1932

Abstract

Navigating by path integration requires continuously estimating one's self-motion. This estimate may be derived from visual velocity and/or vestibular acceleration signals. Importantly, these senses in isolation are ill-equipped to provide accurate estimates, and thus visuo-vestibular integration is an imperative. After a summary of the visual and vestibular pathways involved, the crux of this review focuses on the human and theoretical approaches that have outlined a normative account of cue combination in behavior and neurons, as well as on the systems neuroscience efforts that are searching for its neural implementation. We then highlight a contemporary frontier in our state of knowledge: understanding how velocity cues with time-varying reliabilities are integrated into an evolving position estimate over prolonged time periods. Further, we discuss how the brain builds internal models inferring when cues ought to be integrated versus segregated—a process of causal inference. Lastly, we suggest that the study of spatial navigation has not yet addressed its initial condition: self-location.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-021021-103038
2022-01-04
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/psych/73/1/annurev-psych-021021-103038.html?itemId=/content/journals/10.1146/annurev-psych-021021-103038&mimeType=html&fmt=ahah

Literature Cited

  1. Acerbi L, Dokka K, Angelaki DE, Ma WJ 2018. Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception. PLOS Comput. Biol. 14:e1006110
    [Google Scholar]
  2. Adelson EH, Movshon JA. 1982. Phenomenal coherence of moving visual patterns. Nature 300:523–25 https://doi.org/10.1038/300523a0
    [Crossref] [Google Scholar]
  3. Alais D, Burr D 2004. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14:3257–62
    [Google Scholar]
  4. Aller M, Noppeney U. 2019. To integrate or not to integrate: temporal dynamics of hierarchical Bayesian causal inference. PLOS Biol 17:4e3000210
    [Google Scholar]
  5. Andersen RA, Essick GK, Siegel RM. 1985. Encoding of spatial location by posterior parietal neurons. Science 230:4724456–58 https://doi.org/10.1126/science.4048942
    [Crossref] [Google Scholar]
  6. Avila E, Lakshminarasimhan KJ, DeAngelis GC, Angelaki DE. 2019. Visual and vestibular selectivity for self-motion in macaque posterior parietal area 7a. Cereb. Cortex 29:93932–47
    [Google Scholar]
  7. Avillac M, Denève S, Olivier E, Pouget A, Duhamel JR 2005. Reference frames for representing visual and tactile locations in parietal cortex. Nat. Neurosci. 8:941–49
    [Google Scholar]
  8. Barlow HB. 1961. Possible principles underlying the transformation of sensory messages. Sensory Communication WA Rosenblith 217–34 Cambridge, MA: MIT Press
    [Google Scholar]
  9. Barry C, Burgess N. 2014. Neural mechanisms of self-location. Curr. Biol. 24:8R330–39
    [Google Scholar]
  10. Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK et al. 2008. Probabilistic population codes for Bayesian decision making. Neuron 60:1142–52
    [Google Scholar]
  11. Behrens TE, Muller TH, Whittington JCR, Mark S, Baram AB et al. 2018. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100:490–509
    [Google Scholar]
  12. Berkes P, Orban G, Lengyel M, Fiser J. 2011. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331:83
    [Google Scholar]
  13. Bicanski A, Burgess N. 2016. Environmental anchoring of head direction in a computational model of retrosplenial cortex. J. Neurosci. 36:4611601–18
    [Google Scholar]
  14. Bizley JK, Jones GP, Town SM. 2016. Where are multisensory signals combined for perceptual decision-making?. Curr. Opin. Neurobiol. 40:31–37
    [Google Scholar]
  15. Blanke O. 2012. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13:556–71
    [Google Scholar]
  16. Blanke O, Landis T, Spinelli L, Seeck M. 2004. Out-of-body experience and autoscopy of neurological origin. Brain 127:2243–58 https://doi.org/10.1093/brain/awh040
    [Crossref] [Google Scholar]
  17. Blanke O, Metzinger T. 2009. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13:7–13
    [Google Scholar]
  18. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. 2006. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113:700–65 https://doi.org/10.1037/0033-295X.113.4.700
    [Crossref] [Google Scholar]
  19. Botvinick M, Cohen J. 1998. Rubber hands “feel” touch that eyes see. Nature 391:6669756 https://doi.org/10.1038/35784
    [Crossref] [Google Scholar]
  20. Boussaoud D, Ungerleider LG, Desimone R. 1990. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol. 296:462–95
    [Google Scholar]
  21. Britten KH. 2008. Mechanisms of self-motion perception. Annu. Rev. Neurosci. 31:389–410
    [Google Scholar]
  22. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA 1996. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13:87–100
    [Google Scholar]
  23. Britten KH, Van Wezel RJ. 1998. Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat. Neurosci. 1:59–63
    [Google Scholar]
  24. Brooks JX, Carriot J, Cullen KE 2015. Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat. Neurosci. 18:1310–17
    [Google Scholar]
  25. Brozzoli C, Cardinali L, Pavani F, Farnè A 2010. Action-specific remapping of peripersonal space. Neuropsychologia 48:3796–802
    [Google Scholar]
  26. Bryan AS, Angelaki DE. 2008. Optokinetic and vestibular responsiveness in the macaque rostral vestibular and fastigial nuclei. J. Neurophysiol. 101:714–20
    [Google Scholar]
  27. Bufacchi RJ, Iannetti GD. 2018. An action field theory of peripersonal space. Trends Cogn. Sci. 22:1076–90
    [Google Scholar]
  28. Burlingham CS, Heeger DJ. 2020. Heading perception depends on time-varying evolution of optic flow. PNAS 117:5233161–69
    [Google Scholar]
  29. Cao Y, Summerfield C, Park H, Giordano BL, Kayser C 2019. Causal inference in the multisensory brain. Neuron 102:51076–87.e8 https://doi.org/10.1016/j.neuron.2019.03.043
    [Crossref] [Google Scholar]
  30. Carandini M, Heeger DJ. 1994. Summation and division by neurons in primate visual cortex. Science 264:1333–36
    [Google Scholar]
  31. Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62
    [Google Scholar]
  32. Carriot J, Brooks JX, Cullen KE. 2013. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations. J. Neurosci. 33:19555–66
    [Google Scholar]
  33. Chen A, DeAngelis GC, Angelaki DE. 2010. Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow. J. Neurosci. 30:3022–42
    [Google Scholar]
  34. Chen A, DeAngelis GC, Angelaki DE. 2011. Representation of vestibular and visual cues to selfmotion in ventral intraparietal cortex. J. Neurosci. 31:12036–52
    [Google Scholar]
  35. Chen A, DeAngelis GC, Angelaki DE. 2013. Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J. Neurosci. 33:3567–81
    [Google Scholar]
  36. Chen A, Gu Y, Liu S, DeAngelis GC, Angelaki DE. 2016. Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. J. Neurosci 36:3789–98
    [Google Scholar]
  37. Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL. 1994. Head-direction cells in the rat posterior cortex—I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101:8–23
    [Google Scholar]
  38. Clark JJ, Yuille AL. 1990. Data Fusion for Sensory Information Processing Systems Boston: Kluwer Acad.
  39. Cléry J, Guipponi O, Odouard S, Wardak C, Ben Hamed S. 2015a. Impact prediction by looming visual stimuli enhances tactile detection. J. Neurosci. 35:4179–89 https://doi.org/10.1523/JNEUROSCI.3031-14.2015
    [Crossref] [Google Scholar]
  40. Cléry J, Guipponi O, Wardak C, Ben Hamed S. 2015b. Neuronal bases of peripersonal and extrapersonal spaces, their plasticity and their dynamics: knowns and unknowns. Neuropsychologia 70:313–26 https://doi.org/10.1016/j.neuropsychologia.2014.10.022
    [Crossref] [Google Scholar]
  41. Colby CL, Duhamel JR, Goldberg ME. 1993. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69:902–14
    [Google Scholar]
  42. Cullen KE. 2019. Vestibular processing during natural self-motion: implications for perception and action. Nat. Rev. Neurosci. 20:346–63
    [Google Scholar]
  43. Daptardar S, Paul S, Pitkow X 2019. Inverse rational control with partially observable nonlinear dynamics. arXiv:1908.04696
  44. Dayan P. 1993. Improving generalisation for temporal difference learning: the successor representation. Neural Comput 5:613–24
    [Google Scholar]
  45. De Ridder D, Van Laere K, Dupont P, Menovsky T, Van de Heyning P. 2007. Visualizing out-of-body experience in the brain. N. Engl. J. Med. 357:181829–33 https://doi.org/10.1056/NEJMoa070010
    [Crossref] [Google Scholar]
  46. Dichgans J, Brandt T 1978. Visual-vestibular interaction: effects on self-motion perception and postural control. Handbook of Sensory Physiology R Held, HW Leibowitz, HL Teuber 755–804 New York: Springer
    [Google Scholar]
  47. Dokka K, Park H, Jansen M, DeAngelis GC, Angelaki DE. 2019. Causal inference accounts for heading perception in the presence of object motion. PNAS 116:189060–65 https://doi.org/10.1073/pnas.1820373116
    [Crossref] [Google Scholar]
  48. Drugowitsch J, DeAngelis GC, Angelaki DE, Pouget A 2015. Tuning the speed accuracy trade-off to maximize reward rate in multisensory decision-making. eLife 4:e06678
    [Google Scholar]
  49. Drugowitsch J, DeAngelis GC, Klier EM, Angelaki DE, Pouget A 2014. Optimal multisensory decision-making in a reaction-time task. eLife 3:e03005
    [Google Scholar]
  50. Duffy CJ. 1998. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 80:1816–27
    [Google Scholar]
  51. Duffy CJ, Wurtz RH. 1991. Sensitivity of MST neurons to optic flow stimuli: I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65:1329–45
    [Google Scholar]
  52. Duhamel J-R, Colby CL, Goldberg ME 1998. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol. 79:126–36
    [Google Scholar]
  53. Ehrsson HH. 2007. The experimental induction of out-of-body experiences. Science 317:1048
    [Google Scholar]
  54. Einstein A. 1907. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch Radioaktivität Elektronik 4:411–62
    [Google Scholar]
  55. Ernst MO, Banks MS 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–33
    [Google Scholar]
  56. Fang W, Li J, Qi G, Li S, Sigman M, Wang L. 2019. Statistical inference of body representation in the macaque brain. PNAS 116:4020151–57 https://doi.org/10.1073/pnas.1902334116
    [Crossref] [Google Scholar]
  57. Fanini A, Assad JA. 2009. Direction selectivity of neurons in the macaque lateral intraparietal area. J. Neurophysiol. 101:289–305
    [Google Scholar]
  58. Festa D, Aschner A, Davila A, Kohn A, Coen-Cagli R. 2021. Neuronal variability reflects probabilistic inference tuned to natural image statistics. Nat. Commun. 12:13635
    [Google Scholar]
  59. Fetsch CR, DeAngelis GC, Angelaki DE. 2013. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14:429–42
    [Google Scholar]
  60. Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE. 2012. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 15:146–54
    [Google Scholar]
  61. Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE. 2009. Dynamic reweighting of visual and vestibular cues during self-motion perception. J. Neurosci. 29:15601–12
    [Google Scholar]
  62. Fiser J, Berkes P, Orban G, Lengyel M. 2010. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 114:119–30
    [Google Scholar]
  63. Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G 1996. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 76:141–57
    [Google Scholar]
  64. French RL, DeAngelis GC. 2020. Multisensory neural processing: from cue integration to causal inference. Curr. Opin. Physiol. 16:8–13
    [Google Scholar]
  65. Gibson JJ. 1950. The Perception of the Visual World Boston: Houghton Mifflin
  66. Graziano MS, Cooke DF. 2006. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 44:845–59
    [Google Scholar]
  67. Graziano MS, Cooke DF, Taylor CS. 2000. Coding the location of the arm by sight. Science 290:1782–86
    [Google Scholar]
  68. Graziano MS, Hu XT, Gross CG. 1997. Visuospatial properties of ventral premotor cortex. J. Neurophysiol. 77:2268–92
    [Google Scholar]
  69. Gu Y, Angelaki DE, DeAngelis GC. 2008. Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 11:1201–10
    [Google Scholar]
  70. Gu Y, DeAngelis GC, Angelaki DE. 2012. Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. J. Neurosci. 32:2299–313
    [Google Scholar]
  71. Gu Y, Watkins PV, Angelaki DE, DeAngelis GC 2006. Visual and nonvisual contributions to threedimensional heading selectivity in the medial superior temporal area. J. Neurosci. 26:73–85
    [Google Scholar]
  72. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–6
    [Google Scholar]
  73. Hardcastle K, Maheswaranathan N, Ganguli S, Giocomo LM 2017. A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron 94:375–87
    [Google Scholar]
  74. Helmholtz H 1867. 1924. Helmholtz's Treatise on Physiological Optics, transl JPC Southall Rochester, NY: Opt. Soc. Am.
    [Google Scholar]
  75. Herweg NA, Kahana MJ. 2018. Spatial representations in the human brain. Front. Hum. Neurosci. 12:297
    [Google Scholar]
  76. Hillis JM, MO Ernst, Banks MS, Landy MS. 2002. Combining sensory information: mandatory fusion within, but not between, senses. Science 298:1627–30
    [Google Scholar]
  77. Hillis JM, Watt SJ, Landy MS, Banks MS. 2004. Slant from texture and disparity cues: optimal cue combination. J. Vis. 4:967–92
    [Google Scholar]
  78. Hou H, Gu Y. 2020. Multisensory integration for self-motion perception. The Senses: A Comprehensive Reference B Fritzsch 458–82 Amsterdam: Elsevier, 2nd ed.. https://doi.org/10.1016/B978-0-12-809324-5.23879-0
    [Crossref] [Google Scholar]
  79. Hou H, Zheng Q, Zhao Y, Pouget A, Gu Y 2019. Neural correlates of optimal multisensory decision making under time-varying reliabilities with an invariant linear probabilistic population code. Neuron 104:1010–21.e10
    [Google Scholar]
  80. Hoyer P, Hyvarinen A 2003. Interpreting neural response variability as Monte Carlo sampling of the posterior. Advances in Neural Information Processing Systems 15: Proceedings of the 2002 Conference S Becker, S Thrun, K Obermayer 293–300 Cambridge, MA: MIT Press
    [Google Scholar]
  81. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43 https://doi.org/10.1113/jphysiol.1968.sp008455
    [Crossref] [Google Scholar]
  82. Huk AC, Katz LN, Yates JL. 2017. The role of the lateral intraparietal area in (the study of) decision making. Annu. Rev. Neurosci. 40:349–72
    [Google Scholar]
  83. Hulse BK, Jayaraman V. 2020. Mechanisms underlying the neural computation of head direction. Annu. Rev. Neurosci. 43:31–54
    [Google Scholar]
  84. Hyvärinen J. 1981. Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303
    [Google Scholar]
  85. Ionta S, Heydrich L, Lenggenhager B, Mouthon M, Fornari E et al. 2011. Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron 70:363–74
    [Google Scholar]
  86. Jones EG. 1985. The Thalamus New York: Plenum
  87. Katz LN, Yates JL, Pillow JW, Huk AC. 2016. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535:285–88
    [Google Scholar]
  88. Keshavarzi S, Bracey EF, Faville RA, Campagner D, Tyson AL et al. 2021. The retrosplenial cortex combines internal and external cues to encode head velocity during navigation. bioRxiv 2021.01.22.427789. https://doi.org/10.1101/2021.01.22.427789
    [Crossref]
  89. Knierim JJ, Zhang K. 2012. Attractor dynamics of spatially correlated neural activity in the limbic system. Annu. Rev. Neurosci. 35:267–85
    [Google Scholar]
  90. Knill DC, Richards W. 1996. Perception as Bayesian Inference Cambridge, UK: Cambridge Univ. Press
  91. Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L. 2007. Causal inference in multisensory perception. PLOS ONE 2:e943
    [Google Scholar]
  92. Krakauer JW, Mazzoni P. 2011. Human sensorimotor learning: adaptation, skill, and beyond. Curr. Opin. Neurobiol. 21:636–44
    [Google Scholar]
  93. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. 2011. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12:4217–30
    [Google Scholar]
  94. Kropff E, Carmichael JE, Moser EI, Moser MB. 2021. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron 109:61029–39.e8
    [Google Scholar]
  95. Kropff E, Carmichael JE, Moser MB, Moser EI. 2015. Speed cells in the medial entorhinal cortex. Nature 523:419–24 https://doi.org/10.1038/nature14622 pmid 26176924
    [Crossref] [Google Scholar]
  96. Lakshminarasimhan KJ, Avila E, Neyhart E, DeAngelis GC, Pitkow X, Angelaki D 2020. Tracking the mind's eye: Primate gaze behavior during virtual visuomotor navigation reflects belief dynamics. Neuron 106:4662–74.e5
    [Google Scholar]
  97. Lakshminarasimhan KJ, Petsalis M, Park H, DeAngelis GC, Pitkow X, Angelaki DE 2018. A dynamic Bayesian observer model reveals origins of bias in visual path integration. Neuron 99:194–206.e5
    [Google Scholar]
  98. Laurens J, Angelaki DE 2017. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 6:e28074
    [Google Scholar]
  99. Laurens J, Liu S, Yu X-J, Chan R, Dickman D et al. 2017. Transformation of spatiotemporal dynamics in the macaque vestibular system from otolith afferents to cortex. eLife 6:e20787
    [Google Scholar]
  100. Lenggenhager B, Tadi T, Metzinger T, Blanke O. 2007. Video ergo sum: manipulating bodily self-consciousness. Science 317:1096–99
    [Google Scholar]
  101. Lopez C, Blanke O. 2011. The thalamocortical vestibular system in animals and humans. Brain Res. Rev. 67:119–46
    [Google Scholar]
  102. Ma WJ. 2019. Bayesian decision models: a primer. Neuron 104:1164–75
    [Google Scholar]
  103. Ma WJ, Beck JM, Latham PE, Pouget A. 2006. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9:1432–38
    [Google Scholar]
  104. Mach E. 1875. Grundlinien der Lehre von den Bewegungsempfindungen Leipzig, Ger: Engelmann
  105. Magnotti JF, Ma WJ, Beauchamp MS 2013. Causal inference of asynchronous audiovisual speech. Front. Psychol. 4:798
    [Google Scholar]
  106. Maunsell JH, Van Essen DC. 1983. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49:1127–47
    [Google Scholar]
  107. Miller J. 1982. Divided attention: evidence for coactivation with redundant signals. Cogn. Psychol. 14:247–79 https://doi.org/10.1016/0010-0285(82)90010-X
    [Crossref] [Google Scholar]
  108. Mohl JT, Pearson JM, Groh JM. 2020. Monkeys and humans implement causal inference to simultaneously localize auditory and visual stimuli. J. Neurophysiol. 124:3715–27
    [Google Scholar]
  109. Moon H-J, Gauthier B, Park H-D, Faivre N, Blanke O 2020. Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex. bioRxiv 823385. https://doi.org/10.1101/2020.09.13.295246
    [Crossref]
  110. Morgan ML, DeAngelis GC, Angelaki DE. 2008. Multisensory integration in macaque visual cortex depends on cue reliability. Neuron 59:662–73
    [Google Scholar]
  111. Moser EI, Kropff E, Moser M-B. 2008. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31:69–89
    [Google Scholar]
  112. Nikbakht N, Tafreshiha A, Zoccolan D, Diamond ME 2018. Supralinear and Supramodal integration of visual and tactile signals in rats: psychophysics and neuronal mechanisms. Neuron 97:626–39.e8
    [Google Scholar]
  113. Noel JP, Bertoni T, Terrebonne E, Pellencin E, Herbelin B et al. 2020b. Rapid recalibration of peri-personal space: psychophysical, electrophysiological, and neural network modeling evidence. Cereb. Cortex 30:95088–106
    [Google Scholar]
  114. Noel JP, Blanke O, Magosso E, Serino A 2018c. Neural adaptation accounts for the resizing of peri-personal space representation: evidence from a psychophysical-computational approach. J. Neurophysiol. 119:62307–33
    [Google Scholar]
  115. Noel JP, Caziot B, Bruni S, Fitzgerald NE, Avila E, Angelaki DE 2021a. Supporting generalization in non-human primate behavior by tapping into structural knowledge: examples from sensorimotor mappings, inference, and decision-making. Progress Neurobiol 201:101996
    [Google Scholar]
  116. Noel JP, Grivaz P, Marmaroli P, Lissek H, Blanke O, Serino A. 2014. Full body action remapping of peripersonal space: the case of walking. Neuropsychologia 70:375–84
    [Google Scholar]
  117. Noel JP, Lakshminarasimhan KJ, Park H, Angelaki DE. 2020a. Increased variability but intact integration during visual navigation in Autism Spectrum Disorder. PNAS 117:2011158–66
    [Google Scholar]
  118. Noel JP, Paredes R, Terrebonne E, Feldman JI, Woynaroski T et al. 2021b. Inflexible updating of the self-other divide during a social context in autism: psychophysical, electrophysiological, and neural network modeling evidence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging press https://doi.org/10.1016/j.bpsc.2021.03.013
    [Crossref] [Google Scholar]
  119. Noel JP, Pfeiffer C, Blanke O, Serino A. 2015. Peripersonal space as the space of the bodily self. Cognition 144:49–57
    [Google Scholar]
  120. Noel JP, Samad M, Doxon A, Clark J, Keller S, Di Luca M. 2018a. Peri-personal space as a prior in coupling visual and proprioceptive signals. Sci. Rep. 8:15819
    [Google Scholar]
  121. Noel JP, Stevenson R, Wallace M. 2018b. Atypical audiovisual temporal function in autism and schizophrenia: similar phenotype, different cause. Eur. J. Neurosci 47:101230–41
    [Google Scholar]
  122. Odegaard B, Wozny DR, Shams L. 2015. Biases in visual, auditory, and audiovisual perception of space. PLOS Comput. Biol. 11:e1004649
    [Google Scholar]
  123. Ohshiro T, Angelaki DE, Deangelis GC. 2011. A normalization model of multisensory integration. Nat. Neurosci. 14:775–82
    [Google Scholar]
  124. Ohshiro T, Angelaki DE, Deangelis GC. 2017. A neural signature of divisive normalization at the level of multisensory integration in primate cortex. Neuron 95:399–411.e398
    [Google Scholar]
  125. O'Keefe J. 1976. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51:78–109
    [Google Scholar]
  126. O'Keefe J, Nadel L 1978. The Hippocampus as a Cognitive Map Oxford, UK: Clarendon Press
  127. Pandya DN, Seltzer B. 1982. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkeys. J. Comp. Neurol. 204:196–210
    [Google Scholar]
  128. Prsa M, Gale S, Blanke O 2012. Self-motion leads to mandatory cue fusion across sensory modalities. J. Neurophysiol. 108:2282–91
    [Google Scholar]
  129. Raab DH. 1962. Statistical facilitation of simple reaction times. Trans. N. Y. Acad. Sci. 24:574–90 https://doi.org/10.1111/j.2164-0947.1962.tb01433.x
    [Crossref] [Google Scholar]
  130. Rahnev D, Denison RN. 2018. Suboptimality in perceptual decision making. Behav. Brain Sci. 41:E223 https://doi.org/10.1017/S0140525X18000936
    [Crossref] [Google Scholar]
  131. Ramsey F. 1926. Truth and probability. The Foundations of Mathematics and Other Logical Essays RB Braithwaite 156–98 London: Kegan, Paul, Trench, Trubner
    [Google Scholar]
  132. Raposo D, Sheppard JP, Schrater PR, Churchland AK. 2012. Multisensory decision making in rats and humans. J. Neurosci. 32:3726–35
    [Google Scholar]
  133. Ratcliff R, Rouder JN. 1998. Modeling response times for two-choice decisions. Psychol. Sci. 9:347–56
    [Google Scholar]
  134. Robinson NTM, Descamps LAL, Russell LE, Buchholz MO, Bicknell BA et al. 2020. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183:1586–99
    [Google Scholar]
  135. Rohde M, Di Luca M, Ernst MO. 2011. The rubber hand illusion: Feeling of ownership and proprioceptive drift do not go hand in hand. PLOS ONE 6:6e21659
    [Google Scholar]
  136. Rohe T, Ehlis AC, Noppeney U. 2019. The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nat. Commun. 10:1907
    [Google Scholar]
  137. Rohe T, Noppeney U. 2015. Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLOS Biol 13:2e1002073 https://doi.org/10.1371/journal.pbio.1002073
    [Crossref] [Google Scholar]
  138. Rohe T, Noppeney U. 2016. Distinct computational principles govern multisensory integration 684 in primary sensory and association cortices. Curr. Biol. 26:4509–14 https://doi.org/10.1016/j.cub.2015.12.056
    [Crossref] [Google Scholar]
  139. Roy JE, Cullen KE. 2001. Selective processing of vestibular reafference during self-generated head motion. J. Neurosci. 21:2131–42
    [Google Scholar]
  140. Roy JE, Cullen KE. 2004. Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J. Neurosci. 24:2102–11
    [Google Scholar]
  141. Salomon R, Noel JP, Lukowska M et al. 2017. Unconscious integration of multisensory bodily inputs in the peripersonal space shapes bodily self-consciousness. Cognition 166:174–83
    [Google Scholar]
  142. Samad M, Chung AJ, Shams L 2015. Perception of body ownership is driven by Bayesian sensory inference. PLOS ONE 10:2e0117178 https://doi.org/10.1371/journal.pone.0117178
    [Crossref] [Google Scholar]
  143. Sambo CF, Iannetti GD. 2013. Better safe than sorry? The safety margin surrounding the body is increased by anxiety. J. Neurosci. 33:3514225–30
    [Google Scholar]
  144. Sasaki R, Angelaki DE, DeAngelis GC. 2017. Dissociation of self-motion and object motion by linear population decoding that approximates marginalization. J. Neurosci. 37:4611204–19
    [Google Scholar]
  145. Sasaki R, Angelaki DE, DeAngelis GC. 2019. Processing of object motion and self-motion in the lateral subdivision of the medial superior temporal area in macaques. J. Neurophysiol. 121:1207–21
    [Google Scholar]
  146. Sasaki R, Anzai A, Angelaki DE, DeAngelis GC. 2020. Flexible coding of object motion in multiple reference frames by parietal cortex neurons. Nat. Neurosci. 23:81004–15
    [Google Scholar]
  147. Savin C, Denève S 2015. Spatio-temporal representations of uncertainty in spiking neural networks. Advances in Neural Information Processing Systems 27: 28th Annual Conference on Neural Information Processing Systems 2014 [(NIPS)] Z Ghahramani, M Welling, C Cortes, N Lawrence, KQ Weinberger 2024–32 Red Hook, NY: Curran
    [Google Scholar]
  148. Serino A. 2019. Peripersonal space (PPS) as a multisensory interface between the individual and the environment, defining the space of the self. Neurosci. Biobehav. Rev. 99:138–59 https://doi.org/10.1016/j.neubiorev.2019.01.016
    [Crossref] [Google Scholar]
  149. Serino A, Noel J-P, Galli G, Canzoneri E, Marmaroli P et al. 2015. Body part-centered and full body-centered peripersonal space representations. Sci. Rep. 5:18603 https://doi.org/10.1038/srep18603
    [Crossref] [Google Scholar]
  150. Serino A, Noel J-P, Mange R et al. 2018. Peripersonal space: an index of multisensory body–environment interactions in real, virtual, and mixed realities. Front. ICT 4: https://doi.org/10.3389/fict.2017.00031
    [Crossref] [Google Scholar]
  151. Shalom S, Zaidel A 2018. Better than optimal. Neuron 97:484–87
    [Google Scholar]
  152. Sohn H, Narain D, Meirhaeghe N, Jazayeri M 2019. Bayesian computation through cortical latent dynamics. Neuron 103:934–47.e5
    [Google Scholar]
  153. Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. 2008. Representation of geometric borders in the entorhinal cortex. Science 322:1865–68
    [Google Scholar]
  154. Stavropoulos A, Lakshminarasimhan K, Laurens J, Pitkow X, Angelaki DE 2020. Influence of sensory modality and control dynamics on human path integration. bioRxiv 2020.09.21.307256. https://doi.org/10.1101/2020.09.21.307256
    [Crossref]
  155. Stein BE, Stanford TR. 2008. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9:4255–66 2008. Nat. Rev. Neurosci 9:5406
    [Google Scholar]
  156. Teneggi C, Canzoneri E, di Pellegrino G, Serino A. 2013. Social modulation of peripersonal space boundaries. Curr. Biol. 23:406–11
    [Google Scholar]
  157. Tolhurst D, Movshon J, Dean A 1982. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23:775–85
    [Google Scholar]
  158. Tschermak A 1931. Optischer Raumsinn. Receptionsorgane II: Handbuch der Normalen und Pathologischen Physiologie 12/2 A Bethe, G Bergmann, G Embden, A Ellinger 834–1000 Berlin: Springer
    [Google Scholar]
  159. van Beers RJ, Sittig AC, Denier van der Gon JJ 1996. How humans combine simultaneous proprioceptive and visual position information. Exp. Brain Res. 111:253–61
    [Google Scholar]
  160. Vélez-Fort M, Bracey EF, Keshavarzi S, Rousseau CV, Cossell L et al. 2018. A circuit for integration of head- and visual-motion signals in layer 6 of mouse primary visual cortex. Neuron 98:179–91.e6
    [Google Scholar]
  161. Wada M, Ide M, Atsumi T, Sano Y, Shinoda Y et al. 2019. Rubber tail illusion is weakened in Ca2+-dependent activator protein for secretion 2 (Caps2)-knockout mice. Sci. Rep. 9:7552
    [Google Scholar]
  162. Wada M, Takano K, Ora H, Ide M, Kansaku K 2016. The rubber tail illusion as evidence of body ownership in mice. J. Neurosci. 36:11133–37
    [Google Scholar]
  163. Walker EY, Cotton RJ, Ma WJ, Tolias AS 2020. A neural basis of probabilistic computation in visual cortex. Nat. Neurosci. 23:122–29
    [Google Scholar]
  164. Wei XX, Stocker AA. 2015. A Bayesian observer model constrained by efficient coding can explain ‘anti-Bayesian’ percepts. Nat. Neurosci. 18:101509–17 https://doi.org/10.1038/nn.4105
    [Crossref] [Google Scholar]
  165. Whitlock JR, Sutherland RJ, Witter MP, Moser MB, Moser EI. 2008. Navigating from hippocampus to parietal cortex. PNAS 105:14755–62 https://doi.org/10.1073/pnas.0804216105
    [Crossref] [Google Scholar]
  166. Yu X, Gu Y 2018. Probing sensory readout via combined choice-correlation measures and microstimulation perturbation. Neuron 100:715–27.e5 https://doi.org/10.1016/j.neuron.2018.08.034
    [Crossref] [Google Scholar]
  167. Zaidel A, DeAngelis GC, Angelaki DE. 2017. Decoupled choice-driven and stimulus-related activity in parietal neurons may be misrepresented by choice probabilities. Nat. Commun 8:1715
    [Google Scholar]
  168. Zhang W, Wu S, Doiron B, Lee TS 2020. A normative theory for causal inference and Bayes factor computation in neural circuits. Advances in Neural Information Processing Systems (NeurIPS 2019) S Bengio, HM Wallach, H Larochelle, K Grauman, N Cesa-Bianchi 3804–13 Red Hook, NY: Curran
    [Google Scholar]
  169. Zhang W-H, Chen A, Rasch MJ, Wu S 2016. Decentralized multisensory information integration in neural systems. J. Neurosci. 36:532–47
    [Google Scholar]
  170. Zhang W-H, Wang H, Chen A, Gu Y, Lee TS et al. 2019. Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. eLife 8:e43753
    [Google Scholar]
  171. Zhou Y, Freedman DJ. 2019. Posterior parietal cortex plays a causal role in perceptual and categorical decisions. Science 365:6449180–85
    [Google Scholar]
/content/journals/10.1146/annurev-psych-021021-103038
Loading
/content/journals/10.1146/annurev-psych-021021-103038
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error