1932

Abstract

By linking the past with the future, our memories define our sense of identity. Because human memory engages the conscious realm, its examination has historically been approached from language and introspection and proceeded largely along separate parallel paths in humans and other animals. Here, we first highlight the achievements and limitations of this mind-based approach and make the case for a new brain-based understanding of declarative memory with a focus on hippocampal physiology. Next, we discuss the interleaved nature and common physiological mechanisms of navigation in real and mental spacetime. We suggest that a distinguishing feature of memory types is whether they subserve actions for single or multiple uses. Finally, in contrast to the persisting view of the mind as a highly plastic blank slate ready for the world to make its imprint, we hypothesize that neuronal networks are endowed with a reservoir of neural trajectories, and the challenge faced by the brain is how to select and match preexisting neuronal trajectories with events in the world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-021721-110002
2022-01-04
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/psych/73/1/annurev-psych-021721-110002.html?itemId=/content/journals/10.1146/annurev-psych-021721-110002&mimeType=html&fmt=ahah

Literature Cited

  1. Arieli A, Sterkin A, Grinvald A, Aertsen A 1996. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:52831868–71
    [Google Scholar]
  2. Baddeley A. 1992. Working memory. Science 255:5044556–59
    [Google Scholar]
  3. Baddeley A. 2012. Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63:1–29
    [Google Scholar]
  4. Battaglia FP, Sutherland GR, Cowen SL, Mc Naughton BL, Harris KD. 2005. Firing rate modulation: a simple statistical view of memory trace reactivation. Neural Netw 18:91280–91
    [Google Scholar]
  5. Berkes P, Orbán G, Lengyel M, Fiser J. 2011. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331:601383–87
    [Google Scholar]
  6. Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ et al. 2015. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18:81133–42
    [Google Scholar]
  7. Bliss TVP, Collingridge GL. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:640731–39
    [Google Scholar]
  8. Boroditsky L. 2018. Language and the construction of time through space. Trends Neurosci 41:10651–53
    [Google Scholar]
  9. Breland K, Breland M. 1961. The misbehavior of organisms. Am. Psychol. 16:11681–84
    [Google Scholar]
  10. Brown PL, Jenkins HM. 1968. Auto-shaping of the pigeon's key-peck. J. Exp. Anal. Behav. 11:11–8
    [Google Scholar]
  11. Buckner RL, Carroll DC. 2007. Self-projection and the brain. Trends Cogn. Sci. 11:249–57
    [Google Scholar]
  12. Buzsáki G. 1989. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:3551–70
    [Google Scholar]
  13. Buzsáki G. 2005. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15:7827–40
    [Google Scholar]
  14. Buzsáki G. 2015. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:101073–188
    [Google Scholar]
  15. Buzsáki G. 2019. The Brain from Inside Out New York: Oxford Univ. Press
  16. Buzsáki G, Llinás R. 2017. Space and time in the brain. Science 358:6362482–85
    [Google Scholar]
  17. Buzsáki G, Mizuseki K. 2014. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15:4264–78
    [Google Scholar]
  18. Buzsáki G, Moser EI. 2013. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16:2130–38
    [Google Scholar]
  19. Buzsáki G, Peyrache A, Kubie J 2014. Emergence of cognition from action. Cold Spring Harb. Symp. Quant. Biol. 79:41–50
    [Google Scholar]
  20. Buzsáki G, Tingley D. 2018. Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22:10853–69
    [Google Scholar]
  21. Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T 2015. Selective information routing by ventral hippocampal CA1 projection neurons. Science 348:6234560–63
    [Google Scholar]
  22. Clark CVH, Isaacson RL. 1965. Effect of bilateral hippocampal ablation on DRL performance. J. Comp. Physiol. Psychol. 59:1137–40
    [Google Scholar]
  23. Corkin S. 2013. Permanent Present Tense: The Unforgettable Life of the Amnesic Patient New York: Basic Books, 1st ed..
  24. Cowan E, Liu A, Henin S, Kothare S, Devinsky O, Davachi L 2020. Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal-cortical functional connectivity. J. Neurosci 40:91909–19
    [Google Scholar]
  25. Davachi L. 2006. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol 16:6693–700
    [Google Scholar]
  26. Davachi L, DuBrow S. 2015. How the hippocampus preserves order: the role of prediction and context. Trends Cogn. Sci. 19:292–99
    [Google Scholar]
  27. Dede AJO, Frascino JC, Wixted JT, Squire LR. 2016. Learning and remembering real-world events after medial temporal lobe damage. PNAS 113:4713480–85
    [Google Scholar]
  28. Deuker L, Bellmund JL, Navarro Schröder T, Doeller CF 2016. An event map of memory space in the hippocampus. eLife 5:e16534
    [Google Scholar]
  29. Diba K, Buzsáki G. 2007. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10:101241–42
    [Google Scholar]
  30. Diekelmann S, Born J. 2010. The memory function of sleep. Nat. Rev. Neurosci. 11:2114–26
    [Google Scholar]
  31. Dragoi G, Buzsáki G. 2006. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50:1145–57
    [Google Scholar]
  32. Dragoi G, Harris KD, Buzsáki G. 2003. Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39:5843–53
    [Google Scholar]
  33. Dragoi G, Tonegawa S. 2011. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469:7330397–401
    [Google Scholar]
  34. DuBrow S, Davachi L. 2013. The influence of context boundaries on memory for the sequential order of events. J. Exp. Psychol. Gen. 142:41277–86
    [Google Scholar]
  35. Dudai Y. 2012. The restless engram: consolidations never end. Annu. Rev. Neurosci. 35:227–47
    [Google Scholar]
  36. Eichenbaum H. 2004. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:1109–20
    [Google Scholar]
  37. Eichenbaum H. 2014. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15:11732–44
    [Google Scholar]
  38. Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H 1999. The hippocampus, memory, and place cells: Is it spatial memory or a memory space?. Neuron 23:2209–26
    [Google Scholar]
  39. Ezzyat Y, Davachi L. 2014. Similarity breeds proximity: Pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron 81:51179–89
    [Google Scholar]
  40. Farooq U, Dragoi G. 2019. Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. Science 363:6423168–73
    [Google Scholar]
  41. Fortin NJ, Agster KL, Eichenbaum HB. 2002. Critical role of the hippocampus in memory for sequences of events. Nat. Neurosci. 5:5458–62
    [Google Scholar]
  42. Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:7084680–83
    [Google Scholar]
  43. Frankland PW, Bontempi B. 2005. The organization of recent and remote memories. Nat. Rev. Neurosci. 6:2119–30
    [Google Scholar]
  44. Friston K, Buzsáki G. 2016. The functional anatomy of time: what and when in the brain. Trends Cogn. Sci. 20:7500–11
    [Google Scholar]
  45. Fujisawa S, Amarasingham A, Harrison MT, Buzsáki G. 2008. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11:7823–33
    [Google Scholar]
  46. Gallistel CR. 1990. The Organization of Learning Cambridge, MA: MIT Press
  47. Geisler C, Robbe D, Zugaro M, Sirota A, Buzsáki G. 2007. Hippocampal place cell assemblies are speed-controlled oscillators. PNAS 104:198149–54
    [Google Scholar]
  48. Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I 2008. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322:589896–101
    [Google Scholar]
  49. Giocomo LM. 2016. Environmental boundaries as a mechanism for correcting and anchoring spatial maps. J. Physiol. 594:226501–11
    [Google Scholar]
  50. Grosmark AD, Buzsáki G. 2016. Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science 351:62801440–43
    [Google Scholar]
  51. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:7052801–6
    [Google Scholar]
  52. Hassabis D, Kumaran D, Maguire EA 2007. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27:5214365–74
    [Google Scholar]
  53. Hebb D. 1949. The Organization of Behavior New York: Wiley
  54. Henin S, Shankar A, Borges H, Flinker A, Doyle W et al. 2020. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. bioRxiv 216416. https://doi.org/10.1101/2020.07.22.216416
    [Crossref]
  55. Higgins C, Liu Y, Vidaurre D, Kurth-Nelson Z, Dolan R et al. 2021. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 109:5882–93.e7
    [Google Scholar]
  56. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS 79:82554–58
    [Google Scholar]
  57. Hsieh LT, Gruber MJ, Jenkins LJ, Ranganath C. 2014. Hippocampal activity patterns carry information about objects in temporal context. Neuron 81:51165–78
    [Google Scholar]
  58. Ingvar DH. 1985.. “ Memory of the future”: an assay on the temporal organization of conscious awareness. Hum. Neurobiol. 4:3127–36
    [Google Scholar]
  59. Itskov V, Curto C, Pastalkova E, Buzsáki G 2011. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosci. 31:82828–34
    [Google Scholar]
  60. Jackson J, Redish AD 2007. Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks. Hippocampus 17:121209–29
    [Google Scholar]
  61. James W 1890. The Principles of Psychology New York: Henry Holt & Co.
  62. Jeffery KJ, Gilbert A, Burton S, Strudwick A 2003. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. Hippocampus 13:2175–89
    [Google Scholar]
  63. Joo HR, Frank LM. 2018. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19:12744–57
    [Google Scholar]
  64. Kaplan R, Adhikari MH, Hindriks R, Mantini D, Murayama Y et al. 2016. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26:5686–91
    [Google Scholar]
  65. Keane MM, Bousquet K, Wank A, Verfaellie M 2020. Relational processing in the semantic domain is impaired in medial temporal lobe amnesia. J. Neuropsychol 14:3416–30
    [Google Scholar]
  66. Kelemen E, Fenton AA. 2010. Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLOS Biol 8:6e1000403
    [Google Scholar]
  67. Keresztes A, Ngo CT, Lindenberger U, Werkle-Bergner M, Newcombe NS. 2018. Hippocampal maturation drives memory from generalization to specificity. Trends Cogn. Sci. 22:8676–86
    [Google Scholar]
  68. Khodagholy D, Gelinas JN, Buzsáki G. 2017. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358:6361369–72
    [Google Scholar]
  69. Koch C, Laurent G. 1999. Complexity and the nervous system. Science 284:541196–98
    [Google Scholar]
  70. Kracauer S. 1993. The Mass Ornament: Weimar Essays Cambridge, MA: Harvard Univ. Press
  71. Krakauer JW, Ghazanfar AA, Gomez-Marin A, Maciver MA, Poeppel D. 2017. Perspective neuroscience needs behavior: correcting a reductionist bias. Neuron 93:480–90
    [Google Scholar]
  72. Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME. 2013. Hippocampal “time cells”: time versus path integration. Neuron 78:61090–101
    [Google Scholar]
  73. Kropff E, Carmichael JE, Moser MB, Moser EI. 2015. Speed cells in the medial entorhinal cortex. Nature 523:7561419–24
    [Google Scholar]
  74. Lashley KS. 1950. In search of the engram. Physiological Mechanisms in Animal Behavior Soc. Exp. Biol. 454–82 New York: Academic
    [Google Scholar]
  75. Lee D, Lin B-J, Lee AK. 2012. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337:6096849–53
    [Google Scholar]
  76. Lee JS, Briguglio JJ, Cohen JD, Romani S, Lee AK 2020. The statistical structure of the hippocampal code for space as a function of time, context, and value. Cell 183:3620–35.e22
    [Google Scholar]
  77. Leon MI, Shadlen MN. 2003. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:2317–27
    [Google Scholar]
  78. Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Rangananth C, Redish AD. 2017. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20:111434–47
    [Google Scholar]
  79. Liu Y, Dolan RJ, Kurth-Nelson Z, Behrens TEJ. 2019. Human replay spontaneously reorganizes experience. Cell 178:3640–52.e14
    [Google Scholar]
  80. Luczak A, Barthó P, Harris KD. 2009. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62:3413–25
    [Google Scholar]
  81. Maass W, Markram H. 2004. On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 69:4593–616
    [Google Scholar]
  82. Maguire EA, Woollett K, Spiers HJ. 2006. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16:121091–101
    [Google Scholar]
  83. Marr D. 1971. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. B 262:84123–81
    [Google Scholar]
  84. Maurer AP, Burke SN, Lipa P, Skaggs WE, Barnes CA. 2012. Greater running speeds result in altered hippocampal phase sequence dynamics. Hippocampus 22:4737–47
    [Google Scholar]
  85. McClelland JL, McNaughton BL, O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102:3419–57
    [Google Scholar]
  86. McKenzie S, Eichenbaum H 2011. Consolidation and reconsolidation: two lives of memories?. Neuron 71:2224–33
    [Google Scholar]
  87. McKenzie S, Frank AJ, Kinsky NR, Porter B, Rivière PD, Eichenbaum H. 2014. Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83:1202–15
    [Google Scholar]
  88. McKenzie S, Huszár R, English DF, Kim K, Christensen F et al. 2021. Pre-existing hippocampal network dynamics constrain optogenetically induced place fields. Neuron 109:61040–57.e7
    [Google Scholar]
  89. McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW et al. 1996. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199:Pt. 1173–85
    [Google Scholar]
  90. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. 2006. Path integration and the neural basis of the “cognitive map.”. Nat. Rev. Neurosci. 7:8663–78
    [Google Scholar]
  91. Milner B, Squire LR, Kandel ER. 1998. Cognitive neuroscience and the study of memory. Neuron 20:3445–68
    [Google Scholar]
  92. Milstein AD, Li Y, Bittner KC, Grienberger C, Soltesz I et al. 2020. Bidirectional synaptic plasticity rapidly modifies hippocampal representations independent of correlated activity. bioRxiv 934182. https://doi.org/10.1101/2020.02.04.934182
    [Crossref]
  93. Muller RU, Kubie JL, Ranck JB. 1987. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7:71935–50
    [Google Scholar]
  94. Nadel L, Moscovitch M. 1997. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7:2217–27
    [Google Scholar]
  95. Nader K, Schafe GE, Le Doux JE. 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:6797722–26
    [Google Scholar]
  96. Nielson DM, Smith TA, Sreekumar V, Dennis S, Sederberg PB 2015. Human hippocampus represents space and time during retrieval of real-world memories. PNAS 112:3511078–83
    [Google Scholar]
  97. Norman Y, Yeagle EM, Khuvis S, Harel M, Mehta AD, Malach R. 2019. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365:6454eaax1030
    [Google Scholar]
  98. O'Keefe J, Burgess N 1996. Geometric determinants of the place fields of hippocampal neurons. Nature 381:6581425–28
    [Google Scholar]
  99. O'Keefe J, Krupic J 2021. Do hippocampal pyramidal cells respond to non-spatial stimuli?. Physiol Rev 101:1427–56
    [Google Scholar]
  100. O'Keefe J, Nadel L 1978. The Hippocampus as a Cognitive Map Oxford, UK: Oxford Univ. Press
  101. O'Keefe J, Recce ML 1993. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:3317–30
    [Google Scholar]
  102. Olton DS, Becker JT, Handelmann GE. 1979. Hippocampus, space, and memory. Behav. Brain Sci. 2:3313–22
    [Google Scholar]
  103. Pastalkova E, Itskov V, Amarasingham A, Buzsáki G 2008. Internally generated cell assembly sequences in the rat hippocampus. Science 321:58941322–27
    [Google Scholar]
  104. Patel J, Fujisawa S, Berényi A, Royer S, Buzsáki G. 2012. Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75:3410–17
    [Google Scholar]
  105. Petersen PC, Buzsáki G. 2020. Cooling of medial septum reveals theta phase lag coordination of hippocampal cell assemblies. Neuron 107:4731–44.e3
    [Google Scholar]
  106. Pfeiffer BE, Foster DJ. 2013. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497:744774–79
    [Google Scholar]
  107. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. 2005. Invariant visual representation by single neurons in the human brain. Nature 435:70451102–7
    [Google Scholar]
  108. Race E, Keane MM, Verfaellie M. 2011. Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. J. Neurosci 31:10262–69
    [Google Scholar]
  109. Raichle ME. 2015. The brain's default mode network. Annu. Rev. Neurosci. 38:433–47
    [Google Scholar]
  110. Robbe D, Montgomery SM, Thome A, Rueda-Orozco PE, McNaughton BL, Buzsáki G. 2006. Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat. Neurosci. 9:121526–33
    [Google Scholar]
  111. Ross RS, Eichenbaum H. 2006. Dynamics of hippocampal and cortical activation during consolidation of a nonspatial memory. J. Neurosci. 26:184852–59
    [Google Scholar]
  112. Rovelli C. 2016. Reality Is Not What It Seems: The Journey to Quantum Gravity London: Allan Lane
  113. Royer S, Sirota A, Patel J, Buzsáki G 2010. Distinct representations and theta dynamics in dorsal and ventral hippocampus. J. Neurosci. 30:51777–87
    [Google Scholar]
  114. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI et al. 2014. Neural constraints on learning. Nature 512:7515423–26
    [Google Scholar]
  115. Samsonovich A, McNaughton BL. 1997. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17:155900–20
    [Google Scholar]
  116. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP et al. 2006. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:5774758–62
    [Google Scholar]
  117. Schacter DL. 1987. Implicit memory: history and current status. J. Exp. Psychol. Learn. Mem. Cogn 13:501–18
    [Google Scholar]
  118. Schacter DL. 2012. Constructive memory: past and future. Dialogues Clin. Neurosci. 14:17–18
    [Google Scholar]
  119. Schacter DL, Addis DR. 2007. Constructive memory: the ghosts of past and future. Nature 445:712327
    [Google Scholar]
  120. Schacter DL, Addis DR, Hassabis D, Martin VC, Spreng RN, Szpunar KK. 2012. The future of memory: remembering, imagining, and the brain. Neuron 76:677–94
    [Google Scholar]
  121. Schiller D, Monfils M-H, Raio CM, Johnson DC, Ledoux JE, Phelps EA. 2010. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:727749–53
    [Google Scholar]
  122. Scoville WB, Milner B. 1957. Loss of recent memory after bilateral hippocampal lesions. J. Exp. Psychol. Anim. Behav. Process. 20:111–21
    [Google Scholar]
  123. Seligman ME. 1970. On the generality of the laws of learning. Psychol. Rev. 77:5406–18
    [Google Scholar]
  124. Sinha C, Sinha VDS, Zinken J, Sampaio W 2011. When time is not space: the social and linguistic construction of time intervals and temporal event relations in an Amazonian culture. Lang. Cogn. 3:1137–69
    [Google Scholar]
  125. Skaggs WE, McNaughton BL. 1996. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:52571870–73
    [Google Scholar]
  126. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA 1996. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:2149–72
    [Google Scholar]
  127. Squire LR. 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99:2195–231
    [Google Scholar]
  128. Squire LR, Dede AJO. 2015. Conscious and unconscious memory systems. Cold Spring Harb. Perspect. Med. 7:3a021667
    [Google Scholar]
  129. Squire LR, van der Horst AS, McDuff SGR, Frascino JC, Hopkins RO, Mauldin KN. 2010. Role of the hippocampus in remembering the past and imagining the future. PNAS 107:19044–48
    [Google Scholar]
  130. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD 2019. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364:6437aav7893
    [Google Scholar]
  131. Tambini A, Davachi L. 2013. Persistence of hippocampal multivoxel patterns into postencoding rest is related to memory. PNAS 110:4819591–96
    [Google Scholar]
  132. Tambini A, Ketz N, Davachi L. 2010. Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65:2280–90
    [Google Scholar]
  133. Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N et al. 2019. Recent advances in physical reservoir computing: a review. Neural Netw 115:100–23
    [Google Scholar]
  134. Teyler TJ, DiScenna P. 1986. The hippocampal memory indexing theory. Behav. Neurosci. 100:2147–54
    [Google Scholar]
  135. Tompary A, Davachi L. 2017. Consolidation promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron 96:1228–41
    [Google Scholar]
  136. Tubridy S, Davachi L. 2011. Medial temporal lobe contributions to episodic sequence encoding. Cereb. Cortex 21:2272–80
    [Google Scholar]
  137. Tulving E 1972. Episodic and semantic memory. Organization of Memory E Tulving, W Donaldson 381–403 New York: Academic
    [Google Scholar]
  138. Tulving E. 1985. Memory and consciousness. Can. Psychol. Psychol. Can. 26:11–12
    [Google Scholar]
  139. Tulving E. 2002. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53:1–25
    [Google Scholar]
  140. Tulving E 2005. Episodic memory and autonoesis: uniquely human?. The Missing Link in Cognition: Origins of Self-Reflective Consciousness HS Terrace, J Metcalfe 3–56 New York: Oxford Univ. Press
    [Google Scholar]
  141. Tulving E, Schacter DL. 1990. Priming and human memory systems. Science 247:4940301–6
    [Google Scholar]
  142. Turing AM. 1950. Computing machinery and intelligence. MIND 59:236433–60
    [Google Scholar]
  143. Vanderwolf C. 2003. An Odyssey Through the Brain, Behavior and the Mind New York: Springer
  144. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M. 1997. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277:5324376–80
    [Google Scholar]
  145. Vaz AP, Wittig JJH, Inati SK, Zaghloul KA. 2020. Replay of cortical spiking sequences during human memory retrieval. Science 367:64821131–34
    [Google Scholar]
  146. Wang Y, Romani S, Lustig B, Leonardo A, Pastalkova E 2015. Theta sequences are essential for internally generated hippocampal firing fields. Nat. Neurosci. 18:2282–88
    [Google Scholar]
  147. Witter MP, Naber PA, van Haeften T, Machielsen WC, Rombouts SA et al. 2000. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 10:4398–410
    [Google Scholar]
  148. Wittner L, Henze DA, Záborszky L, Buzsáki G 2007. Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Struct. Funct 212:175–83
    [Google Scholar]
  149. Wixted JT. 2004. The psychology and neuroscience of forgetting. Annu. Rev. Psychol. 55:235–69
    [Google Scholar]
  150. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK et al. 2013. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16:3264–66
    [Google Scholar]
/content/journals/10.1146/annurev-psych-021721-110002
Loading
/content/journals/10.1146/annurev-psych-021721-110002
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error