casas J. 50.  2007. Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol. Lett. 3:340–43 [Google Scholar]
  51. Gonella E, Pajoro M, Marzorati M, Crotti E, Mandrioli M. 51.  et al. 2015. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Sci. Rep. 5:15811 [Google Scholar]
  52. Gordon KHJ, Waterhouse PM. 52.  2007. RNAi for insect-proof plants. Nat. Biotechnol. 25:1231–32 [Google Scholar]
  53. Gross J. 53.  2016. Chemical communication between phytopathogens, their host plants and vector insects and eavesdropping by natural enemies. Front. Ecol. Evol. 4:104 [Google Scholar]
  54. Gurulingappa P, Sword GA, Murdoch G, McGee PA. 54.  2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. BioControl 55:34–41 [Google Scholar]
  55. Hammer TJ, Bowers MD. 55.  2015. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14 [Google Scholar]
  56. Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B. 56.  et al. 2013. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol 162:1324–36 [Google Scholar]
  57. Han Y, Van Oers MM, van Houte S, Ros VID. 57.  2015. Virus-induced behavioural changes in insects. Host Manipulations by Parasites and Viruses H Mehlhorn 149–74 Cham, Switz.: Springer Int. Publ. [Google Scholar]
  58. Hansen AK, Moran NA. 58.  2014. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23:1473–96 [Google Scholar]
  59. Hartley SE, Eschen R, Horwood JM, Gange AC, Hill EM. 59.  2015. Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense. . New Phytol. 205:816–27 [Google Scholar]
  60. Hartley SE, Gange AC. 60.  2009. Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu. Rev. Entomol. 54:323–42 [Google Scholar]
  61. Heil M. 61.  2014. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306 [Google Scholar]
  62. Hirano E, Koike M, Aiuchi D, Tani M. 62.  2008. Pre-inoculation of cucumber roots with Verticillium lecanii (Lecanicillium muscarium) induces resistance to powdery mildew. Res. Bull. Obihiro Univ 29:82–94 [Google Scholar]
  63. Hoover K, Stout MJ, Alaniz SA, Hammock BD, Duffey SS. 63.  1998. Influence of induced plant defenses in cotton and tomato on the efficacy of baculoviruses on noctuid larvae. J. Chem. Ecol. 24:253–71 [Google Scholar]
  64. Ingwell LL, Eigenbrode SD, Bosque-Pérez NA. 64.  2012. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2:578 [Google Scholar]
  65. Isaacs R, Willis MA, Byrne DN. 65.  1999. Modulation of whitefly take-off and flight orientation by wind speed and visual cues. Physiol. Entomol. 24:311–18 [Google Scholar]
  66. Jakubowska AK, Vogel H, Herrero S. 66.  2013. Increase in gut microbiota after immune suppression in baculovirus-infected larvae. PLOS Pathog 9:e1003379 [Google Scholar]
  67. Jin H. 67.  2008. Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582:2679–84 [Google Scholar]
  68. Junker RR, Tholl D. 68.  2013. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39:810–25 [Google Scholar]
  69. Kaiser W, Huguet E, Casas J, Commin C, Giron D. 69.  2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. R. Soc. B 277:2311–19 [Google Scholar]
  70. Kaplan I, Carrillo J, Garvey M, Ode PJ. 70.  2016. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14:112–19 [Google Scholar]
  71. Katiyar-Agarwal S, Jin H. 71.  2010. Role of small RNAs in host-microbe interactions. Annu. Rev. Phytopathol. 48:225–46 [Google Scholar]
  72. Kessler A, Baldwin IT. 72.  2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–44 [Google Scholar]
  73. Kettles GJ, Drurey C, Schoonbeek H, Maule AJ, Hogenhout SA. 73.  2013. Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol 198:1178–90 [Google Scholar]
  74. King EG, Coleman RJ. 74.  1989. Potential for biological control of Heliothis species. Annu. Rev. Entomol. 34:53–75 [Google Scholar]
  75. Lazebnik J, Frago E, Dicke M, van Loon JJA. 75.  2014. Phytohormone mediation of interactions between herbivores and plant pathogens. J. Chem. Ecol. 40:730–41 [Google Scholar]
  76. Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G. 76.  et al. 2011. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat. Commun. 2:348 [Google Scholar]
  77. Li Z-W, Shen Y-H, Xiang Z-H, Zhang Z. 77.  2011. Pathogen-origin horizontally transferred genes contribute to the evolution of lepidopteran insects. BMC Evol. Biol. 11:356 [Google Scholar]
  78. Martini X, Pelz-Stelinski KS, Stelinski LL. 78.  2014. Plant pathogen–induced volatiles attract parasitoids to increase parasitism of an insect vector. Front. Ecol. Evol. 2:8 [Google Scholar]
  79. Mason CJ, Couture JJ, Raffa KF. 79.  2014. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–10 [Google Scholar]
  80. Mauck K, Bosque-Pérez NA, Eigenbrode SD, De Moraes CM, Mescher MC. 80.  2012. Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Funct. Ecol. 26:1162–75 [Google Scholar]
  81. Mauck KE. 81.  2016. Variation in virus effects on host plant phenotypes and insect vector behavior: what can it teach us about virus evolution?. Curr. Opin. Virol. 21:114–23 [Google Scholar]
  82. Mauck KE, De Moraes CM, Mescher MC. 82.  2015. Infection of host plants by cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani. Sci. Rep 5:10963 [Google Scholar]
  83. Mauck KE, De Moraes CM, Mescher MC. 83.  2016. Effects of pathogens on sensory-mediated interactions between plants and insect vectors. Curr. Opin. Plant Biol. 32:53–61 [Google Scholar]
  84. Mayoral JG, Hussain M, Joubert DA, Iturbe-Ormaetxe I, O'Neill SL, Asgari S. 84.  2014. Wolbachia small noncoding RNAs and their role in cross-kingdom communications. PNAS 111:18721–26 [Google Scholar]
  85. McLean AHC, Parker BJ, Hrček J, Henry LM, Godfray HCJ. 85.  2016. Insect symbionts in food webs. Philos. Trans. R. Soc. B 371:20150325 [Google Scholar]
  86. Megali L, Glauser G, Rasmann S. 86.  2014. Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron. Sustain. Dev. 34:649–56 [Google Scholar]
  87. Mingot A, Valli A, Rodamilans B, San León D, Baulcombe DC. 87.  et al. 2016. The P1N-PISPO trans-frame gene of sweet potato feathery mottle potyvirus is produced during virus infection and functions as an RNA silencing suppressor. J. Virol. 90:3543–57 [Google Scholar]
  88. Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G. 88.  et al. 2002. Herbivory: caterpillar saliva beats plant defences. Nature 416:599–600 [Google Scholar]
  89. Nadarasah G, Stavrinides J. 89.  2011. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol. Rev. 35:555–75 [Google Scholar]
  90. Navarro L, Jay F, Nomura K, He SY, Voinnet O. 90.  2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–67 [Google Scholar]
  91. Ngumbi E, Eigenbrode SD, Bosque-Pérez NA, Ding H, Rodriguez A. 91.  2007. Myzus persicae is arrested more by blends than by individual compounds elevated in headspace of PLRV-infected potato. J. Chem. Ecol. 33:1733–47 [Google Scholar]
  92. Noland JE, Breitenbach JE, Popham HJR, Hum-Musser SM, Vogel H, Musser RO. 92.  2013. Gut transcription in Helicoverpa zea is dynamically altered in response to baculovirus infection. Insects 4:506–20 [Google Scholar]
  93. Ode PJ, Harvey JA, Reichelt M, Gershenzon J, Gols R. 93.  2016. Differential induction of plant chemical defenses by parasitized and unparasitized herbivores: consequences for reciprocal, multitrophic interactions. Oikos 125:1398–407 [Google Scholar]
  94. Ownley BH, Gwinn KD, Vega FE. 94.  2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–28 [Google Scholar]
  95. Padmanabhan C, Zhang X, Jin H. 95.  2009. Host small RNAs are big contributors to plant innate immunity. Curr. Opin. Plant Biol. 12:465–72 [Google Scholar]
  96. Pangesti N, Reichelt M, van de Mortel JE, Kapsomenou E, Gershenzon J. 96.  et al. 2016. Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J. Chem. Ecol. 42:1212–25 [Google Scholar]
  97. Pangesti N, Weldegergis BT, Langendorf B, van Loon JJA, Dicke M, Pineda A. 97.  2015. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 178:1169–80 [Google Scholar]
  98. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 98.  2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75 [Google Scholar]
  99. Pilon FM, Visôtto LE, Guedes RNC, Oliveira MGA. 99.  2013. Proteolytic activity of gut bacteria isolated from the velvet bean caterpillar Anticarsia gemmatalis. . J. Comp. Physiol. B 183:735–47 [Google Scholar]
  100. Pineda A, Dicke M, Pieterse CMJ, Pozo MJ. 100.  2013. Beneficial microbes in a changing environment: Are they always helping plants to deal with insects?. Funct. Ecol. 27:574–86 [Google Scholar]
  101. Pineda A, Soler R, Pozo MJ, Rasmann S, Turlings TCJ. 101.  2015. Editorial: above-belowground interactions involving plants, microbes and insects. Front. Plant Sci. 6:318 [Google Scholar]
  102. Pineda A, Soler R, Weldegergis BT, Shimwela MM, Van Loon JJA, Dicke M. 102.  2013. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. Plant Cell Environ 36:393–404 [Google Scholar]
  103. Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M. 103.  2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–14 [Google Scholar]
  104. Poelman EH, Zheng S-J, Zhang Z, Heemskerk NM, Cortesero A-M, Dicke M. 104.  2011. Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. PNAS 108:19647–52 [Google Scholar]
  105. Powell WA, Klingeman WE, Ownley BH, Gwinn KD. 105.  2009. Evidence of endophytic Beauveria bassiana in seed treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J. Entomol. Sci 44:391–96 [Google Scholar]
  106. Power AG. 106.  2000. Insect transmission of plant viruses: a constraint on virus variability. Curr. Opin. Plant Biol. 3:336–40 [Google Scholar]
  107. Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE. 107.  1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65 [Google Scholar]
  108. Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R. 108.  2012. Host plant induced variation in gut bacteria of Helicoverpa armigera. . PLOS ONE 7:e30768 [Google Scholar]
  109. Purcell AH. 109.  1982. Insect vector relationships with procaryotic plant pathogens. Annu. Rev. Phytopathol. 20:397–417 [Google Scholar]
  110. Purcell AH. 110.  1988. Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with mollicute plant pathogens. Entomol. Exp. Appl. 46:187–96 [Google Scholar]
  111. Quesada-Moraga E, Landa BB, Muñoz-Ledesma J, Jiménez-Diáz RM, Santiago-Álvarez C. 111.  2006. Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia 161:323–29 [Google Scholar]
  112. Quesada-Moraga E, López-Díaz C, Landa BB. 112.  2014. The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission. PLOS ONE 9:e89278 [Google Scholar]
  113. Quesada-Moraga E, Muñoz-Ledesma FJ, Santiago-Álvarez C. 113.  2009. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol 38:723–30 [Google Scholar]
  114. Rana RL, Dahlman DL, Webb BA. 114.  2002. Expression and characterization of a novel teratocyte protein of the braconid, Microplitis croceipes (Cresson). Insect Biochem. Mol. Biol. 32:1507–16 [Google Scholar]
  115. Salvaudon L, De Moraes CM, Mescher MC. 115.  2013. Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies. Proc. R. Soc. B 280:20122959 [Google Scholar]
  116. Sanders D, Kehoe R, van Veen FF, McLean A, Godfray HCJ. 116.  et al. 2016. Defensive insect symbiont leads to cascading extinctions and community collapse. Ecol. Lett. 19:789–99 [Google Scholar]
  117. Sattar S, Thompson GA. 117.  2016. Small RNA regulators of plant-hemipteran interactions: micromanagers with versatile roles. Front. Plant Sci. 7:1241 [Google Scholar]
  118. Schepers EJ, Dahlman DL, Zhang D. 118.  1998. Microplitis croceipes teratocytes: in vitro culture and biological activity of teratocyte secreted protein. J. Insect Physiol. 44:767–77 [Google Scholar]
  119. Senthilraja G, Anand T, Kennedy JS, Raguchander T, Samiyappan R. 119.  2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol. Mol. Plant Pathol. 82:10–19 [Google Scholar]
  120. Sharifi R, Ryu C-M. 120.  2016. Chatting with a tiny belowground member of the holobiome: communication between plants and growth-promoting rhizobacteria. Adv. Bot. Res. 82:135–60 [Google Scholar]
  121. Shavit R, Ofek-Lalzar M, Burdman S, Morin S. 121.  2013. Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. . Front. Plant Sci. 4:306 [Google Scholar]
  122. Shen SK, Dowd PF. 122.  1991. Detoxification spectrum of the cigarette beetle symbiont Symbiotaphrina kochii in culture. Entomol. Exp. Appl. 60:51–59 [Google Scholar]
  123. Shikano I, Shumaker K, Peiffer M, Felton GW, Hoover K. 123.  2017. Plant-mediated effects on an insect-pathogen interaction vary with intraspecific genetic variation in plant defences. Oecologia 183:1121–34 [Google Scholar]
  124. Simon M, Hilker M. 124.  2003. Herbivores and pathogens on willow: Do they affect each other?. Agric. For. Entomol. 5:275–84 [Google Scholar]
  125. Simon M, Hilker M. 125.  2005. Does rust infection of willow affect feeding and oviposition behavior of willow leaf beetles?. J. Insect Behav. 18:115–29 [Google Scholar]
  126. Sridhar R, Reddy PR, Anjaneyulu A. 126.  1976. Physiology of rice tungro virus disease: changes in chlorophyll, carbohydrates, amino acids and phenol contents. J. Phytopathol. 86:136–43 [Google Scholar]
  127. Stout MJ, Fidantsef AL, Duffey SS, Bostock RM. 127.  1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:115–30 [Google Scholar]
  128. Strand MR. 128.  1989. Development of the polyembryonic parasitoid Copidosomafloridanum in Trichoplusia ni. Entomol. . Exp. Appl. 50:37–46 [Google Scholar]
  129. Strand MR, Burke GR. 129.  2012. Polydnaviruses as symbionts and gene delivery systems. PLOS Pathog 8:e1002757 [Google Scholar]
  130. Su Q, Oliver KM, Xie W, Wu Q, Wang S, Zhang Y. 130.  2015. The whitefly-associated facultative symbiont Hamiltonella defensa suppresses induced plant defences in tomato. Funct. Ecol. 29:1007–18 [Google Scholar]
  131. Sun Z, Liu Z, Zhou W, Jin H, Liu H. 131.  et al. 2016. Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Sci. Rep. 6:26043 [Google Scholar]
  132. Tack AJM, Dicke M. 132.  2013. Plant pathogens structure arthropod communities across multiple spatial and temporal scales. Funct. Ecol. 27:633–45 [Google Scholar]
  133. Thaler JS, Fidantsef AL, Duffey SS, Bostock RM. 133.  1999. Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol. 25:1597–609 [Google Scholar]
  134. Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E. 134.  et al. 2012. Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLOS ONE 7:e36168 [Google Scholar]
  135. Tipping PW, Holko CA, Bean RA. 135.  2005. Helicoverpa zea (Lepidoptera: Noctuidae) dynamics and parasitism in Maryland soybeans. Fla. Entomol. 88:55–60 [Google Scholar]
  136. Todd JL, Phelan PL, Nault LR. 136.  1990. Orientation of the leafhopper, Dalbulus maidis (Homoptera: Cicadellidae), to different wavelengths of reflected light. J. Insect Behav. 3:567–71 [Google Scholar]
  137. Turlings TCJ, McCall PJ, Alborn HT, Tumlinson JH. 137.  1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–25 [Google Scholar]
  138. Turlings TCJ, Tumlinson JH, Lewis WJ. 138.  1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–53 [Google Scholar]
  139. van Ohlen M, Herfurth A-M, Kerbstadt H, Wittstock U. 139.  2016. Cyanide detoxification in an insect herbivore: molecular identification of β-cyanoalanine synthases from Pieris rapae. . Insect Biochem. Mol. Biol. 70:99–110 [Google Scholar]
  140. Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA. 140.  et al. 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–59 [Google Scholar]
  141. Wadke N, Kandasamy D, Vogel H, Lah L, Wingfield BD. 141.  et al. 2016. The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Plant Physiol 171:914–31 [Google Scholar]
  142. Wang J, Chung SH, Peiffer M, Rosa C, Hoover K. 142.  et al. 2016. Herbivore oral secreted bacteria trigger distinct defense responses in preferred and non-preferred host plants. J. Chem. Ecol. 42:463–74 [Google Scholar]
  143. Wang J, Peiffer M, Rosa C, Hoover K, Zeng R, Felton GW. 143.  2017. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato through mediating salivary elicitor(s). New Phytol 214:1294–306 [Google Scholar]
  144. Wang M, Weiberg A, Lin F-M, Thomma BPHJ, Huang H-D, Jin H. 144.  2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2:16151 [Google Scholar]
  145. Weiberg A, Wang M, Bellinger M, Jin H. 145.  2014. Small RNAs: a new paradigm in plant-microbe interactions. Annu. Rev. Phytopathol. 52:495–516 [Google Scholar]
  146. Welte CU, de Graaf RM, van den Bosch TJM, Op den Camp HJM, van Dam NM, Jetten MSM. 146.  2016. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 18:1379–90 [Google Scholar]
  147. Wilson ACC, Duncan RP. 147.  2015. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. PNAS 112:10255–61 [Google Scholar]
  148. Xiao Y, Wang Q, Erb M, Turlings TCJ, Ge L. 148.  et al. 2012. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol. Lett. 15:1130–39 [Google Scholar]
  149. Yang Q, Yu F, Yin Y, Ma Z. 149.  2013. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea. . PLOS ONE 8:e61307 [Google Scholar]
  150. Young JH, Price RG. 150.  1975. Incidence, parasitism, and distribution patterns of Heliothis zea on sorghum, cotton, and alfalfa for southwestern Oklahoma. Environ. Entomol. 4:777–79 [Google Scholar]
  151. Yu X-D, Liu Z-C, Huang S-L, Chen Z-Q, Sun Y-W. 151.  et al. 2016. RNAi-mediated plant protection against aphids. Pest Manag. Sci. 72:1090–98 [Google Scholar]
  152. Zhang H, Dugé de Bernonville T, Body M, Glevarec G, Reichelt M. 152.  et al. 2016. Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. J. Insect Physiol. 84:114–27 [Google Scholar]
  153. Zhu F, Broekgaarden C, Weldegergis BT, Harvey JA, Vosman B. 153.  et al. 2015. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivore-induced plant volatiles. Mol. Ecol. 24:2886–99 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035319
Loading
/content/journals/10.1146/annurev-phyto-080516-035319
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error