1932

Abstract

Many food crops rely on pollination by animals. Historically, wind and wild organisms provided pollination as an ecosystem service that varied across agroecological zones, cropping systems, and time. The value of these pollination services is likely substantial but has not been estimated reliably. More recently, pollination services in major crop-producing regions have been provided through organized markets, primarily the rental of honey bees. The sustainability of commercially provided pollination services is being challenged by parasites, diseases, pesticide exposures, poor nutrition, and Colony Collapse Disorder. Economic analyses indicate that honey bee rental markets have been able to adjust to those challenges, at least to date. Understanding the future sustainability of rental markets requires greater knowledge of the contributions of wild pollinators, optimal management of pollination services from wild and managed organisms, and the value of pollination services provided by wild and managed organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-101420-110406
2021-10-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/resource/13/1/annurev-resource-101420-110406.html?itemId=/content/journals/10.1146/annurev-resource-101420-110406&mimeType=html&fmt=ahah

Literature Cited

  1. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. 2008. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18:201572–75
    [Google Scholar]
  2. Alaux C, Brunet J-L, Dussaubat C, Mondet F, Tchamitchan S et al. 2010. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12:3774–82
    [Google Scholar]
  3. Albrecht M, Kleijn D, Williams NM, Tschumi M, Blaauw BR et al. 2020. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23:101488–98
    [Google Scholar]
  4. Allsopp MH, de Lange WJ, Veldtman R. 2008. Valuing insect pollination services with cost of replacement. PLOS ONE 3:9e3128
    [Google Scholar]
  5. Anderson ED. 1969. An appraisal of the beekeeping industry ARS Rep. 42-150, Agric. Res. Serv., US Dep. Agric Washington, DC:
  6. Atkins EL 1992. Injury to honey bees by poisoning. The Hive and the Honey Bee JM Graham 1153–208 Hamilton, IL: Rev. Dadant & Sons
    [Google Scholar]
  7. Back L, Lawson H. 2020. With bees on decline, mechanical pollination may be solution. Reuters April 20. https://www.reuters.com/article/us-earth-day-israel-machinepollination-idUSKBN22210K
    [Google Scholar]
  8. Biddinger DJ, Robertson JL, Mullin C, Frazier J, Ashcraft SA et al. 2013. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLOS ONE 8:9e72587
    [Google Scholar]
  9. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M et al. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:5785351–54
    [Google Scholar]
  10. Blüthgen N, Klein A-M. 2011. Functional complementarity and specialisation: the role of biodiversity in plant-pollinator interactions. Basic Appl. Ecol. 12:4282–91
    [Google Scholar]
  11. Boffey D. 2018. Robotic bees could pollinate plants in case of insect apocalypse. The Guardian Oct. 9. https://www.theguardian.com/environment/2018/oct/09/robotic-bees-could-pollinate-plants-in-case-of-insect-apocalypse
    [Google Scholar]
  12. Bommarco R, Kleijn D, Potts SG. 2013. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28:4230–38
    [Google Scholar]
  13. Bos MM, Veddeler D, Bogdanski AK, Klein A-M, Tscharntke T et al. 2007. Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination. Ecol. Appl. 17:61841–49
    [Google Scholar]
  14. Breeze TD, Gallai N, Garibaldi LA, Li XS. 2016. Economic measures of pollination services: shortcomings and future directions. Trends Ecol. Evol. 31:12927–39
    [Google Scholar]
  15. Breeze TD, Vaissiere BE, Bommarco R, Petanidou T, Seraphides N et al. 2014. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLOS ONE 9:1e82996
    [Google Scholar]
  16. Brittain C, Kremen C, Klein A-M. 2013. Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19:2540–47
    [Google Scholar]
  17. Bruckner S, Steinhauer N, Engelsma J, Fauvel AM, Kulhanek K et al. 2020. Preliminary results of the 2019–2020 National Honey Bee Colony Loss Survey. Bee Informed Blog June 22. https://beeinformed.org/2020/06/22/preliminary-results-of-the-2019-2020-national-honey-bee-colony-loss-survey/
    [Google Scholar]
  18. Burrier AS, Todd FE, Scullen HA, Gorton WW. 1939. Costs and practices in producing honey in Oregon Stn. Bull. 362, Or. State Syst. Higher Educ., Agric. Exp. Stn., Or. State Coll., Corvallis, Bur. Entomol. Plant Quar., US Dep. Agric. Coop .
  19. Cameron SA, Sadd BM. 2020. Global trends in bumble bee health. Annu. Rev. Entomol. 65:209–32
    [Google Scholar]
  20. Chautá-Mellizo A, Campbell SA, Bonilla MA, Thaler JS, Poveda K. 2012. Effects of natural and artificial pollination on fruit and offspring quality. Basic Appl. Ecol. 13:6524–32
    [Google Scholar]
  21. Cheung SNS. 1973. The fable of the bees: an economic investigation. J. Law Econ. 16:111–33
    [Google Scholar]
  22. Connelly H, Poveda K, Loeb G. 2015. Landscape simplification decreases wild bee pollination services to strawberry. Agric. Ecosyst. Environ. 211:51–56
    [Google Scholar]
  23. Cusser S, Neff JL, Jha S. 2016. Natural land cover drives pollinator abundance and richness, leading to reductions in pollen limitation in cotton agroecosystems. Agric. Ecosyst. Environ. 226:33–42
    [Google Scholar]
  24. Daberkow S, Korb P, Hoff F. 2009. Structure of the U.S. beekeeping industry: 1982–2002. J. Econ. Entomol 102:3868–86
    [Google Scholar]
  25. Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I et al. 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5:10eaax0121
    [Google Scholar]
  26. Degrandi-Hoffman G, Chen Y, Watkins Dejong E, Chambers ML, Hidalgo G. 2015. Effects of oral exposure to fungicides on honey bee nutrition and virus levels. J. Econ. Entomol. 108:62518–28
    [Google Scholar]
  27. Duncan RA, Holtz BA, Doll DA, Klonsky K, Sumner DA et al. 2016. Sample costs to establish an orchard and produce almondsSan Joaquin Valley North 2016 Rep., Univ. Calif. Coop. Ext., Davis https://coststudyfiles.ucdavis.edu//uploads/cs_public/35/d7/35d70394-71d5-4d58-bbc4-d0a11f6b372c/16almondssjvnorthfinaldraft42716.pdf
    [Google Scholar]
  28. Eeraerts M, Smagghe G, Meeus I. 2020. Bumble bee abundance and richness improves honey bee pollination behaviour in sweet cherry. Basic Appl. Ecol. 43:27–33
    [Google Scholar]
  29. Ferrier PM, Rucker RR, Thurman WN, Burgett M. 2018. Economic effects and responses to changes in honey bee health Econ. Res. Rep. 246, Econ Res. Serv., US Dep. Agric Washington, DC:
  30. Fisher A, Coleman C, Hoffmann C, Fritz B, Rangel J. 2017. The synergistic effects of almond protection fungicides on honey bee (Hymenoptera: Apidae) forager survival. J. Econ. Entomol. 110:3802–8
    [Google Scholar]
  31. Gallai N, Salles J-M, Settele J, Vaissière BE. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:3810–21
    [Google Scholar]
  32. Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR et al. 2014. From research to action: enhancing crop yield through wild pollinators. Front. Ecol. Environ. 12:8439–47
    [Google Scholar]
  33. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R et al. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:61271608–11
    [Google Scholar]
  34. Garratt MPD, Truslove CL, Coston DJ, Evans RL, Moss ED et al. 2014. Pollination deficits in UK apple orchards. J. Pollinat. Ecol. 12:29–14
    [Google Scholar]
  35. Genung MA, Fox J, Winfree R. 2020. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29:91531–41
    [Google Scholar]
  36. Ghazoul J. 2005. Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol. 20:7367–73
    [Google Scholar]
  37. Giacomini JJ, Leslie J, Tarpy DR, Palmer-Young EC, Irwin RE, Adler LS. 2018. Medicinal value of sunflower pollen against bee pathogens. Sci. Rep. 8:114394
    [Google Scholar]
  38. Giannini TC, Cordeiro GD, Freitas BM, Saraiva AM, Imperatriz-Fonseca VL. 2015. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108:3849–57
    [Google Scholar]
  39. Gonzalez MV, Coque M, Herrero M. 1998. Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann. Appl. Biol. 132:2349–55
    [Google Scholar]
  40. Goodrich BK. 2019. Do more bees imply higher fees? Honey bee colony strength as a determinant of almond pollination fees. Food Policy 83:150–60
    [Google Scholar]
  41. Goodrich BK, Williams JC, Goodhue RE. 2019. The great bee migration: supply analysis of honey bee colony shipments into California for almond pollination services. Am. J. Agric. Econ. 101:51353–72
    [Google Scholar]
  42. Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:62291255957
    [Google Scholar]
  43. Greenleaf SS, Kremen C 2006. Wild bees enhance honey bees’ pollination of hybrid sunflower. PNAS 103:3713890–95
    [Google Scholar]
  44. Guzmán-Novoa E, Eccles L, Calvete Y, Mcgowan J, Kelly PG, Correa-Benítez A. 2010. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41:4443–50
    [Google Scholar]
  45. Hanley N, Breeze TD, Ellis C, Goulson D. 2015. Measuring the economic value of pollination services: principles, evidence and knowledge gaps. Ecosyst. Serv. 14:124–32
    [Google Scholar]
  46. Harwood GP, Dolezal AG. 2020. Pesticide-virus interactions in honey bees: challenges and opportunities for understanding drivers of bee declines. Viruses 12:5566
    [Google Scholar]
  47. Hellerstein D, Hitaj C, Smith D, Davis A. 2017. Land use, land cover, and pollinator health: a review and trend analysis Econ. Res. Rep. 232 Econ. Res. Serv., US Dep. Agric., Washington, DC:
  48. Higes M, Martín-Hernández R, Botías C, Bailón EG, González-Porto AV et al. 2008. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10:102659–69
    [Google Scholar]
  49. Higes M, Martín-Hernández R, Martínez-Salvador A, Garrido-Bailón E, González-Porto AV et al. 2010. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ. Microbiol. Rep. 2:2243–50
    [Google Scholar]
  50. Hitaj C, Smith DJ, Hunt KA. 2018. Pollination services: honeybee movements across the US and the impact of travel on honeybee health Presented at the Annual Meeting of the Agricultural and Applied Economics Association Washington, DC: Aug 5–7
  51. Hoff FL, Willett LS. 1994. The US beekeeping industry Agric. Econ. Rep. 305707, US Dep. Agric. Econ. Res. Serv Washington, DC:
  52. Johansen CA, Mayer DF. 1990. Pollinator Protection: A Bee & Pesticide Handbook Kalamazoo, MI: Wicwas Press
  53. Johnson JA, Baldos UL, Hertel T, Noteboom C, Polasky S, Roxburgh T. 2020. Global futures: assessing the global economic impacts of environmental change to support policy-making Summ. Rep., World Wildlife Fund San Francisco, CA:
  54. Johnson RM, Ellis MD, Mullin CA, Frazier M. 2010. Pesticides and honey bee toxicity—USA. Apidologie 41:3312–31
    [Google Scholar]
  55. Jordan A, Patch HM, Grozinger CM, Khanna V. 2021. Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environ. Sci. Technol. 55:42243–53
    [Google Scholar]
  56. Just RE, Hueth DL. 1979. Welfare measures in a multimarket framework. Am. Econ. Rev. 69:5947–54
    [Google Scholar]
  57. Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M et al. 2015. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6:17414
    [Google Scholar]
  58. Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA et al. 2007. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274:303–13
    [Google Scholar]
  59. Koh I, Lonsdorf EV, Artz DR, Pitts-Singer TL, Ricketts TH 2018. Ecology and economics of using native managed bees for almond pollination. J. Econ. Entomol. 111:116–25
    [Google Scholar]
  60. Kremen C, Miles A. 2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17:440
    [Google Scholar]
  61. Kremen C, Williams NM, Thorp RW 2002. Crop pollination from native bees at risk from agricultural intensification. PNAS 99:2616812–16
    [Google Scholar]
  62. Lee H, Sumner DA, Champetier A. 2018. Pollination markets and the coupled future of almonds and honey bees: simulating impacts of shifts in demands and costs. Am. J. Agric. Econ. 101:1230–49
    [Google Scholar]
  63. Leonhardt SD, Gallai N, Garibaldi LA, Kuhlmann M, Klein A-M. 2013. Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic Appl. Ecol. 14:6461–71
    [Google Scholar]
  64. Lichtenberg EM, Kennedy CM, Kremen C, Batáry P, Berendse F et al. 2017. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23:114946–57
    [Google Scholar]
  65. Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. BioScience 56:4311–23
    [Google Scholar]
  66. MacDonald JM, Hoppe RA, Newton D 2018. Three decades of consolidation in U.S. agriculture Econ. Inf. Bull 189 Econ. Res. Service, US Dep. Agric. Washington, DC:
  67. MacDonald JM, Korb P, Hoppe RA. 2013. Farm size and the organization of U.S. crop farming Econ. Res. Rep. 152 Econ. Res. Service, US Dep. Agric Washington, DC:
  68. MacLeod M, Reilly J, Cariveau DP, Genung MA, Roswell M et al. 2020. How much do rare and crop-pollinating bees overlap in identity and flower preferences?. J. Appl. Ecol. 57:2413–23
    [Google Scholar]
  69. Mallinger RE, Gratton C. 2015. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J. Appl. Ecol. 52:2323–30
    [Google Scholar]
  70. Mayer DF, Johansen CA. 1983. Occurrence of honey bee (Hymenoptera: Apidae) poisoning in eastern Washington. Environ. Entomol. 12:2317–20
    [Google Scholar]
  71. McGregor SE. 1976. Insect Pollination of Cultivated Crop Plants Washington, DC: US Dep. Agric.
  72. Melathopoulos AP, Cutler GC, Tyedmers P. 2015. Where is the value in valuing pollination ecosystem services to agriculture?. Ecol. Econ. 109:59–70
    [Google Scholar]
  73. Morandin LA, Winston ML. 2006. Pollinators provide economic incentive to preserve natural land in agroecosystems. Agric. Ecosyst. Environ. 116:3289–92
    [Google Scholar]
  74. Mundy-Heisz KA, Prosser RS, Raine NE. 2020. Acute oral toxicity and risks of exposure to the neonicotinoid thiamethoxam, and other classes of systemic insecticide, for the Common Eastern Bumblebee (Bombus impatiens). bioRxiv 921510. https://doi.org/10.1101/2020.01.27.921510
    [Crossref]
  75. Mussen EC, Lopez JE, Peng CYS. 2004. Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ. Entomol. 33:51151–54
    [Google Scholar]
  76. Muth MK, Rucker RR, Thurmand WN, Chuang C-T. 2003. The fable of the bees revisited: causes and consequences of the U.S. honey program. J. Law Econ. 46:2479–516
    [Google Scholar]
  77. Natl. Agric. Stat. Serv 2016. Cost of pollination Rep., US Dep. Agric Washington, DC: https://downloads.usda.library.cornell.edu/usda-esmis/files/d504rk335/f4752k73h/1z40kw69m/CostPoll-12-22-2016.pdf
  78. Natl. Agric. Stat. Serv 2017. Cost of pollination Rep., US Dep. Agric. Washington, DC: https://downloads.usda.library.cornell.edu/usda-esmis/files/d504rk335/ht24wn48h/zg64tp76q/CostPoll-12-21-2017.pdf
  79. Natl. Agric. Stat. Serv 2020. Honey bee colonies. Rep., US Dep. Agric Washington, DC: https://usda.library.cornell.edu/concern/publications/rn301137d
  80. Naug D. 2009. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142:102369–72
    [Google Scholar]
  81. Nicholson CC, Ricketts TH. 2019. Wild pollinators improve production, uniformity, and timing of blueberry crops. Agric. Ecosyst. Environ. 272:29–37
    [Google Scholar]
  82. Olmstead AL, Wooten DB. 1987. Bee pollination and productivity growth: the case of alfalfa. Am. J. Agric. Econ. 69:156–63
    [Google Scholar]
  83. Partap U, Ya T. 2012. The human pollinators of fruit crops in Maoxian County, Sichuan, China. Mt. Res. Dev. 32:2176–86
    [Google Scholar]
  84. Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, VanEngelsdorp D 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLOS ONE 8:7e70182
    [Google Scholar]
  85. Pettis JS, vanEngelsdorp D, Johnson J, Dively G 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:2153–58
    [Google Scholar]
  86. Pilling ED, Jepson PC. 1993. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39:4293–97
    [Google Scholar]
  87. Pinillos V, Cuevas J. 2008. Artificial pollination in tree crop production. Hortic. Rev. 34:239–76
    [Google Scholar]
  88. Pope KS, Lightle DM, Buchner RP, Niederholder F, Klonsky K et al. 2016. Sample costs to establish an orchard and produce almondsSacramento Valley Rep., Univ. Calif. Natl. Resour. Coop. Ext., UC Davis https://www.almonds.com/sites/default/files/2020-04/16almondsacvalfinaldraft81216.pdf
    [Google Scholar]
  89. Potts SG, Imperatriz-Fonseca VL, Ngo HT, Biesmeijer JC, Breeze TD et al. 2016. The assessment report on pollinators, pollination and food production: summary for policymakers Rep., Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv Bonn, Ger: http://nora.nerc.ac.uk/id/eprint/514356/1/N514356CR.pdf
  90. Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L et al. 2015. Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc. R. Soc. B 282: 1816.20151740
    [Google Scholar]
  91. Rader R, Cunningham SA, Howlett BG, Inouye DW. 2020. Non-bee insects as visitors and pollinators of crops: biology, ecology, and management. Annu. Rev. Entomol. 65:391–407
    [Google Scholar]
  92. Reilly JR, Artz DR, Biddinger D, Bobiwash K, Boyle NK et al. 2020. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 287: 1931. https://doi.org/10.1098/rspb.2020.0922
    [Crossref] [Google Scholar]
  93. Ricketts TH, Lonsdorf E. 2013. Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecol. Appl. 23:51113–23
    [Google Scholar]
  94. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C et al. 2008. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11:5499–515
    [Google Scholar]
  95. Ricketts TH, Watson KB, Koh I, Ellis AM, Nicholson CC et al. 2016. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 7:13106
    [Google Scholar]
  96. Rucker RR, Thurman WN, Burgett M. 2012. Honey bee pollination markets and the internalization of reciprocal benefits. Am. J. Agric. Econ. 94:4956–77
    [Google Scholar]
  97. Rucker RR, Thurman WN, Burgett M. 2019. Colony Collapse and the consequences of bee disease: market adaptation to environmental change. J. Assoc. Environ. Resour. Econ. 6:5927–60
    [Google Scholar]
  98. Sáez A, Negri P, Viel M, Aizen MA. 2019. Pollination efficiency of artificial and bee pollination practices in kiwifruit. Sci. Hortic. 246:1017–21
    [Google Scholar]
  99. Shen M, Yang X, Cox-Foster D, Cui L. 2005. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342:1141–49
    [Google Scholar]
  100. Siebert JW. 1980. Beekeeping, pollination, and externalities in California agriculture. Am. J. Agric. Econ. 62:2165–71
    [Google Scholar]
  101. Simpson RD. 2019. Conservation incentives from an ecosystem service: How much farmland might be devoted to native pollinators?. Environ. Resour. Econ. 73:2661–78
    [Google Scholar]
  102. Siviter H, Muth F. 2020. Do novel insecticides pose a threat to beneficial insects?. Proc. R. Soc. B 287: 1935.20201265
    [Google Scholar]
  103. Smart MD, Pettis JS, Euliss N, Spivak MS. 2016. Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies. Agric. Ecosyst. Environ. 230:139–49
    [Google Scholar]
  104. Southwick EE, Southwick L. 1992. Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J. Econ. Entomol. 85:3621–33
    [Google Scholar]
  105. Steinhauer NA, Rennich K, Wilson ME, Caron DM, Lengerich EJ et al. 2014. A national survey of managed honey bee 2012–2013 annual colony losses in the USA: results from the Bee Informed Partnership. J. Apic. Res. 53:11–18
    [Google Scholar]
  106. Stephen WP. 1960. Artificial bee beds for the propagation of the alkali bee, Nomia melander. J. Econ. Entomol. 53:61025–30
    [Google Scholar]
  107. Tamburini G, Bommarco R, Kleijn D, van der Putten WH, Marini L. 2019. Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280:16–23
    [Google Scholar]
  108. Tsvetkov N, Samson-Robert O, Sood K, Patel H, Malena D et al. 2017. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356:1395–97
    [Google Scholar]
  109. Uhl P, Brühl CA. 2019. The impact of pesticides on flower-visiting insects: a review with regard to European risk assessment. Environ. Toxicol. Chem. 38:112355–70
    [Google Scholar]
  110. [Google Scholar]
  111. US EPA (US Environ. Prot. Agency) 2013. Colony collapse disorder. United States Environmental Protection Agency https://www.epa.gov/pollinator-protection/colony-collapse-disorder
    [Google Scholar]
  112. Vandame R, Belzunces LP. 1998. Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neurosci. Lett. 251:157–60
    [Google Scholar]
  113. vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E et al. 2009. Colony Collapse Disorder: a descriptive study. PLOS ONE 4:8e6481
    [Google Scholar]
  114. Venturini EM, Drummond FA, Hoshide AK, Dibble AC, Stack LB. 2017. Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecol. Sustain. Food Syst. 41:2101–42
    [Google Scholar]
  115. Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B et al. 2011. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLOS ONE 6:6e21550
    [Google Scholar]
  116. Voorhies EF, Todd FE, Galbraith JK. 1933. Economic aspects of the bee industry Bull. 555 Giannini Found. Agric. Econ Berkeley, CA:
  117. Willett LS, French BC. 1991. An econometric model of the U.S. beekeeping industry. Am. J. Agric. Econ. 73:140–54
    [Google Scholar]
  118. Williams GR, Tarpy DR, vanEngelsdorp D, Chauzat M-P, Cox-Foster DL et al. 2010. Colony Collapse Disorder in context. BioEssays 32:10845–46
    [Google Scholar]
  119. Winfree R, Gross BJ, Kremen C. 2011. Valuing pollination services to agriculture. Ecol. Econ. 71:80–88
    [Google Scholar]
  120. Winfree R, Williams NM, Dushoff J, Kremen C. 2007. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10:111105–13
    [Google Scholar]
  121. Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG et al. 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356:63451393–95
    [Google Scholar]
  122. Yaghmour M, Haviland DR, Fichtner EJ, Sanden BL, Viveros M et al. 2016. Sample Costs to Establish an Orchard and Produce Almonds–San Joaquin Valley South 2016 University of California Cooperative Extension
  123. Zamorano J, Bartomeus I, Grez AA, Garibaldi LA. 2020. Field margin floral enhancements increase pollinator diversity at the field edge but show no consistent spillover into the crop field: a meta-analysis. Insect Conserv. Divers. 13:6519–31
    [Google Scholar]
  124. Zhu YC, Adamczyk J, Rinderer T, Yao J, Danka R et al. 2015. Spray toxicity and risk potential of 42 commonly used formulations of row crop pesticides to adult honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 108:62640–47
    [Google Scholar]
/content/journals/10.1146/annurev-resource-101420-110406
Loading
/content/journals/10.1146/annurev-resource-101420-110406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error