1932

Abstract

Spatial attention is comprised of neural mechanisms that boost sensory processing at a behaviorally relevant location while filtering out competing information. The present review examines functional specialization in the network of brain regions that directs such preferential processing. This attention network includes both cortical (e.g., frontal and parietal cortices) and subcortical (e.g., the superior colliculus and the pulvinar nucleus of the thalamus) structures. Here, we piece together existing evidence that these various nodes of the attention network have dissociable functional roles by synthesizing results from electrophysiology and neuroimaging studies. We describe functional specialization across several dimensions (e.g., at different processing stages and within different behavioral contexts), while focusing on spatial attention as a dynamic process that unfolds over time. Functional contributions from each node of the attention network can change on a moment-to-moment timescale, providing the necessary cognitive flexibility for sampling from highly dynamic environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010418-103429
2020-01-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/psych/71/1/annurev-psych-010418-103429.html?itemId=/content/journals/10.1146/annurev-psych-010418-103429&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen RA, Buneo CA. 2002. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25:189–220
    [Google Scholar]
  2. Armstrong KM, Fitzgerald JK, Moore T 2006. Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50:791–98
    [Google Scholar]
  3. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA 1991. Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J. Neurophysiol. 66:1109–24
    [Google Scholar]
  4. Barcelo F, Suwazono S, Knight RT 2000. Prefrontal modulation of visual processing in humans. Nat. Neurosci. 3:399–403
    [Google Scholar]
  5. Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R et al. 2015. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401
    [Google Scholar]
  6. Beck DM, Kastner S. 2009. Top-down and bottom-up mechanisms in biasing competition in the human brain. Vis. Res. 49:1154–65
    [Google Scholar]
  7. Bichot NP, Rossi AF, Desimone R 2005. Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308:529–34
    [Google Scholar]
  8. Bisley JW, Goldberg ME. 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86
    [Google Scholar]
  9. Bisley JW, Goldberg ME. 2010. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33:1–21
    [Google Scholar]
  10. Bollimunta A, Chen Y, Schroeder CE, Ding M 2008. Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J. Neurosci. 28:9976–88
    [Google Scholar]
  11. Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM et al. 2012. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75:875–88
    [Google Scholar]
  12. Bosman CA, Womelsdorf T, Desimone R, Fries P 2009. A microsaccadic rhythm modulates gamma-band synchronization and behavior. J. Neurosci. 29:9471–80
    [Google Scholar]
  13. Bourgeois A, Chica AB, Migliaccio R, Thiebaut de Schotten M, Bartolomeo P 2012. Cortical control of inhibition of return: evidence from patients with inferior parietal damage and visual neglect. Neuropsychologia 50:800–9
    [Google Scholar]
  14. Bruce CJ, Goldberg ME. 1985. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53:603–35
    [Google Scholar]
  15. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R 2011. Laminar differences in gamma and alpha coherence in the ventral stream. PNAS 108:11262–67
    [Google Scholar]
  16. Buffalo EA, Fries P, Landman R, Liang H, Desimone R 2010. A backward progression of attentional effects in the ventral stream. PNAS 107:361–65
    [Google Scholar]
  17. Busch NA, VanRullen R. 2010. Spontaneous EEG oscillations reveal periodic sampling of visual attention. PNAS 107:16048–53
    [Google Scholar]
  18. Buschman TJ, Kastner S. 2015. From behavior to neural dynamics: an integrated theory of attention. Neuron 88:127–44
    [Google Scholar]
  19. Buschman TJ, Miller EK. 2007. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–62
    [Google Scholar]
  20. Capotosto P, Spadone S, Tosoni A, Sestieri C, Romani GL et al. 2015. Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: a simultaneous transcranial magnetic stimulation and EEG study. J. Neurosci. 35:721–30
    [Google Scholar]
  21. Carrasco M, Ling S, Read S 2004. Attention alters appearance. Nat. Neurosci. 7:308–13
    [Google Scholar]
  22. Caruso VC, Mohl JT, Glynn C, Lee J, Willett SM et al. 2018. Single neurons may encode simultaneous stimuli by switching between activity patterns. Nat. Commun. 9:2715
    [Google Scholar]
  23. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM et al. 1998. A common network of functional areas for attention and eye movements. Neuron 21:761–73
    [Google Scholar]
  24. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL 2000. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3:292–97
    [Google Scholar]
  25. Corbetta M, Patel G, Shulman GL 2008. The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–24
    [Google Scholar]
  26. Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3:201–15
    [Google Scholar]
  27. Crick F. 1984. Function of the thalamic reticular complex: the searchlight hypothesis. PNAS 81:4586–90
    [Google Scholar]
  28. Danziger S, Ward R, Owen V, Rafal R 2001. The effects of unilateral pulvinar damage in humans on reflexive orienting and filtering of irrelevant information. Behav. Neurol. 13:95–104
    [Google Scholar]
  29. Desimone R, Duncan J. 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18:193–222
    [Google Scholar]
  30. Downar J, Crawley AP, Mikulis DJ, Davis KD 2000. A multimodal cortical network for the detection of changes in the sensory environment. Nat. Neurosci. 3:277–83
    [Google Scholar]
  31. Dugue L, Roberts M, Carrasco M 2016. Attention reorients periodically. Curr. Biol. 26:1595–601
    [Google Scholar]
  32. Fecteau JH, Munoz DP. 2006. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10:382–90
    [Google Scholar]
  33. Fiebelkorn IC, Kastner S. 2019a. The puzzling pulvinar. Neuron 101:201–3
    [Google Scholar]
  34. Fiebelkorn IC, Kastner S. 2019b. A rhythmic theory of attention. Trends Cogn. Sci. 23:87–101
    [Google Scholar]
  35. Fiebelkorn IC, Pinsk MA, Kastner S 2018. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 99:842–53
    [Google Scholar]
  36. Fiebelkorn IC, Pinsk MA, Kastner S 2019. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nat. Commun. 10:215
    [Google Scholar]
  37. Fiebelkorn IC, Saalmann YB, Kastner S 2013. Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr. Biol. 23:2553–58
    [Google Scholar]
  38. Foxe JJ, Snyder AC. 2011. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front. Psychol. 2:154
    [Google Scholar]
  39. Fries P. 2009. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32:209–24
    [Google Scholar]
  40. Fries P. 2015. Rhythms for cognition: communication through coherence. Neuron 88:220–35
    [Google Scholar]
  41. Fries P, Reynolds JH, Rorie AE, Desimone R 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–63
    [Google Scholar]
  42. Gandhi NJ, Katnani HA. 2011. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34:205–31
    [Google Scholar]
  43. Gottlieb JP, Kusunoki M, Goldberg ME 1998. The representation of visual salience in monkey parietal cortex. Nature 391:481–84
    [Google Scholar]
  44. Gregoriou GG, Gotts SJ, Desimone R 2012. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 73:581–94
    [Google Scholar]
  45. Gregoriou GG, Gotts SJ, Zhou H, Desimone R 2009. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–10
    [Google Scholar]
  46. Gregoriou GG, Rossi AF, Ungerleider LG, Desimone R 2014. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat. Neurosci. 17:1003–11
    [Google Scholar]
  47. Haegens S, Nacher V, Luna R, Romo R, Jensen O 2011. Alpha-oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. PNAS 108:19377–82
    [Google Scholar]
  48. Halassa MM, Kastner S. 2017. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20:1669–79
    [Google Scholar]
  49. Halgren M, Ulbert I, Bastuji H, Fabo D, Eross L et al. 2017. The generation and propagation of the human alpha rhythm. bioRxiv 202564. https://doi.org/10.1101/202564
    [Crossref]
  50. Helfrich RF, Fiebelkorn IC, Szczepanski SM, Lin JJ, Parvizi J et al. 2018. Neural mechanisms of sustained attention are rhythmic. Neuron 99:829–41
    [Google Scholar]
  51. Helfrich RF, Huang M, Wilson G, Knight RT 2017. Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception. PNAS 114:9457–62
    [Google Scholar]
  52. Hogendoorn H. 2016. Voluntary saccadic eye movements ride the attentional rhythm. J. Cogn. Neurosci. 28:1625–35
    [Google Scholar]
  53. Ibos G, Duhamel JR, Ben Hamed S 2013. A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J. Neurosci. 33:8359–69
    [Google Scholar]
  54. Ignashchenkova A, Dicke PW, Haarmeier T, Thier P 2004. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat. Neurosci. 7:56–64
    [Google Scholar]
  55. Itti L, Koch C. 2001. Computational modelling of visual attention. Nat. Rev. Neurosci. 2:194–203
    [Google Scholar]
  56. James W. 1950. 1890. The Principles of Psychology New York: H. Holt & Co.
  57. Jensen O, Mazaheri A. 2010. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4:186
    [Google Scholar]
  58. Jia J, Liu L, Fang F, Luo H 2017. Sequential sampling of visual objects during sustained attention. PLOS Biol 15:e2001903
    [Google Scholar]
  59. Johnston K, Ma L, Schaeffer L, Everling S 2019. Alpha-oscillations modulate preparatory activity in marmoset area 8Ad. J. Neurosci. 39:1855–66
    [Google Scholar]
  60. Jones EG. 2001. The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601
    [Google Scholar]
  61. Juan CH, Muggleton NG, Tzeng OJ, Hung DL, Cowey A, Walsh V 2008. Segregation of visual selection and saccades in human frontal eye fields. Cereb. Cortex 18:2410–15
    [Google Scholar]
  62. Juan CH, Shorter-Jacobi SM, Schall JD 2004. Dissociation of spatial attention and saccade preparation. PNAS 101:15541–44
    [Google Scholar]
  63. Kastner S, De Weerd P, Desimone R, Ungerleider LG 1998. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–11
    [Google Scholar]
  64. Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG 1999. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–61
    [Google Scholar]
  65. Kastner S, Ungerleider LG. 2000. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23:315–41
    [Google Scholar]
  66. Katsuki F, Constantinidis C. 2012. Early involvement of prefrontal cortex in visual bottom-up attention. Nat. Neurosci. 15:1160–66
    [Google Scholar]
  67. Kelly SP, Lalor EC, Reilly RB, Foxe JJ 2006. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distractor suppression during sustained visuospatial attention. J. Neurophysiol. 95:3844–51
    [Google Scholar]
  68. Kienitz R, Schmiedt JT, Shapcott KA, Kouroupaki K, Saunders RC, Schmid MC 2018. Theta rhythmic neuronal activity and reaction times arising from cortical receptive field interactions during distributed attention. Curr. Biol. 28:2377–87.e5
    [Google Scholar]
  69. Klein RM. 2000. Inhibition of return. Trends Cogn. Sci. 4:138–47
    [Google Scholar]
  70. Koch C, Ullman S. 1985. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4:219–27
    [Google Scholar]
  71. Krauzlis RJ, Lovejoy LP, Zenon A 2013. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36:165–82
    [Google Scholar]
  72. Landau AN, Fries P. 2012. Attention samples stimuli rhythmically. Curr. Biol. 22:1000–4
    [Google Scholar]
  73. Landau AN, Schreyer HM, van Pelt S, Fries P 2015. Distributed attention is implemented through theta-rhythmic gamma modulation. Curr. Biol. 25:2332–37
    [Google Scholar]
  74. Lehky SR, Maunsell JH. 1996. No binocular rivalry in the LGN of alert macaque monkeys. Vis. Res. 36:1225–34
    [Google Scholar]
  75. Lisman J. 2010. Working memory: the importance of theta and gamma oscillations. Curr. Biol. 20:R490–92
    [Google Scholar]
  76. Lovejoy LP, Krauzlis RJ. 2010. Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat. Neurosci. 13:261–66
    [Google Scholar]
  77. Lowet E, Gips B, Roberts MJ, De Weerd P, Jensen O, van der Eerden J 2018a. Microsaccade-rhythmic modulation of neural synchronization and coding within and across cortical areas V1 and V2. PLOS Biol 16:e2004132
    [Google Scholar]
  78. Lowet E, Gomes B, Srinivasan K, Zhou H, Schafer RJ, Desimone R 2018b. Enhanced neural processing by covert attention only during microsaccades directed toward the attended stimulus. Neuron 99:207–14.e3
    [Google Scholar]
  79. Lu ZL, Dosher BA. 1998. External noise distinguishes attention mechanisms. Vis. Res. 38:1183–98
    [Google Scholar]
  80. Luck SJ, Chelazzi L, Hillyard SA, Desimone R 1997. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77:24–42
    [Google Scholar]
  81. Martin AB, Yang X, Saalmann YB, Wang L, Shestyuk A et al. 2019. Temporal dynamics and response modulation across the human visual system in a spatial attention task: an ECoG study. J. Neurosci. 39:333–52
    [Google Scholar]
  82. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T 2009. To see or not to see: Prestimulus alpha phase predicts visual awareness. J. Neurosci. 29:2725–32
    [Google Scholar]
  83. McAlonan K, Cavanaugh J, Wurtz RH 2008. Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–94
    [Google Scholar]
  84. Mehta AD, Ulbert I, Schroeder CE 2000. Intermodal selective attention in monkeys. I. Distribution and timing of effects across visual areas. Cereb. Cortex 10:343–58
    [Google Scholar]
  85. Mejias JF, Murray JD, Kennedy H, Wang XJ 2016. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Sci. Adv. 2:e1601335
    [Google Scholar]
  86. Moore T, Armstrong KM. 2003. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–73
    [Google Scholar]
  87. Moore T, Fallah M. 2001. Control of eye movements and spatial attention. PNAS 98:1273–76
    [Google Scholar]
  88. Moran J, Desimone R. 1985. Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84
    [Google Scholar]
  89. Nobre AC, Gitelman DR, Dias EC, Mesulam MM 2000. Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage 11:210–16
    [Google Scholar]
  90. Nobre K, Kastner S. 2014. The Oxford Handbook of Attention Oxford, UK: Oxford Univ. Press
  91. O'Connor DH, Fukui MM, Pinsk MA, Kastner S 2002. Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5:1203–9
    [Google Scholar]
  92. Osipova D, Hermes D, Jensen O 2008. Gamma power is phase-locked to posterior alpha activity. PLOS ONE 3:e3990
    [Google Scholar]
  93. Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S 2008. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J. Vis. 8:21
    [Google Scholar]
  94. Parvizi J. 2009. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn. Sci. 13:354–59
    [Google Scholar]
  95. Petersen SE, Posner MI. 2012. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35:73–89
    [Google Scholar]
  96. Petersen SE, Robinson DL, Keys W 1985. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J. Neurophysiol. 54:867–86
    [Google Scholar]
  97. Petersen SE, Robinson DL, Morris JD 1987. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25:97–105
    [Google Scholar]
  98. Pogosyan A, Gaynor LD, Eusebio A, Brown P 2009. Boosting cortical activity at beta-band frequencies slows movement in humans. Curr. Biol. 19:1637–41
    [Google Scholar]
  99. Posner MI. 1980. Orienting of attention. Q. J. Exp. Psychol. 32:3–25
    [Google Scholar]
  100. Posner MI, Petersen SE. 1990. The attention system of the human brain. Annu. Rev. Neurosci. 13:25–42
    [Google Scholar]
  101. Posner MI, Petersen SE, Fox PT, Raichle ME 1988. Localization of cognitive operations in the human brain. Science 240:1627–31
    [Google Scholar]
  102. Posner MI, Walker JA, Friedrich FJ, Rafal RD 1984. Effects of parietal injury on covert orienting of attention. J. Neurosci. 4:1863–74
    [Google Scholar]
  103. Purushothaman G, Marion R, Li K, Casagrande VA 2012. Gating and control of primary visual cortex by pulvinar. Nat. Neurosci. 15:905–12
    [Google Scholar]
  104. Rafal RD, Posner MI. 1987. Deficits in human visual spatial attention following thalamic lesions. PNAS 84:7349–53
    [Google Scholar]
  105. Recanzone GH, Wurtz RH. 2000. Effects of attention on MT and MST neuronal activity during pursuit initiation. J. Neurophysiol. 83:777–90
    [Google Scholar]
  106. Reynolds JH, Chelazzi L. 2004. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27:611–47
    [Google Scholar]
  107. Reynolds JH, Chelazzi L, Desimone R 1999. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19:1736–53
    [Google Scholar]
  108. Reynolds JH, Desimone R. 2003. Interacting roles of attention and visual salience in V4. Neuron 37:853–63
    [Google Scholar]
  109. Reynolds JH, Heeger DJ. 2009. The normalization model of attention. Neuron 61:168–85
    [Google Scholar]
  110. Riddle J, Hwang K, Cellier D, Dhanani S, D'Esposito M 2019. Causal evidence for the role of neuronal oscillations in top-down and bottom-up attention. J. Cogn. Neurosci. 31:768–79
    [Google Scholar]
  111. Rizzolatti G, Riggio L, Dascola I, Umilta C 1987. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40
    [Google Scholar]
  112. Robinson DL, McClurkin JW, Kertzman C, Petersen SE 1991. Visual responses of pulvinar and collicular neurons during eye movements of awake, trained macaques. J. Neurophysiol. 66:485–96
    [Google Scholar]
  113. Rollenhagen JE, Olson CR. 2005. Low-frequency oscillations arising from competitive interactions between visual stimuli in macaque inferotemporal cortex. J. Neurophysiol. 94:3368–87
    [Google Scholar]
  114. Rosen AC, Rao SM, Caffarra P, Scaglioni A, Bobholz JA et al. 1999. Neural basis of endogenous and exogenous spatial orienting: a functional MRI study. J. Cogn. Neurosci. 11:135–52
    [Google Scholar]
  115. Rossi AF, Bichot NP, Desimone R, Ungerleider LG 2007. Top-down attentional deficits in macaques with lesions of lateral prefrontal cortex. J. Neurosci. 27:11306–14
    [Google Scholar]
  116. Saalmann YB, Kastner S. 2011. Cognitive and perceptual functions of the visual thalamus. Neuron 71:209–23
    [Google Scholar]
  117. Saalmann YB, Pigarev IN, Vidyasagar TR 2007. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–15
    [Google Scholar]
  118. Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S 2012. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–56
    [Google Scholar]
  119. Sapountzis P, Paneri S, Gregoriou GG 2018. Distinct roles of prefrontal and parietal areas in the encoding of attentional priority. PNAS 115:E8755–64
    [Google Scholar]
  120. Schneider KA, Kastner S. 2009. Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. J. Neurosci. 29:1784–95
    [Google Scholar]
  121. Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P 2010. Dynamics of active sensing and perceptual selection. Curr. Opin. Neurobiol. 20:172–76
    [Google Scholar]
  122. Serences JT, Yantis S. 2007. Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cereb. Cortex 17:284–93
    [Google Scholar]
  123. Sherman SM, Guillery RW, Sherman SM 2006. Exploring the Thalamus and Its Role in Cortical Function Cambridge, MA: MIT Press
  124. Shipp S. 2003. The functional logic of cortico-pulvinar connections. Philos. Trans. R. Soc. B 358:1605–24
    [Google Scholar]
  125. Smith DT, Schenk T. 2012. The premotor theory of attention: time to move on?. Neuropsychologia 50:1104–14
    [Google Scholar]
  126. Song K, Meng M, Chen L, Zhou K, Luo H 2014. Behavioral oscillations in attention: rhythmic alpha pulses mediated through theta band. J. Neurosci. 34:4837–44
    [Google Scholar]
  127. Spaak E, Bonnefond M, Maier A, Leopold DA, Jensen O 2012. Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex. Curr. Biol. 22:2313–18
    [Google Scholar]
  128. Sprague TC, Serences JT. 2013. Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat. Neurosci. 16:1879–87
    [Google Scholar]
  129. Squire RF, Noudoost B, Schafer RJ, Moore T 2013. Prefrontal contributions to visual selective attention. Annu. Rev. Neurosci. 36:451–66
    [Google Scholar]
  130. Steinmetz MA, Constantinidis C. 1995. Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb. Cortex 5:448–56
    [Google Scholar]
  131. Suzuki M, Gottlieb J. 2013. Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nat. Neurosci. 16:98–104
    [Google Scholar]
  132. Thompson KG, Bichot NP. 2005. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147:251–62
    [Google Scholar]
  133. Thompson KG, Biscoe KL, Sato TR 2005. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25:9479–87
    [Google Scholar]
  134. Treisman AM, Gelade G. 1980. A feature-integration theory of attention. Cogn. Psychol. 12:97–136
    [Google Scholar]
  135. Vallar G, Perani D. 1986. The anatomy of unilateral neglect after right-hemisphere stroke lesions: a clinical/CT-scan correlation study in man. Neuropsychologia 24:609–22
    [Google Scholar]
  136. van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis MA, Poort J et al. 2014. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. PNAS 111:14332–41
    [Google Scholar]
  137. VanRullen R, Carlson T, Cavanagh P 2007. The blinking spotlight of attention. PNAS 104:19204–9
    [Google Scholar]
  138. Vivas AB, Humphreys GW, Fuentes LJ 2006. Abnormal inhibition of return: a review and new data on patients with parietal lobe damage. Cogn. Neuropsychol. 23:1049–64
    [Google Scholar]
  139. von Helmholtz H 1867. Handbuch der physiologischen Optik Leipzig, Ger.: Voss
  140. Ward R, Danziger S, Owen V, Rafal R 2002. Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. Nat. Neurosci. 5:99–100
    [Google Scholar]
  141. Wimmer K, Ramon M, Pasternak T, Compte A 2016. Transitions between multiband oscillatory patterns characterize memory-guided perceptual decisions in prefrontal circuits. J. Neurosci. 36:489–505
    [Google Scholar]
  142. Wimmer RD, Schmitt LI, Davidson TJ, Nakajima M, Deisseroth K, Halassa MM 2015. Thalamic control of sensory selection in divided attention. Nature 526:705–9
    [Google Scholar]
  143. Womelsdorf T, Fries P, Mitra PP, Desimone R 2006. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–36
    [Google Scholar]
  144. Worden MS, Foxe JJ, Wang N, Simpson GV 2000. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J. Neurosci. 20: RC63
    [Google Scholar]
  145. Zenon A, Krauzlis RJ. 2012. Attention deficits without cortical neuronal deficits. Nature 489:434–37
    [Google Scholar]
  146. Zhang Y, Chen Y, Bressler SL, Ding M 2008. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 156:238–46
    [Google Scholar]
  147. Zhou H, Schafer RJ, Desimone R 2016. Pulvinar-cortex interactions in vision and attention. Neuron 89:209–20
    [Google Scholar]
/content/journals/10.1146/annurev-psych-010418-103429
Loading
/content/journals/10.1146/annurev-psych-010418-103429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error