1932

Abstract

Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover the other distribution. They are ubiquitous in mathematics, with a long history that has seen them catalyze core developments in analysis, optimization, and probability. Beyond their intrinsic mathematical richness, they possess attractive features that make them a versatile tool for the statistician: They can be used to derive weak convergence and convergence of moments, and can be easily bounded; they are well-adapted to quantify a natural notion of perturbation of a probability distribution; and they seamlessly incorporate the geometry of the domain of the distributions in question, thus being useful for contrasting complex objects. Consequently, they frequently appear in the development of statistical theory and inferential methodology, and they have recently become an object of inference in themselves. In this review, we provide a snapshot of the main concepts involved in Wasserstein distances and optimal transportation, and a succinct overview of some of their many statistical aspects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-030718-104938
2019-03-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/statistics/6/1/annurev-statistics-030718-104938.html?itemId=/content/journals/10.1146/annurev-statistics-030718-104938&mimeType=html&fmt=ahah

Literature Cited

  1. Afsari B, Tron R, Vidal R. 2013. On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. 51:2230–60
    [Google Scholar]
  2. Agueh M, Carlier G. 2011. Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43:904–24
    [Google Scholar]
  3. Agueh M, Carlier G. 2017. Vers un théorème de la limite centrale dans l'espace de Wasserstein?. C. R. Math. 355:812–18
    [Google Scholar]
  4. Ahidar-Coutrix A, Le Gouic T, Paris Q. 2018. On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics. arXiv:1806.02740 [math.ST]
    [Google Scholar]
  5. Ajtai M, Komlós J, Tusnády G. 1984. On optimal matchings. Combinatorica 4:259–64
    [Google Scholar]
  6. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos J, Matrán C. 2016. A fixed-point approach to barycenters in Wasserstein space. J. Math. Anal. Appl. 441:744–62
    [Google Scholar]
  7. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matrán C. 2018. Wide consensus aggregation in the Wasserstein space. Application to location-scatter families. Bernoulli 24:3147–79
    [Google Scholar]
  8. Ambrosio L, Gigli N. 2013. A user's guide to optimal transport. Modelling and Optimisation of Flows on Networks B Piccoli, M Rascle1–155 Berlin: Springer
    [Google Scholar]
  9. Ambrosio L, Gigli N, Savaré G 2008. Gradient Flows in Metric Spaces and in the Space of Probability Measures Basel, Switz.: Birkhäser
  10. Anderes E, Borgwardt S, Miller J. 2016. Discrete Wasserstein barycenters: optimal transport for discrete data. Math. Methods Oper. Res. 84:389–409
    [Google Scholar]
  11. Appell P 1886. Mémoire sur les déblais et les remblais des systèmes continus ou discontinus Paris: Impr. Nat.
  12. Bachoc F, Gamboa F, Loubes JM, Venet N. 2017. A Gaussian process regression model for distribution inputs. IEEE Trans. Inf. Theory https://dx.doi.org/10.1109/TIT.2017.2762322
    [Crossref] [Google Scholar]
  13. Bachoc F, Suvorikova A, Loubes JM, Spokoiny V. 2018. Gaussian process forecast with multidimensional distributional entries. arXiv:1805.00753 [stat.ME]
    [Google Scholar]
  14. Barbour AD, Brown TC. 1992. Stein's method and point process approximation. Stoch. Process. Appl. 43:9–31
    [Google Scholar]
  15. Barthe F, Bordenave C. 2013. Combinatorial optimization over two random point sets. Séminaire de Probabilités XLV C Donati-Martin, A Lejay, A Rouault483–535 Berlin: Springer
    [Google Scholar]
  16. Bass J. 1955. Sur la compatibilité des fonctions de répartition. C. R. Hebd. Séa. Acad. Sci. 240:839–41
    [Google Scholar]
  17. Beiglböck M, Schachermayer W. 2011. Duality for Borel measurable cost functions. Trans. Am. Math. Soc. 363:4203–24
    [Google Scholar]
  18. Benamou JD, Brenier Y. 2000. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84:375–93
    [Google Scholar]
  19. Bernton E, Jacob PE, Gerber M, Robert CP. 2017. Inference in generative models using the Wasserstein distance. arXiv:1701.05146 [stat.ME]
    [Google Scholar]
  20. Bickel PJ, Freedman DA. 1981. Some asymptotic theory for the bootstrap. Ann. Stat. 9:1196–217
    [Google Scholar]
  21. Bigot J, Cazelles E, Papadakis N. 2017a. Central limit theorems for Sinkhorn divergence between probability distributions on finite spaces and statistical applications. arXiv:1711.08947 [math.ST]
    [Google Scholar]
  22. Bigot J, Cazelles E, Papadakis N. 2017b. Penalized barycenters in the Wasserstein space. arXiv:1606.01025 [math.ST]
    [Google Scholar]
  23. Bigot J, Cazelles E, Papadakis N. 2018a. Data-driven regularization of Wasserstein barycenters with an application to multivariate density registration. arXiv:1804.08962 [stat.ME]
    [Google Scholar]
  24. Bigot J, Gouet R, Klein T, López A. 2017c. Geodesic PCA in the Wasserstein space by convex PCA. Ann. Inst. H. Poincaré Probab. Stat. 53:1–26
    [Google Scholar]
  25. Bigot J, Gouet R, Klein T, López A. 2018b. Upper and lower risk bounds for estimating the Wasserstein barycenter of random measures on the real line. Electron. J. Stat. 12:2253–89
    [Google Scholar]
  26. Bigot J, Klein T. 2018. Characterization of barycenters in the Wasserstein space by averaging optimal transport maps. ESAIM Probab. Stat. 22:35–57
    [Google Scholar]
  27. Bobkov S, Ledoux M. 2018. One-dimensional empirical measures, order statistics and Kantorovich transport distances. Mem. Am. Math. Soc In press
    [Google Scholar]
  28. Boissard E, Le Gouic T. 2014. On the mean speed of convergence of empirical and occupation measures in Wasserstein distance. Ann. Inst. H. Poincaré Probab. Stat. 50:539–63
    [Google Scholar]
  29. Boissard E, Le Gouic T, Loubes JM. 2015. Distribution's template estimate with Wasserstein metrics. Bernoulli 21:740–59
    [Google Scholar]
  30. Bolstad BM, Irizarry RA, Åstrand M, Speed TP. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–93
    [Google Scholar]
  31. Bonneel N, Peyré G, Cuturi M. 2016. Wasserstein barycentric coordinates: histogram regression using optimal transport. ACM Trans. Graph. 35:1–10
    [Google Scholar]
  32. Borgwardt S. 2017. Strongly polynomial 2-approximations of discrete Wasserstein barycenters. arXiv:1704.05491 [math.OC]
    [Google Scholar]
  33. Borgwardt S, Patterson S. 2018. Improved linear programs for discrete barycenters. arXiv:1803.11313 [math.OC]
    [Google Scholar]
  34. Brenier Y. 1991. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44:375–417
    [Google Scholar]
  35. Caffarelli LA. 1992. The regularity of mappings with a convex potential. J. Am. Math. Soc. 5:99–104
    [Google Scholar]
  36. Canas G, Rosasco L. 2012. Learning manifolds with K-means and K-flats. Advances in Neural Information Processing Systems 25 F Pereira, C Burges, L Bottou, K Weinberger2465–73 Red Hook, NY: Curran
    [Google Scholar]
  37. Carlier G, Chernozhukov V, Galichon A. 2016. Vector quantile regression: an optimal transport approach. Ann. Stat. 44:1165–92
    [Google Scholar]
  38. Chartrand R, Wohlberg B, Vixie K, Bollt E. 2009. A gradient descent solution to the Monge–Kantorovich problem. Appl. Math. Sci. 3:1071–80
    [Google Scholar]
  39. Chernozhukov V, Galichon A, Hallin M, Henry M. 2017. Monge–Kantorovich depth, quantiles, ranks and signs. Ann. Stat. 45:223–56
    [Google Scholar]
  40. Csörgő M, Horváth L 1993. Weighted Approximations in Probability and Statistics New York: Wiley
  41. Cuesta-Albertos JA, Matrán C. 1989. Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab. 17:1264–76
    [Google Scholar]
  42. Cuesta-Albertos JA, Matrán-Bea C, Tuero-Diaz A. 1996. On lower bounds for the L2-Wasserstein metric in a Hilbert space. J. Theor. Probab. 9:263–83
    [Google Scholar]
  43. Cuesta-Albertos JA, Rüschendorf L, Tuero-Diaz A. 1993. Optimal coupling of multivariate distributions and stochastic processes. J. Multivar. Anal. 46:335–61
    [Google Scholar]
  44. Cuny C. 2017. Invariance principles under the Maxwell–Woodroofe condition in Banach spaces. Ann. Probab. 43:1578–611
    [Google Scholar]
  45. Cuturi M. 2013. Sinkhorn distances: lightspeed computation of optimal transport. Advances in Neural Information Processing Systems 26 CJC Burges, L Bottou, M Welling, Z Ghahramani, K Weinberger2292–300 Red Hook, NY: Curran
    [Google Scholar]
  46. Cuturi M, Doucet A. 2014. Fast computation of Wasserstein barycenters. Proceedings of the 31st International Conference on Machine Learning EP Xing, T Jebara685–93 Brookline, MA: Microtome
    [Google Scholar]
  47. Dall'Aglio G. 1956. Sugli estremi dei momenti delle funzioni di ripartizione doppia. Ann. Scuola Norm. Sup. Pisa Classe Sci. 10:35–74
    [Google Scholar]
  48. de Wet T. 2002. Goodness-of-fit tests for location and scale families based on a weighted L2-Wasserstein distance measure. Test 11:89–107
    [Google Scholar]
  49. Dédé S. 2009. An empirical central limit theorem in L1 for stationary sequences. Stoch. Process. Appl. 119:3494–515
    [Google Scholar]
  50. Dedecker J, Merlevède F. 2017. Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences. Bernoulli 23:2083–127
    [Google Scholar]
  51. del Barrio E, Cuesta-Albertos JA, Matrán C. 2000. Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests. Test 9:1–96
    [Google Scholar]
  52. del Barrio E, Cuesta-Albertos JA, Matrán C, Mayo-Íscar A. 2018. Robust clustering tools based on optimal transportation. Stat. Comput https://doi.org/10.1007/s11222-018-9800-z
    [Crossref] [Google Scholar]
  53. del Barrio E, Cuesta-Albertos JA, Matrán C, Rodríguez-Rodríguez JM. 1999a. Tests of goodness of fit based on the L2-Wasserstein distance. Ann. Stat. 27:1230–39
    [Google Scholar]
  54. del Barrio E, Giné E, Matrán C. 1999b. Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann. Probab. 27:1009–71
    [Google Scholar]
  55. del Barrio E, Giné E, Utzet F. 2005. Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli 11:131–89
    [Google Scholar]
  56. del Barrio E, Loubes JM. 2018. Central limit theorems for empirical transportation cost in general dimension. Ann. Probab In press
    [Google Scholar]
  57. Delon J, Salomon J, Sobolevski A. 2010. Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math. 70:2239–58
    [Google Scholar]
  58. Dobrić V, Yukich JE. 1995. Asymptotics for transportation cost in high dimensions. J. Theor. Probab. 8:97–118
    [Google Scholar]
  59. Dobrushin RL. 1970. Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15:458–86
    [Google Scholar]
  60. Dryden IL, Mardia KV 1998. Statistical Shape Analysis New York: Wiley
  61. Dudley RM. 1969. The speed of mean Glivenko–Cantelli convergence. Ann. Math. Stat. 40:40–50
    [Google Scholar]
  62. Dudley RM 2002. Real Analysis and Probability Cambridge, UK: Cambridge Univ. Press
  63. Eberle A. 2014. Error bounds for Metropolis–Hastings algorithms applied to perturbations of Gaussian measures in high dimensions. Ann. Probab. 24:337–77
    [Google Scholar]
  64. Ebralidze SS. 1971. Inequalities for the probabilities of large deviations in the multidimensional case. Theory Probab. Appl. 16:733–37
    [Google Scholar]
  65. Evans SN, Matsen FA. 2012. The phylogenetic Kantorovich–Rubinstein metric for environmental sequence samples. J. R. Stat. Soc. B 74:569–92
    [Google Scholar]
  66. Figalli A 2017. The Monge–Ampère Equation and Its Applications Zürich, Switz.: Eur. Math. Soc.
  67. Fournier N, Guillin A. 2015. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162:707–38
    [Google Scholar]
  68. Fréchet M. 1948. Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré Probab. Stat. 10:215–310
    [Google Scholar]
  69. Fréchet M. 1951. Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon 14:53–77
    [Google Scholar]
  70. Freitag G, Czado C, Munk A. 2007. A nonparametric test for similarity of marginals—with applications to the assessment of population bioequivalence. J. Stat. Plan. Inference 137:697–711
    [Google Scholar]
  71. Freitag G, Munk A. 2005. On Hadamard differentiability in k-sample semiparametric models—with applications to the assessment of structural relationships. J. Multivar. Anal. 94:123–58
    [Google Scholar]
  72. Gangbo W, McCann RJ. 1996. The geometry of optimal transportation. Acta Math. 177:113–61
    [Google Scholar]
  73. Gangbo W, Świçch A. 1998. Optimal maps for the multidimensional Monge–Kantorovich problem. Comm. Pure Appl. Math. 51:23–45
    [Google Scholar]
  74. Gelbrich M. 1990. On a formula for the L2-Wasserstein metric between measures on Euclidean and Hilbert spaces. Math. Nachr. 147:185–203
    [Google Scholar]
  75. Gibbs AL, Su FE. 2002. On choosing and bounding probability metrics. Int. Stat. Rev. 70:419–35
    [Google Scholar]
  76. Gigli N. 2011. On the inverse implication of Brenier–McCann theorems and the structure of (P2(M), W2). Meth. Appl. Anal. 18:127–58
    [Google Scholar]
  77. Gini C. 1914. Di una misura della dissomiglianza tra due gruppi di quantità e delle sue applicazioni allo studio delle relazione statistiche. Atti Reale Inst. Veneto Sci. Lett. Arti 74:185–213
    [Google Scholar]
  78. Givens CR, Shortt RM. 1984. A class of Wasserstein metrics for probability distributions. Mich. Math. J. 31:231–40
    [Google Scholar]
  79. Graf S, Luschgy H 2007. Foundations of Quantization for Probability Distributions Berlin: Springer
  80. Grave E, Joulin A, Berthet Q. 2018. Unsupervised alignment of embeddings with Wasserstein Procrustes. arXiv:1805.11222 [cs.LG]
    [Google Scholar]
  81. Hairer M, Stuart AM, Vollmer SJ. 2014. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24:2455–90
    [Google Scholar]
  82. Hallin M. 2017. On distribution and quantile functions, ranks and signs in ECARES Work. Pap. 2017-34, Univ. Libre Brux. https://ideas.repec.org/p/eca/wpaper/2013-258262.html
  83. Höffding W. 1940. Masstabinvariante Korrelationstheorie. Schr. Math. Inst. Angew. Math. Univ. Berlin 5:181–233
    [Google Scholar]
  84. Huckemann S, Hotz T, Munk A. 2010. Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions. Stat. Sin. 20:1–58
    [Google Scholar]
  85. Johnson O, Samworth R. 2005. Central limit theorem and convergence to stable laws in Mallows distance. Bernoulli 11:829–45
    [Google Scholar]
  86. Kantorovich LV. 1942. On the translocation of masses. Dokl. Acad. Nauk. SSSR 37:227–29
    [Google Scholar]
  87. Kantorovich LV, Rubinstein GS. 1958. On a space of completely additive functions. Vestnik Leningr. Univ. 13:52–59
    [Google Scholar]
  88. Karcher H. 1977. Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30:509–41
    [Google Scholar]
  89. Kellerer HG. 1984. Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 67:399–432
    [Google Scholar]
  90. Kendall WS, Le H. 2011. Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables. Braz. J. Probab. Stat. 25:323–52
    [Google Scholar]
  91. Kloeckner BR. 2015. A geometric study of Wasserstein spaces: ultrametrics. Mathematika 61:162–78
    [Google Scholar]
  92. Knott M, Smith CS. 1984. On the optimal mapping of distributions. J. Optim. Theory Appl. 43:39–49
    [Google Scholar]
  93. Kroshnin A, Suvorikova A. 2018. Central limit theorem for Wasserstein barycenters of Gaussian measures Presented at the 4th Conference of the International Society for Nonparametric Statistics, Salerno, Italy, June 11–15
  94. Kuhn HW. 1955. The Hungarian method for the assignment problem. Naval Res. Log. 2:83–97
    [Google Scholar]
  95. Le Gouic T, Loubes JM. 2017. Existence and consistency of Wasserstein barycenters. Probab. Theory Related Fields 168:901–17
    [Google Scholar]
  96. Ledoux M 2005. The Concentration of Measure Phenomenon Providence, RI: Am. Math. Soc.
  97. Luenberger DG, Ye Y 2008. Linear and Nonlinear Programming New York: Springer
  98. Mallows C. 1972. A note on asymptotic joint normality. Ann. Math. Stat. 43:508–15
    [Google Scholar]
  99. Mariucci E, Reiß M. 2017. Wasserstein and total variation distance between marginals of Lévy processes. arXiv:1710.02715 [math.PR]
    [Google Scholar]
  100. Marron JS, Ramsay JO, Sangalli LM, Srivastava A. 2015. Functional data analysis of amplitude and phase variation. Stat. Sci. 30:468–84
    [Google Scholar]
  101. Masarotto V, Panaretos VM, Zemel Y. 2018. Procrustes metrics on covariance operators and optimal transportation of Gaussian processes. Sankhya A https://doi.org/10.1007/s13171-018-0130-1
    [Crossref] [Google Scholar]
  102. Mason DM. 2016. A weighted approximation approach to the study of the empirical Wasserstein distance. High Dimensional Probability VII C Houdré, DM Mason, P Reynaud-Bouret, J Rosiński137–54 Basel, Switz.: Birkhäuser
    [Google Scholar]
  103. McCann RJ. 1997. A convexity principle for interacting gases. Adv. Math. 128:153–79
    [Google Scholar]
  104. McCann RJ. 2001. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11:589–608
    [Google Scholar]
  105. Mileyko Y, Mukherjee S, Harer J. 2011. Probability measures on the space of persistence diagrams. Inverse Probl. 27:124007
    [Google Scholar]
  106. Monge G. 1781. Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie Royale des Sciences de Parispp 666–704 Paris: Impr. R.
    [Google Scholar]
  107. Munk A, Czado C. 1998. Nonparametric validation of similar distributions and assessment of goodness of fit. J. R. Stat. Soc. B 60:223–41
    [Google Scholar]
  108. Munkres J. 1957. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5:32–38
    [Google Scholar]
  109. Ni K, Bresson X, Chan T, Esedoglu S. 2009. Local histogram based segmentation using the Wasserstein distance. Int. J. Comput. Vis. 84:97–111
    [Google Scholar]
  110. Oliveira RI. 2009. On the convergence to equilibrium of Kac's random walk on matrices. Ann. Appl. Probab. 19:1200–31
    [Google Scholar]
  111. Olkin I, Pukelsheim F. 1982. The distance between two random vectors with given dispersion matrices. Linear Algebra Appl. 48:257–63
    [Google Scholar]
  112. Panaretos VM, Zemel Y. 2016. Amplitude and phase variation of point processes. Ann. Stat. 44:771–812
    [Google Scholar]
  113. Panaretos VM, Zemel Y 2019. An Invitation to Statistics in Wasserstein Space Berlin: Springer In press
  114. Pass B. 2013. Optimal transportation with infinitely many marginals. J. Funct. Anal. 264:947–63
    [Google Scholar]
  115. Peyré G, Cuturi M. 2018. Computational Optimal Transport arXiv:1803.00567 [stat.ML]
  116. Rachev ST. 1985. The Monge–Kantorovich mass transference problem and its stochastic applications. Theory Probab. Appl. 29:647–76
    [Google Scholar]
  117. Rachev ST 1991. Probability Metrics and the Stability of Stochastic Models New York: Wiley
  118. Rachev ST, Rüschendorf L. 1994. On the rate of convergence in the CLT with respect to the Kantorovich metric. Probability in Banach Spaces 9 J Hoffmann-Jørgensen, J Kuelbs, MB Marcus193–207 New York: Springer
    [Google Scholar]
  119. Rachev ST, Rüschendorf L 1998a. Mass Transportation Problems I Theory New York: Springer
  120. Rachev ST, Rüschendorf L 1998b. Mass Transportation Problems II Applications New York: Springer
  121. Rachev ST, Stoyanov SV, Fabozzi FJ 2011. A Probability Metrics Approach to Financial Risk Measures New York: Wiley
  122. Ramsay JO, Silverman BW 2005. Functional Data Analysis New York: Springer
  123. Rio E. 2009. Upper bounds for minimal distances in the central limit theorem. Ann. Inst. H. Poincaré Probab. Stat. 45:802–17
    [Google Scholar]
  124. Rippl T, Munk A, Sturm A. 2016. Limit laws of the empirical Wasserstein distance: Gaussian distributions. J. Multivar. Anal. 151:90–109
    [Google Scholar]
  125. Rolet A, Cuturi M, Peyré G. 2016. Fast dictionary learning with a smoothed Wasserstein loss. PMLR 51:630–38
    [Google Scholar]
  126. Rubner Y, Tomasi C, Guibas LJ. 2000. The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vis. 40:99–121
    [Google Scholar]
  127. Rudolf D, Schweizer N. 2018. Perturbation theory for Markov chains via Wasserstein distance. Bernoulli 24:2610–39
    [Google Scholar]
  128. Rüschendorf L, Rachev ST. 1990. A characterization of random variables with minimum L2-distance. J. Multivar. Anal. 32:48–54
    [Google Scholar]
  129. Santambrogio F 2015. Optimal Transport for Applied Mathematicians Basel, Switz.: Birkhäuser
  130. Schuhmacher D. 2009. Stein's method and Poisson process approximation for a class of Wasserstein metrics. Bernoulli 15:550–68
    [Google Scholar]
  131. Sklar M. 1959. Fonctions de répartition en n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8:229–31
    [Google Scholar]
  132. Sommerfeld M, Munk A. 2018. Inference for empirical Wasserstein distances on finite spaces. J. R. Stat. Soc. B 80:219–38
    [Google Scholar]
  133. Sommerfeld M, Schrieber J, Munk A. 2018. Optimal transport: fast probabilistic approximation with exact solvers. arXiv:1802.05570 [stat.CO]
    [Google Scholar]
  134. Takatsu A. 2011. Wasserstein geometry of Gaussian measures. Osaka J. Math. 48:1005–26
    [Google Scholar]
  135. Talagrand M. 1994. The transportation cost from the uniform measure to the empirical measure in dimension ⩾3. Ann. Probab. 22:919–59
    [Google Scholar]
  136. Tameling C, Munk A. 2018. Computational strategies for statistical inference based on empirical optimal transport. 2018 IEEE Data Science Workshop (DSW)175–79 New York: IEEE
    [Google Scholar]
  137. Tameling C, Sommerfeld M, Munk A. 2017. Empirical optimal transport on countable metric spaces: Distributional limits and statistical applications. arXiv:1707.00973 [math.PR]
    [Google Scholar]
  138. Tanaka H. 1973. An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 27:47–52
    [Google Scholar]
  139. Villani C 2003. Topics in Optimal Transportation Providence, RI: Am. Math. Soc.
  140. Villani C 2008. Optimal Transport: Old and New Berlin: Springer
  141. Wang JL, Chiou JM, Müller HG. 2016. Functional data analysis. Annu. Rev. Stat. Appl. 3:257–95
    [Google Scholar]
  142. Wasserman L. 2018. Topological data analysis. Annu. Rev. Stat. Appl. 5:501–32
    [Google Scholar]
  143. Weed J, Bach F. 2018. Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli In press
    [Google Scholar]
  144. Zemel Y, Panaretos VM. 2018. Fréchet means and Procrustes analysis in Wasserstein space. Bernoulli In press
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-030718-104938
Loading
/content/journals/10.1146/annurev-statistics-030718-104938
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error