1932

Abstract

For more than 50 years, psychologists and neuroscientists have recognized the importance of a working memory to coordinate processing when multiple goals are active and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory by allocating attention to internal representations, whether semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking memory contexts. The prefrontal cortex (PFC), on the other hand, exerts control over behavior by biasing the salience of mnemonic representations and adjudicating among competing, context-dependent rules. The “control of the controller” emerges from a complex interplay between PFC and striatal circuits and ascending dopaminergic neuromodulatory signals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010814-015031
2015-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/psych/66/1/annurev-psych-010814-015031.html?itemId=/content/journals/10.1146/annurev-psych-010814-015031&mimeType=html&fmt=ahah

Literature Cited

  1. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE. 2003. Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J. Neurosci. 23:2008–13 [Google Scholar]
  2. Alvarez GA, Cavanagh P. 2004. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15:106–11 [Google Scholar]
  3. Anderson DE, Serences JT, Vogel EK, Awh E. 2014. Induced alpha rhythms track the content and quality of visual working memory representations with high temporal precision. J. Neurosci. 34:7587–99 [Google Scholar]
  4. Arnsten A. 1997. Catecholamine regulation of the prefrontal cortex. J. Psychopharmacol. 11:151–62 [Google Scholar]
  5. Arnsten KT, Cai JX, Murphy BL, Goldman-Rakic PS. 1994. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–51 [Google Scholar]
  6. Awh E, Jonides J. 2001. Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5:119–26 [Google Scholar]
  7. Awh E, Jonides J, Reuter-Lorenz PA. 1998. Rehearsal in spatial working memory. J. Exp. Psychol.: Hum. Percept. Perform. 24:780–90 [Google Scholar]
  8. Azuar C, Reyes P, Slachevsky A, Volle E, Kinkingnehun S. et al. 2014. Testing the model of caudo-rostral organization of cognitive control in the human with frontal lesions. NeuroImage 84:1053–60 [Google Scholar]
  9. Baddeley A. 1986. Working Memory New York: Oxford Univ. Press
  10. Baddeley A, Hitch GJ. 1974. Working memory. Psychology of Learning and Motivation G Bower 847–89 New York: Academic PressThe paper that introduces the highly influential multiple-component model of working memory. [Google Scholar]
  11. Badre D. 2008. Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn. Sci. 12:193–200 [Google Scholar]
  12. Badre D. 2012. Opening the gate to working memory. Proc. Natl. Acad. Sci. USA 109:19878–79 [Google Scholar]
  13. Badre D, D'Esposito M. 2007. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J. Cogn. Neurosci. 19:2082–99 [Google Scholar]
  14. Badre D, D'Esposito M. 2009. Is the rostro-caudal axis of the frontal lobe hierarchical?. Nat. Rev. Neurosci. 10:659–69A synthesis of the evidence that the rostral-caudal functional gradient observed along the frontal cortex is hierarchical. [Google Scholar]
  15. Badre D, Frank MJ. 2012. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI. Cereb. Cortex 22:527–36 [Google Scholar]
  16. Badre D, Hoffman J, Cooney JW, D'Esposito M. 2009. Hierarchical cognitive control deficits following damage to the human frontal lobe. Nat. Neurosci. 12:515–22 [Google Scholar]
  17. Bannon MJ, Roth RH. 1983. Pharmacology of mesocortical dopamine neurons. Pharmacol. Rev. 35:53–68 [Google Scholar]
  18. Barbas H, Pandya DN. 1991. Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. Frontal Lobe Function and Dysfunction HS Levin, H Eisenberg, AL Benton 35–58 Oxford, UK: Oxford Univ. Press [Google Scholar]
  19. Bays PM, Husain M. 2008. Dynamic shifts of limited working memory resources in human vision. Science 321:851–54 [Google Scholar]
  20. Bentin S, Allison T, Puce A, Perez E, McCarthy G. 1996. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8:551–65 [Google Scholar]
  21. Bilder RM, Volavka J, Lachman HM, Grace AA. 2004. The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29:1943–61 [Google Scholar]
  22. Blumenfeld RS, Nomura EM, Gratton C, D'Esposito M. 2013. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis. Cereb. Cortex 23:2457–66 [Google Scholar]
  23. Braver TS, Cohen JD. 1999. Dopamine, cognitive control, and schizophrenia: the gating model. Prog. Brain Res. 121:327–49 [Google Scholar]
  24. Braver TS, Gray JR, Burgess GC. 2008. Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. Variation in Working Memory ARA Conway, C Jarrold, MJ Kane, A Miyake, JN Towse 76–106 Oxford, UK: Oxford Univ. Press [Google Scholar]
  25. Brown RM, Crane AM, Goldman PS. 1979. Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 168:133–50 [Google Scholar]
  26. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–32 [Google Scholar]
  27. Burgess PW, Dumontheil I, Gilbert SJ. 2007. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn. Sci. 11:290–98 [Google Scholar]
  28. Buzsáki G, Draguhn A. 2004. Neuronal oscillations in cortical networks. Science 304:1926–29 [Google Scholar]
  29. Camps M, Cortés R, Gueye B, Probst A, Palacios JM. 1989. Dopamine receptors in human brain: autoradiographic distribution of D2 sites. Neuroscience 28:275–90 [Google Scholar]
  30. Chao LL, Knight RT. 1998. Contribution of human prefrontal cortex to delay performance. J. Cogn. Neurosci. 10:167–77 [Google Scholar]
  31. Chatham CH, Badre D. 2013. Working memory management and predicted utility. Front. Behav. Neurosci. 7:83 [Google Scholar]
  32. Chen AJ, Britton M, Turner GR, Vytlacil J, Thompson TW, D'Esposito M. 2012. Goal-directed attention alters the tuning of object-based representations in extrastriate cortex. Front. Hum. Neurosci. 6:187 [Google Scholar]
  33. Christoff K, Ream JM, Geddes LP, Gabrieli JD. 2003. Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behav. Neurosci. 117:1161–68 [Google Scholar]
  34. Christophel TB, Hebart MN, Haynes JD. 2012. Decoding the contents of visual short-term memory from human visual and parietal cortex. J. Neurosci. 32:12983–89 [Google Scholar]
  35. Cohen JD, Braver TS, Brown JW. 2002. Computational perspectives on dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12:223–29 [Google Scholar]
  36. Constantinidis C, Franowicz MN, Goldman-Rakic PS. 2001. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat. Neurosci. 4:311–16 [Google Scholar]
  37. Cools R, D'Esposito M. 2009. Dopaminergic modulation of flexible control in humans. Dopamine Handbook A Bjorklund, SB Dunnett, LL Iversen, SD Iversen 249–60 Oxford, UK: Oxford Univ. Press [Google Scholar]
  38. Cools R, D'Esposito M. 2011. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69:e113–25A review of evidence from studies with experimental animals, healthy humans, and patients with Parkinson's disease, which demonstrate that optimum levels of dopamine are necessary for successful cognitive control. [Google Scholar]
  39. Cools R, Robbins TW. 2004. Chemistry of the adaptive mind. Philos. Transact. A Math. Phys. Eng. Sci. 362:2871–88 [Google Scholar]
  40. Cools R, Sheridan M, Jacobs E, D'Esposito M. 2007. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J. Neurosci. 27:5506–14 [Google Scholar]
  41. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. 1990. Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248:1556–59 [Google Scholar]
  42. Courtney SM, Ungerleider LG, Keil K, Haxby JV. 1997. Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–11 [Google Scholar]
  43. Cowan N. 1995. Attention and Memory: An Integrated Framework New York: Oxford Univ. Press
  44. Crespo-Garcia M, Pinal D, Cantero JL, Díaz F, Zurrón M, Atienza M. 2013. Working memory processes are mediated by local and long-range synchronization of alpha oscillations. J. Cogn. Neurosci. 25:1343–57 [Google Scholar]
  45. Cummings JL. 1993. Frontal-subcortical circuits and human behavior. Arch. Neurol. 50:873–80 [Google Scholar]
  46. Curtis CE, Rao VY, D'Esposito M. 2004. Maintenance of spatial and motor codes during oculomotor delayed response tasks. J. Neurosci. 24:3944–52 [Google Scholar]
  47. D'Ardenne K, McClure SM, Nystrom LE, Cohen JD. 2008. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319:1264–67 [Google Scholar]
  48. D'Esposito M. 2007. From cognitive to neural models of working memory. Philos. Trans. R. Soc. B 362:761–72 [Google Scholar]
  49. D'Esposito M, Postle B, Rypma B. 2000. Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp. Brain Res. 133:3–11 [Google Scholar]
  50. Devinsky O, D'Esposito M. 2003. Neurology of Cognitive and Behavioral Disorders New York: Oxford Univ. Press
  51. Duncan J. 2001. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2:820–29 [Google Scholar]
  52. Durstewitz D, Seamans JK. 2008. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-O-methyltransferase genotypes and schizophrenia. Biol. Psychiatry 64:739–49 [Google Scholar]
  53. Durstewitz D, Seamans JK, Sejnowski TJ. 2000a. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 83:1733–50 [Google Scholar]
  54. Durstewitz D, Seamans JK, Sejnowski TJ. 2000b. Neurocomputational models of working memory. Nat. Neurosci. 3:Suppl.1184–91 [Google Scholar]
  55. Eichenbaum H. 2013. Memory on time. Trends Cogn. Sci. 17:81–88 [Google Scholar]
  56. Emrich SM, Riggall AC, Larocque JJ, Postle BR. 2013. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. J. Neurosci. 33:6516–23 [Google Scholar]
  57. Epstein R, Kanwisher N. 1998. A cortical representation of the local visual environment. Nature 392:598–601 [Google Scholar]
  58. Erickson MA, Maramara LA, Lisman J. 2010. A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory. J. Cogn. Neurosci. 22:2530–40 [Google Scholar]
  59. Ester EF, Anderson DE, Serences JT, Awh E. 2013. A neural measure of precision in visual working memory. J. Cogn. Neurosci. 25:754–61A powerful demonstration, with MVPA encoding models, that the precision of neural representations in sensory cortex determines the precision of STM. [Google Scholar]
  60. Fell J, Axmacher N. 2011. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12:105–18 [Google Scholar]
  61. Feredoes E, Heinen K, Weiskopf N, Ruff C, Driver J. 2011. Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proc. Natl. Acad. Sci. USA 108:17510–15 [Google Scholar]
  62. Fiebach CJ, Rissman J, D'Esposito M. 2006. Modulation of inferotemporal cortex activation during verbal working memory maintenance. Neuron 51:251–61 [Google Scholar]
  63. Frank MJ, Badre D. 2012. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. Cereb. Cortex 22:509–26 [Google Scholar]
  64. Frank MJ, Loughry B, O'Reilly RC. 2001. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect. Behav. Neurosci. 1:137–60 [Google Scholar]
  65. Frank MJ, O'Reilly RC. 2006. A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav. Neurosci. 120:497–517 [Google Scholar]
  66. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. 2001. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291:312–16 [Google Scholar]
  67. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. 2003. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 23:5235–46 [Google Scholar]
  68. Fries P. 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9:474–80 [Google Scholar]
  69. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61:331–49 [Google Scholar]
  70. Fuster JM. 1990. Prefrontal cortex and the bridging of temporal gaps in the perception-action cycle. Ann. N. Y. Acad. Sci. 608:318–29 discussion 330–36 [Google Scholar]
  71. Fuster JM. 2004. Upper processing stages of the perception-action cycle. Trends Cogn. Sci. 8:143–45 [Google Scholar]
  72. Fuster JM. 2008. The Prefrontal Cortex Oxford, UK: Elsevier
  73. Fuster JM, Alexander GE. 1971. Neuron activity related to short-term memory. Science 173:652–54 [Google Scholar]
  74. Fuster JM, Bauer RH, Jervey JP. 1985. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 330:299–307 [Google Scholar]
  75. Gazzaley A, Cooney JW, McEvoy K, Knight RT, D'Esposito M. 2005. Top-down enhancement and suppression of the magnitude and speed of neural activity. J. Cogn. Neurosci. 17:507–17A study using fMRI and ERP that provides converging evidence that both the magnitude of neural activity and the speed of neural processing are modulated by top-down influences. [Google Scholar]
  76. Gazzaley A, Rissman J, D'Esposito M. 2004. Functional connectivity during working memory maintenance. Cogn. Affect. Behav. Neurosci. 4:580–99 [Google Scholar]
  77. Goldman-Rakic PS. 1987. Circuitry of the prefrontal cortex and the regulation of behavior by representational knowledge. Handbook of Physiology: The Nervous System F Plum, VB Mountcastle 373–417 Bethesda, MD: Am. Physiol. Soc. [Google Scholar]
  78. Goldman-Rakic PS. 1995. Cellular basis of working memory. Neuron 14:477–85 [Google Scholar]
  79. Goldman-Rakic PS, Lidow MS, Gallager DW. 1990. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci. 10:2125–38 [Google Scholar]
  80. Grace AA. 2000. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 95:Suppl. 2S119–28 [Google Scholar]
  81. Hamidi M, Tononi G, Postle BR. 2008. Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation. Brain Res. 1230:202–10 [Google Scholar]
  82. Hamidi M, Tononi G, Postle BR. 2009. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation. Neuropsychologia 47:295–302 [Google Scholar]
  83. Han X, Berg AC, Oh H, Samaras D, Leung HC. 2013. Multi-voxel pattern analysis of selective representation of visual working memory in ventral temporal and occipital regions. NeuroImage 73:8–15 [Google Scholar]
  84. Harrison SA, Tong F. 2009. Decoding reveals the contents of visual working memory in early visual areas. Nature 458:632–35 [Google Scholar]
  85. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–30 [Google Scholar]
  86. Higo T, Mars RB, Boorman ED, Buch ER, Rushworth MFS. 2011. Distributed and causal influence of frontal operculum in task control. Proc. Natl. Acad. Sci. USA 108:4230–35 [Google Scholar]
  87. Hillyard SA, Hink RF, Schwent VL, Picton TW. 1973. Electrical signs of selective attention in the human brain. Science 182:177–80 [Google Scholar]
  88. Itskov V, Hansel D, Tsodyks M. 2011. Short-term facilitation may stabilize parametric working memory trace. Front. Comput. Neurosci. 5:40 [Google Scholar]
  89. Jerde TA, Merriam EP, Riggall AC, Hedges JH, Curtis CE. 2012. Prioritized maps of space in human frontoparietal cortex. J. Neurosci. 32:17382–90 [Google Scholar]
  90. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11 [Google Scholar]
  91. Kimberg DY, D'Esposito M. 2003. Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologia 41:1020–27 [Google Scholar]
  92. Kimberg DY, D'Esposito M, Farah MJ. 1997. Effects of bromocriptine on human subjects depend on working memory capacity. NeuroReport 8:3581–85 [Google Scholar]
  93. Koechlin E, Ody C, Kouneiher F. 2003. The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–85 [Google Scholar]
  94. Koechlin E, Summerfield C. 2007. An information theoretical approach to prefrontal executive function. Trends Cogn. Sci. 11:229–35 [Google Scholar]
  95. Kouneiher F, Charron S, Koechlin E. 2009. Motivation and cognitive control in the human prefrontal cortex. Nat. Neurosci. 12:939–45 [Google Scholar]
  96. Kubota K, Niki H. 1971. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J. Neurophysiol. 34:337–47 [Google Scholar]
  97. LaRocque JJ, Lewis-Peacock JA, Drysdale AT, Oberauer K, Postle BR. 2013. Decoding attended information in short-term memory: an EEG study. J. Cogn. Neurosci. 25:127–42 [Google Scholar]
  98. Lee SH, Kravitz DJ, Baker CI. 2013. Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat. Neurosci. 16:997–99 [Google Scholar]
  99. Lee TG, D'Esposito M. 2012. The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study. J. Neurosci. 32:15458–66 [Google Scholar]
  100. Lewis-Peacock JA, Drysdale AT, Oberauer K, Postle BR. 2012. Neural evidence for a distinction between short-term memory and the focus of attention. J. Cogn. Neurosci. 24:61–79 [Google Scholar]
  101. Lewis-Peacock JA, Postle BR. 2008. Temporary activation of long-term memory supports working memory. J. Neurosci. 28:8765–71 [Google Scholar]
  102. Lewis-Peacock JA, Postle BR. 2012. Decoding the internal focus of attention. Neuropsychologia 50:470–78 [Google Scholar]
  103. Liebe S, Hoerzer GM, Logothetis NK, Rainer G. 2012. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat. Neurosci. 15:456–62S1–2 [Google Scholar]
  104. Luciana M, Collins PF. 1997. Dopaminergic modulation of working memory for spatial but not object cues in normal humans. J. Cogn. Neurosci. 9:330–47 [Google Scholar]
  105. Luck SJ, Vogel EK. 1997. The capacity of visual working memory for features and conjunctions. Nature 390:279–81 [Google Scholar]
  106. Luck SJ, Vogel EK. 2013. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17:391–400An authoritative summary of evidence supporting slots models of STM capacity limits. [Google Scholar]
  107. Ma WJ, Husain M, Bays PM. 2014. Changing concepts of working memory. Nat. Neurosci. 17:347–56A comprehensive review of psychophysical and neural evidence for single-resource models of STM capacity limits. [Google Scholar]
  108. Magnussen S. 2000. Low-level memory processes in vision. Trends Neurosci. 23:247–51 [Google Scholar]
  109. Magnussen S, Greenlee MW. 1999. The psychophysics of perceptual memory. Psychol. Res. 62:81–92 [Google Scholar]
  110. McElree B. 1998. Attended and non-attended states in working memory: accessing categorized structures. J. Mem. Lang. 38:225–52 [Google Scholar]
  111. McElree B. 2006. Accessing recent events. Psychol. Learn. Motiv. 46:155–200 [Google Scholar]
  112. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A. et al. 2005. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat. Neurosci. 8:594–96 [Google Scholar]
  113. Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. 2008. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J. Neurophysiol. 100:1407–19 [Google Scholar]
  114. Miller BT, D'Esposito M. 2005. Searching for “the top” in top-down control. Neuron 48:535–38 [Google Scholar]
  115. Miller BT, Vytlacil J, Fegen D, Pradhan S, D'Esposito M. 2011. The prefrontal cortex modulates category selectivity in human extrastriate cortex. J. Cogn. Neurosci. 23:1–10 [Google Scholar]
  116. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202An influential model of how the PFC implements top-down control for the flexible control of behavior. [Google Scholar]
  117. Miller EK, Erickson CA, Desimone R. 1996. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16:5154–67 [Google Scholar]
  118. Miller GA, Galanter E, Pribham KH. 1960. Plans and the Structure of Behavior New York: Holt, Rinehart and Winston
  119. Mongillo G, Barak O, Tsodyks M. 2008. Synaptic theory of working memory. Science 319:1543–46 [Google Scholar]
  120. Moran J, Desimone R. 1985. Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84 [Google Scholar]
  121. Muller U, Von Cramon DY, Pollmann S. 1998. D1- versus D2-receptor modulation of visuospatial working memory in humans. J. Neurosci. 18:2720–28 [Google Scholar]
  122. Nelissen N, Stokes M, Nobre AC, Rushworth MF. 2013. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection. J. Neurosci. 33:16443–58 [Google Scholar]
  123. Oberauer K. 2001. Removing irrelevant information from working memory: a cognitive aging study with the modified Sternberg task. J. Exp. Psychol.: Learn. Mem. Cogn. 27:948–57 [Google Scholar]
  124. Oberauer K. 2002. Access to information in working memory: exploring the focus of attention. J. Exp. Psychol.: Learn. Mem. Cogn. 28:411–21 [Google Scholar]
  125. Oberauer K. 2005. Control of the contents of working memory—a comparison of two paradigms and two age groups. J. Exp. Psychol.: Learn. Mem. Cogn. 31:714–28 [Google Scholar]
  126. Oberauer K. 2009. Design for a working memory. Psychol. Learn. Motiv. 51:45–100 [Google Scholar]
  127. Oberauer K. 2013. The focus of attention in working memory—from metaphors to mechanisms. Front. Hum. Neurosci. 7:673 [Google Scholar]
  128. Palva JM, Monto S, Kulashekhar S, Palva S. 2010. Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc. Natl. Acad. Sci. USA 107:7580–85 [Google Scholar]
  129. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. 2002. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5:805–11 [Google Scholar]
  130. Petrides M. 2000. Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. J. Neurosci. 20:7496–503 [Google Scholar]
  131. Postle BR. 2006. Working memory as an emergent property of the mind and brain. Neuroscience 139:23–38 [Google Scholar]
  132. Postle BR. 2011. What underlies the ability to guide action with spatial information that is no longer present in the environment?. Spatial Working Memory A Vandierendonck, A Szmalec 87–101 Hove, UK: Psychology [Google Scholar]
  133. Postle BR. 2015. The cognitive neuroscience of visual short-term memory. Curr. Opin. Behav. Sci. 140–46A summary of the novel insights provided by MVPA, including the possibility that elevated activity reflects the focus of attention rather than working memory storage per se.
  134. Postle BR, Idzikowski C, Sala SD, Logie RH, Baddeley AD. 2006. The selective disruption of spatial working memory by eye movements. Q. J. Exp. Psychol. (Hove) 59:100–20 [Google Scholar]
  135. Pribram KH, Ahumada A, Hartog J, Roos L. 1964. A progress report on the neurological processes disturbed by frontal lesions in primates. The Frontal Cortex and Behavior JM Warren, K Akert 28–55 New York: McGraw-Hill [Google Scholar]
  136. Pycock CJ, Kerwin RW, Carter CJ. 1980. Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286:74–76 [Google Scholar]
  137. Ramnani N, Owen AM. 2004. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5:184–94 [Google Scholar]
  138. Riggall AC, Postle BR. 2012. The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. J. Neurosci. 32:12990–98 [Google Scholar]
  139. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND. et al. 2013. The importance of mixed selectivity in complex cognitive tasks. Nature 497:585–90 [Google Scholar]
  140. Rissman J, Gazzaley A, D'Esposito M. 2004. Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage 23:752–63 [Google Scholar]
  141. Romo R, Brody CD, Hernández A, Lemus L. 1999. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:470–73 [Google Scholar]
  142. Roux F, Uhlhaas PJ. 2014. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information?. Trends Cogn. Sci. 18:16–25 [Google Scholar]
  143. Ruff CC. 2013. Sensory processing: Who's in (top-down) control?. Ann. N. Y. Acad. Sci.129688–107
  144. Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S. 2012. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–56 [Google Scholar]
  145. Samson Y, Wu JJ, Friedman AH, Davis JN. 1990. Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. J. Comp. Neurol. 298:250–63 [Google Scholar]
  146. Sauseng P, Klimesch W, Schabus M, Doppelmayr M. 2005. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57:97–103 [Google Scholar]
  147. Sawaguchi T. 2001. The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neurosci. Res. 41:115–28 [Google Scholar]
  148. Sawaguchi T, Goldman-Rakic PS. 1991. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–50 [Google Scholar]
  149. Serences JT, Ester EF, Vogel EK, Awh E. 2009. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20:207–14 [Google Scholar]
  150. Shallice T. 1982. Specific impairments of planning. Philos. Trans. R. Soc. B 298:199–209 [Google Scholar]
  151. Shohamy D, Adcock RA. 2010. Dopamine and adaptive memory. Trends Cogn. Sci. 14:464–72 [Google Scholar]
  152. Silvanto J, Cattaneo Z. 2010. Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex. NeuroImage 50:1683–89 [Google Scholar]
  153. Singer W. 2009. Distributed processing and temporal codes in neuronal networks. Cogn. Neurodyn. 3:189–96 [Google Scholar]
  154. Smith EE, Jonides J. 1999. Storage and executive processes of the frontal lobes. Science 283:1657–61 [Google Scholar]
  155. Sreenivasan KK, Curtis CE, D'Esposito M. 2014a. Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci. 18:82–89A review of recent neural evidence for sensorimotor-recruitment models and for non-activity-based mechanisms for working memory storage. [Google Scholar]
  156. Sreenivasan KK, Vytlacil J, D'Esposito M. 2014b. Distributed and dynamic storage of working memory stimulus information in extrastriate cortex. J. Cogn. Neurosci. 26:1141–53 [Google Scholar]
  157. Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. 2013. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78:364–75 [Google Scholar]
  158. Sugase-Miyamoto Y, Liu Z, Wiener MC, Optican LM, Richmond BJ. 2008. Short-term memory trace in rapidly adapting synapses of inferior temporal cortex. PLOS Comput. Biol. 4:e1000073 [Google Scholar]
  159. Tallon-Baudry C, Kreiter A, Bertrand O. 1999. Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans. Vis. Neurosci. 16:449–59 [Google Scholar]
  160. Theeuwes J, Olivers CN, Chizk CL. 2005. Remembering a location makes the eyes curve away. Psychol. Sci. 16:196–99 [Google Scholar]
  161. Venkatraman V, Rosati AG, Taren AA, Huettel SA. 2009. Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex. J. Neurosci. 29:13158–64 [Google Scholar]
  162. Verstynen TD, Badre D, Jarbo K, Schneider W. 2012. Microstructural organizational patterns in the human corticostriatal system. J. Neurophysiol. 107:2984–95 [Google Scholar]
  163. Vogel EK, Woodman GF, Luck SJ. 2001. Storage of features, conjunctions and objects in visual working memory. J. Exp. Psychol.: Hum. Percept. Perform. 27:92–114 [Google Scholar]
  164. Wallis JD, Anderson KC, Miller EK. 2001. Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–56 [Google Scholar]
  165. Wang M, Vijayraghavan S, Goldman-Rakic PS. 2004. Selective D2 receptor actions on the functional circuitry of working memory. Science 303:853–56 [Google Scholar]
  166. Wang XJ. 1999. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19:9587–603 [Google Scholar]
  167. Wang XJ. 2001. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24:455–63 [Google Scholar]
  168. Warden MR, Miller EK. 2010. Task-dependent changes in short-term memory in the prefrontal cortex. J. Neurosci. 30:15801–10 [Google Scholar]
  169. Williams SM, Goldman-Rakic PS. 1993. Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb. Cortex 3:199–222 [Google Scholar]
  170. Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M. 2012. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81 [Google Scholar]
  171. Zaksas D, Bisley JW, Pasternak T. 2001. Motion information is spatially localized in a visual working-memory task. J. Neurophysiol. 86:912–21 [Google Scholar]
  172. Zanto TP, Rubens MT, Thangavel A, Gazzaley A. 2011. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat. Neurosci. 14:656–61 [Google Scholar]
  173. Zarahn E, Aguirre G, D'Esposito M. 1997. A trial-based experimental design for fMRI. NeuroImage 6:122–38 [Google Scholar]
/content/journals/10.1146/annurev-psych-010814-015031
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error