1932

Abstract

The gene pool of wheat and its wild and domesticated relatives contains a plethora of resistance genes that can be exploited to make wheat more resilient to pathogens. Only a few of these genes have been isolated and studied at the molecular level. In recent years, we have seen a shift from classical breeding to genomics-assisted breeding, which makes use of the enormous advancements in DNA sequencing and high-throughput molecular marker technologies for wheat improvement. These genomic advancements have the potential to transform wheat breeding in the near future and to significantly increase the speed and precision at which new cultivars can be bred. This review highlights the genomic improvements that have been made in wheat and its pathogens over the past years and discusses their implications for disease-resistance breeding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035419
2018-08-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080516-035419.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035419&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Acevedo-Garcia J, Spencer D, Thieron H, Reinstadler A, Hammond-Kosack K et al. 2017. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J. 15:367–78
    [Google Scholar]
  2. 2.  Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR et al. 2017. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol. J. 15:390–401
    [Google Scholar]
  3. 3.  Arumuganathan K, Earle ED 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208–18
    [Google Scholar]
  4. 4.  Avni R, Nave M, Barad O, Baruch K, Twardziok SO et al. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97
    [Google Scholar]
  5. 5.  Bennett MD, Smith JB 1976. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. B 274:227–74
    [Google Scholar]
  6. 6.  Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD 2017. Genomic innovation for crop improvement. Nature 543:346–54
    [Google Scholar]
  7. 7.  Bhullar NK, Zhang Z, Wicker T, Keller B 2010. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol 10:88
    [Google Scholar]
  8. 8.  Bourras S, McNally KE, Ben-David R, Parlange F, Roffler S et al. 2015. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell 27:2991–3012
    [Google Scholar]
  9. 9.  Bourras S, McNally KE, Muller MC, Wicker T, Keller B 2016. Avirulence genes in cereal powdery mildews: the gene-for-gene hypothesis 2.0. Front. Plant Sci. 7:241
    [Google Scholar]
  10. 10.  Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D'Amore R et al. 2012. Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature 491:705–10
    [Google Scholar]
  11. 11.  Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M et al. 2010. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J 64:433–45
    [Google Scholar]
  12. 12.  Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G 2010. A domain swap approach reveals a role of the plant wall–associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS 107:9452–57
    [Google Scholar]
  13. 13.  Burdon JJ, Zhan J, Barrett LG, Papaix J, Thrall PH 2016. Addressing the challenges of pathogen evolution on the world's arable crops. Phytopathology 106:1117–27
    [Google Scholar]
  14. 14.  Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M et al. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705
    [Google Scholar]
  15. 15.  Cantu D, Govindarajulu M, Kozik A, Wang M, Chen X et al. 2011. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLOS ONE 6:e24230
    [Google Scholar]
  16. 16.  Cao A, Xing L, Wang X, Yang X, Wang W et al. 2011. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. PNAS 108:7727–32
    [Google Scholar]
  17. 17.  Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110:8057–62
    [Google Scholar]
  18. 18.  Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F et al. 2017. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358:1607–10
    [Google Scholar]
  19. 19.  Choulet F, Alberti A, Theil S, Glover N, Barbe V et al. 2014. Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721
    [Google Scholar]
  20. 20.  Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G et al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–96
    [Google Scholar]
  21. 21.  Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T et al. 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 65:93–106
    [Google Scholar]
  22. 22.  Dodds PN, Rathjen JP 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48
    [Google Scholar]
  23. 23.  Dolezel J, Vrana J, Safar J, Bartos J, Kubalakova M, Simkova H 2012. Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genom. 12:397–416
    [Google Scholar]
  24. 24.  Dreisigacker S, Kishii M, Lage J, Warburton M 2008. Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust. J. Agric. Res. 59:413–20
    [Google Scholar]
  25. 25.  Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E et al. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS 108:9166–71
    [Google Scholar]
  26. 26.  Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN 2014. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 5:641
    [Google Scholar]
  27. 27.  Faris JD, Zhang ZC, Lu HJ, Lu SW, Reddy L et al. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. PNAS 107:13544–49
    [Google Scholar]
  28. 28.  Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B 2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. PNAS 100:15253–58
    [Google Scholar]
  29. 29.  Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953–56
    [Google Scholar]
  30. 30.  Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L et al. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–60
    [Google Scholar]
  31. 31.  Gao Y, Liu Z, Faris JD, Richards J, Brueggeman RS et al. 2016. Validation of genome-wide association studies as a tool to identify virulence factors in Parastagonospora nodorum. . Phytopathology 106:1177–85
    [Google Scholar]
  32. 32.  Grunwald NJ, McDonald BA, Milgroom MG 2016. Population genomics of fungal and oomycete pathogens. Annu. Rev. Phytopathol. 54:323–46
    [Google Scholar]
  33. 33.  Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL et al. 2007. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. . Plant Cell 19:3347–68
    [Google Scholar]
  34. 33a.  He H, Zhu S, Zhao R, Jiang Z, Ji Y et al. 2018. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol. Plant 11:879–82
    [Google Scholar]
  35. 34.  Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL 2007. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor. Appl. Genet. 115:877–84
    [Google Scholar]
  36. 35.  Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I et al. 2016. Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell 28:2700–14
    [Google Scholar]
  37. 36.  Hu K, Cao J, Zhang J, Xia F, Ke Y et al. 2017. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 3:17009
    [Google Scholar]
  38. 37.  Huang L, Brooks SA, Li WL, Fellers JP, Trick HN, Gill BS 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–64
    [Google Scholar]
  39. 38.  Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C et al. 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 16:23
    [Google Scholar]
  40. 39.  Hurni S, Brunner S, Buchmann G, Herren G, Jordan T et al. 2013. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–69
    [Google Scholar]
  41. 40.  Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D et al. 2014. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. . Plant J 79:904–13
    [Google Scholar]
  42. 41.  Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T et al. 2015. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. PNAS 112:8780–85
    [Google Scholar]
  43. 42.  Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C et al. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80–83
    [Google Scholar]
  44. 43. Int. Rice Genome Seq. Proj. 2005. The map-based sequence of the rice genome. Nature 436:793–800
    [Google Scholar]
  45. 44. Int. Wheat Genome Seq. Consort. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788
    [Google Scholar]
  46. 45. Int. Wheat Genome Seq. Consort. 2018. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science. http://doi.org/10.1126/science.aar7191
    [Google Scholar]
  47. 46.  Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B 2005. Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 15:526–36
    [Google Scholar]
  48. 47.  Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. . BMC Biol 14:84
    [Google Scholar]
  49. 48.  Jia J, Zhao S, Kong X, Li Y, Zhao G et al. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95
    [Google Scholar]
  50. 49.  Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC et al. 2017. Improved maize reference genome with single-molecule technologies. Nature 546:524–27
    [Google Scholar]
  51. 50.  Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R et al. 2015. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:48
    [Google Scholar]
  52. 51.  Jordan T, Seeholzer S, Schwizer S, Toller A, Somssich IE, Keller B 2011. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J 65:610–21
    [Google Scholar]
  53. 52.  King R, Bird N, Ramirez-Gonzalez R, Coghill JA, Patil A et al. 2015. Mutation scanning in wheat by exon capture and next-generation sequencing. PLOS ONE 10:e0137549
    [Google Scholar]
  54. 53.  Kiran K, Rawal HC, Dubey H, Jaswal R, Devanna BN et al. 2016. Draft genome of the wheat rust pathogen (Puccinia triticina) unravels genome-wide structural variations during evolution. Genome Biol. Evol. 8:2702–21
    [Google Scholar]
  55. 54.  Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F et al. 2017. Uncovering hidden variation in polyploid wheat. PNAS 114:E913–21
    [Google Scholar]
  56. 55.  Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J et al. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–63
    [Google Scholar]
  57. 56.  Ling HQ, Zhao S, Liu D, Wang J, Sun H et al. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. . Nature 496:87–90
    [Google Scholar]
  58. 57.  Liu W, Frick M, Huel R, Nykiforuk CL, Wang X et al. 2014. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC–NBS–IRR sequence in wheat. Mol. Plant 7:1740–55
    [Google Scholar]
  59. 58.  Longin CF, Reif JC 2014. Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19:631–36
    [Google Scholar]
  60. 59.  Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO et al. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. . Nature 551:498–502
    [Google Scholar]
  61. 60.  Ma Z, Weining S, Sharp PJ, Liu C 2000. Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res 28:e106
    [Google Scholar]
  62. 61.  Mago R, Tabe L, Vautrin S, Simkova H, Kubalakova M et al. 2014. Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biol 14:379
    [Google Scholar]
  63. 62.  Mago R, Zhang P, Vautrin S, Simkova H, Bansal U et al. 2015. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants 1:15186
    [Google Scholar]
  64. 63.  Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–33
    [Google Scholar]
  65. 64.  Mayer KF, Taudien S, Martis M, Simkova H, Suchankova P et al. 2009. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505
    [Google Scholar]
  66. 65.  McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C et al. 2008. Catalogue of gene symbols for wheat. Proceedings of the 11th International Wheat Genetics Symposium R Appels, R Eastwood, E Lagudah, P Langridge, M Mackay et al. Sydney: Sydney Univ. Press
    [Google Scholar]
  67. 66.  Menardo F, Praz CR, Wicker T, Keller B 2017. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis). BMC Evol. Biol. 17:223
    [Google Scholar]
  68. 67.  Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S et al. 2016. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 48:201–5
    [Google Scholar]
  69. 68.  Moller M, Stukenbrock EH 2017. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 15:756–71
    [Google Scholar]
  70. 69.  Moore JW, Herrera-Foessel S, Lan CX, Schnippenkoetter W, Ayliffe M et al. 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47:1494–98
    [Google Scholar]
  71. 70.  Parlange F, Oberhaensli S, Breen J, Platzer M, Taudien S et al. 2011. A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome. Funct. Integr. Genom. 11:671–77
    [Google Scholar]
  72. 71.  Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–56
    [Google Scholar]
  73. 72.  Paux E, Sourdille P, Salse J, Saintenac C, Choulet F et al. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–4
    [Google Scholar]
  74. 73.  Periyannan S, Moore J, Ayliffe M, Bansal U, Wang XJ et al. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–88
    [Google Scholar]
  75. 74.  Poland JA, Brown PJ, Sorrells ME, Jannink JL 2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLOS ONE 7:e32253
    [Google Scholar]
  76. 75.  Praz CR, Bourras S, Zeng F, Sanchez-Martin J, Menardo F et al. 2017. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytol 213:1301–14
    [Google Scholar]
  77. 76.  Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M et al. 2016. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–50
    [Google Scholar]
  78. 77.  Rasheed A, Hao Y, Xia X, Khan A, Xu Y et al. 2017. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol. Plant 10:1047–64
    [Google Scholar]
  79. 78.  Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK et al. 2016. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat. Genet. 48:1576–80
    [Google Scholar]
  80. 79.  Reynolds MP, Borlaug NE 2006. Impacts of breeding on international collaborative wheat improvement. J. Agric. Sci. 144:3–17
    [Google Scholar]
  81. 80.  Safar J, Simkova H, Kubalakova M, Cihalikova J, Suchankova P et al. 2010. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet. Genome Res. 129:211–23
    [Google Scholar]
  82. 81.  Saintenac C, Lee WS, Cambon F, Rudd JJ, King RC et al. 2018. A pattern recognition receptor-like protein conserved in wheat controls gene-for-gene resistance to an extracellular fungal pathogen. Nat. Genet. 50:368–74
    [Google Scholar]
  83. 82.  Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN et al. 2013. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–86
    [Google Scholar]
  84. 83.  Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W 2002. Genetics and geography of wild cereal domestication in the Near East. Nat. Rev. Genet. 3:429–41
    [Google Scholar]
  85. 84.  Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S et al. 2017. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358:1604–6
    [Google Scholar]
  86. 85.  Sanchez-Martin J, Steuernagel B, Ghosh S, Herren G, Hurni S et al. 2016. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221
    [Google Scholar]
  87. 86.  Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S et al. 2010. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant-Microbe Interact. 23:497–509
    [Google Scholar]
  88. 87.  Shi G, Zhang Z, Friesen TL, Raats D, Fahima T et al. 2016. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2:e1600822
    [Google Scholar]
  89. 88.  Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S et al. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81
    [Google Scholar]
  90. 89.  Song WY, Wang GL, Chen LL, Kim HS, Pi LY et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–6
    [Google Scholar]
  91. 90.  Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B 2000. Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). PNAS 97:13436–41
    [Google Scholar]
  92. 91.  Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN et al. 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34:652–55
    [Google Scholar]
  93. 92.  Stirnweis D, Milani SD, Jordan T, Keller B, Brunner S 2014. Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3F resistance spectrum in wheat. Mol. Plant Microbe 27:265–76
    [Google Scholar]
  94. 93.  Sucher J, Menardo F, Praz CR, Boni R, Krattinger SG, Keller B 2018. Transcriptional profiling reveals no response of fungal pathogens to the durable, quantitative Lr34 disease resistance gene of wheat. Plant Pathol 67:792–98
    [Google Scholar]
  95. 94.  Tanksley SD, McCouch SR 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–66
    [Google Scholar]
  96. 95.  Testa A, Oliver R, Hane J 2015. Overview of genomic and bioinformatic resources for Zymoseptoria tritici. Fungal Genet. . Biol 79:13–16
    [Google Scholar]
  97. 96. The Int. Brachypodium Initiat. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. . Nature 463:763–68
    [Google Scholar]
  98. 97.  Thind AK, Wicker T, Simkova H, Fossati D, Moullet O et al. 2017. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35:793–96
    [Google Scholar]
  99. 98.  Uauy C, Wulff BBH, Dubcovsky J 2017. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu. Rev. Genet. 51:435–54
    [Google Scholar]
  100. 99.  Wang SC, Wong DB, Forrest K, Allen A, Chao SM et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 12:787–96
    [Google Scholar]
  101. 100.  Wang Y, Cheng X, Shan Q, Zhang Y, Liu J et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32:947–51
    [Google Scholar]
  102. 101.  Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L et al. 1999. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–48
    [Google Scholar]
  103. 102.  Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M et al. 2013. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat. Genet. 45:1092–96
    [Google Scholar]
  104. 103.  Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR et al. 2016. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14:1195–206
    [Google Scholar]
  105. 104.  Wulff BB, Moscou MJ 2014. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5:692
    [Google Scholar]
  106. 104a.  Xing L, Hu P, Liu J, Witek K, Zhou S et al. 2018. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 11:874–78
    [Google Scholar]
  107. 105.  Yahiaoui N, Srichumpa P, Dudler R, Keller B 2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–38
    [Google Scholar]
  108. 106.  Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J 2017. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. PNAS 114:E9483–92
    [Google Scholar]
  109. 107.  Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C et al. 2017. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol 214:619–31
    [Google Scholar]
  110. 108.  Zuo W, Chao Q, Zhang N, Ye J, Tan G et al. 2015. A maize wall–associated kinase confers quantitative resistance to head smut. Nat. Genet. 47:151–57
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035419
Loading
/content/journals/10.1146/annurev-phyto-080516-035419
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error