1932

Abstract

When analyzing time-to-event data, it often happens that a certain fraction of the data corresponds to subjects who will never experience the event of interest. These event times are considered as infinite and the subjects are said to be cured. Survival models that take this feature into account are commonly referred to as cure models. This article reviews the literature on cure regression models in which the event time (response) is subject to random right censoring and has a positive probability to be equal to infinity.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Cure Models in Survival Analysis
Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-031017-100101
2018-03-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/statistics/5/1/annurev-statistics-031017-100101.html?itemId=/content/journals/10.1146/annurev-statistics-031017-100101&mimeType=html&fmt=ahah

Literature Cited

  1. Beran R. 1981. Nonparametric regression with randomly censored survival data Tech. Rep., Univ. Calif Berkeley:
  2. Berkson J, Gage RP. 1952. Survival curve for cancer patients following treatment. J. Am. Stat. Assoc. 47:501–15 [Google Scholar]
  3. Bertrand A, Legrand C, Carroll R, de Meester C, Van Keilegom I. 2017.a Inference in a survival cure model with mismeasured covariates using a SIMEX approach. Biometrika 104:31–50 [Google Scholar]
  4. Bertrand A, Legrand C, Léonard D, Van Keilegom I. 2017.b Robustness of estimation methods in a survival cure model with mismeasured covariates. Comput. Stat. Data Anal. 113:3–18 [Google Scholar]
  5. Boag JW. 1949. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J. R. Stat. Soc. B 11:15–53 [Google Scholar]
  6. Bremhorst V, Lambert P. 2016. Flexible estimation in cure survival models using Bayesian P-splines. Comput. Stat. Data Anal. 93:270–84 [Google Scholar]
  7. Breslow NE. 1974. Covariates analysis of censored survival data. Biometrics 30:89–99 [Google Scholar]
  8. Cai C, Zou Y, Peng P, Zhang J. 2012. smcure: fit semiparametric mixture cure models. R package for estimating semiparametric PH and AFT mixture cure models https://CRAN.R-project.org/package=smcure
  9. Carroll R, Ruppert D, Stefanski L, Crainiceanu C. 2006. Measurement Error in Nonlinear Models: A Modern Perspective Boca Raton, FL: Chapman and Hall/CRC. , 2nd ed..
  10. Chen MH, Ibrahim JG, Sinha D. 1999. A new Bayesian model for survival data with a surviving fraction. J. Am. Stat. Assoc. 94:909–19 [Google Scholar]
  11. Cook JR, Stefanski LA. 1994. Simulation-extrapolation in parametric measurement error models. J. Am. Stat. Assoc. 89:1314–28 [Google Scholar]
  12. Cooner F, Banerjee S, Carlin BP, Sinha D. 2007. Flexible cure rate modeling under latent activation schemes. J. Am. Stat. Assoc. 102:560–72 [Google Scholar]
  13. Cooner FW, Yu X, Banerjee S, Grambsch PL, McBean AM. 2009. Hierarchical dynamic time-to-event models for post-treatment preventive care data on breast cancer survivors. Stat. Model. 9:119–35 [Google Scholar]
  14. Corbière F, Commenges D, Taylor JMG, Joly P. 2009. A penalized likelihood approach for mixture cure models. Stat. Med. 28:510–24 [Google Scholar]
  15. Cox DR. 1972. Regression models and life-tables. J. R. Stat. Soc. B 34:187–220 [Google Scholar]
  16. de Castro M Cancho VG, Rodrigues J. 2009. A Bayesian long-term survival model parametrized in the cured fraction. Biom. J. 3:443–55 [Google Scholar]
  17. Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via EM algorithm. J. R. Stat. Soc. B 39:1–38 [Google Scholar]
  18. Diao G, Yin G. 2012. A general transformation class of semiparametric cure rate frailty models. Ann. Inst. Stat. Math. 64:959–89 [Google Scholar]
  19. Dirick L, Claeskens G, Baesens B. 2015. An Akaike information criterion for multiple event mixture cure models. Europ. J. Oper. Res. 241:449–57 [Google Scholar]
  20. Eilers PHC, Marx BD. 1996. Flexible smoothing B-splines and penalties (with discussion). Stat. Sci. 1:89–121 [Google Scholar]
  21. Fan J, Li R. 2001. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96:1348–60 [Google Scholar]
  22. Farewell VT. 1977. A model for binary variable with time-censored observations. Biometrika 64:43–46 [Google Scholar]
  23. Farewell VT. 1982. The use of a mixture model for the analysis of survival data with long-term survivors. Biometrics 38:1041–46 [Google Scholar]
  24. Farewell VT, Long DL, Tom BDM, Yiu S, Su L. 2017. Two-part and related regression models for longitudinal data. Annu. Rev. Stat. Appl. 4:283–315 [Google Scholar]
  25. Gelfand AE, Ghosh SK. 1998. Model choice: a minimum posteriori predictive loss approach. Biometrika 85:1–11 [Google Scholar]
  26. Ghitany ME, Maller RA, Zhou S. 1994. Exponential mixture models with long-term survivors and covariates. J. Multivar. Anal. 49:218–41 [Google Scholar]
  27. Hanin L, Huang L-S. 2014. Identifiability of cure models revisited. J. Multivar. Anal. 130:261–74 [Google Scholar]
  28. Hsu WW, Todem D, Kim KM. 2016. A sup-score test for the cure fraction in mixture models for long-term survivors. Biometrics 76:1348–57 [Google Scholar]
  29. Ibrahim JG, Chen MH, Sinha D. 2001. Bayesian semiparametric models for survival data with a cure fraction. Biometrics 57:383–88 [Google Scholar]
  30. Kalbfleisch JD, Prentice RL. 1973. Marginal likelihoods based on Cox's regression and life model. Biometrika 60:267–78 [Google Scholar]
  31. Kaplan EL, Meier P. 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457–81 [Google Scholar]
  32. Kim S, Chen MH, Dey DK, Gamerman D. 2007. Bayesian dynamic models for survival data with a cure fraction. Lifetime Data Anal 13:17–35 [Google Scholar]
  33. Kim S, Chen MH, Dey DK. 2011. A new threshold regression model for survival data with a cure fraction. Lifetime Data Anal 17:101–22 [Google Scholar]
  34. Kuk AYC, Chen CH. 1992. A mixture model combining logistic regression with proportional hazards regression. Biometrika 79:531–41 [Google Scholar]
  35. Lam KF, Fong DYT, Tang OY. 2005. Estimating the proportion of cured patients in censored sample. Stat. Med. 24:1865–79 [Google Scholar]
  36. Lang S, Brezger A. 2004. Bayesian P-splines. J. Comput. Graph. Stat. 13:183–212 [Google Scholar]
  37. Laud P, Ibrahim J. 1995. Predictive model selection. J. R. Stat. Soc. B 57:247–62 [Google Scholar]
  38. Li SC, Taylor JMG. 2002. A semi-parametric accelerated failure time cure model. Stat. Med. 21:3235–47 [Google Scholar]
  39. López-Cheda A, Cao R, Jácome MA, Van Keilegom I. 2017. Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models. Comp. Stat. Data Anal. 105:144–65 [Google Scholar]
  40. Liu X, Peng Y, Tu D, Liang H. 2012. Variable selection in semiparametric cure models based on penalized likelihood, with application to breast cancer clinical trials. Stat. Med. 31:2882–91 [Google Scholar]
  41. Lu W. 2008. Maximum likelihood estimation in the proportional hazards cure model. Ann. Inst. Stat. Math. 60:545–74 [Google Scholar]
  42. Lu W. 2010. Efficient estimation for an accelerated failure time model with a cure fraction. Stat. Sin. 20:661–74 [Google Scholar]
  43. Lu W, Ying Z. 2004. On semiparametric transformation cure models. Biometrika 91:331–43 [Google Scholar]
  44. Ma Y, Yin G. 2008. Cure rate model with mismeasured covariates under transformation. J. Am. Stat. Assoc. 103:743–56 [Google Scholar]
  45. Maller RA, Zhou S. 1996. Survival Analysis with Long Term Survivors New York: Wiley
  46. Meeker WQ. 1987. Limited failure population life tests: Application to integrated circuit reliability. Technometrics 29:51–65 [Google Scholar]
  47. Mizoi MF, Bolfarine H, Pedroso-De-Lima AC. 2007. Cure rate model with measurement error. Comm. Stat. Simul. Comput. 36:185–96 [Google Scholar]
  48. Moeschberger ML, Klein JP. 1985. A comparison of several methods of estimating the survival function when there is extreme right censoring. Biometrics 41:253–59 [Google Scholar]
  49. Patilea V, Van Keilegom I. 2017. A general approach for cure models in survival analysis. arXiv1701.03769 [math.ST]
  50. Peng Y. 2003.a Estimating baseline distribution in proportional hazards cure models. Comp. Stat. Data Anal. 42:187–201 [Google Scholar]
  51. Peng Y. 2003.b Fitting semiparametric cure models. Comput. Stat. Data Anal. 41:481–90 [Google Scholar]
  52. Peng Y, Dear KBG. 2000. A nonparametric mixture model for cure rate estimation. Biometrics 56:237–43 [Google Scholar]
  53. Peng Y, Dear KBG, Denham JW. 1998. A generalized F mixture model for cure rate estimation. Stat. Med. 17:813–30 [Google Scholar]
  54. Peng Y, Taylor JMG. 2014. Cure models. Handbook of Survival Analysis J Klein, H van Houwelingen, JG Ibrahim, TH Scheike 113–34 Boca Raton, FL: Chapman and Hall [Google Scholar]
  55. Peng Y, Taylor JMG. 2017. Residual-based model diagnosis methods for mixture cure models. Biometrics 73:495–505 [Google Scholar]
  56. Peng Y, Xu J. 2012. An extended cure model and model selection. Lifetime Data Anal 18:215–33 [Google Scholar]
  57. Portier F, El Ghouch A, Van Keilegom I. 2017. Efficiency and bootstrap in the promotion time cure model. Bernoulli 23:3437–68 [Google Scholar]
  58. Prentice RL. 1974. A log-gamma model and its maximum likelihood estimation. Biometrika 61:538–44 [Google Scholar]
  59. Ritov Y. 1990. Estimation in a linear regression model with censored data. Ann. Stat. 18:303–28 [Google Scholar]
  60. Rodrigues J, Canch VG, de Castro M, Louzada-Neto F. 2009. On the unification of long-term survival models. Stat. Probab. Lett. 79:753–59 [Google Scholar]
  61. Schmidt P, Witte AD. 1989. Predicting criminal recidivism using split population survival time models. J. Econom. 40:141–59 [Google Scholar]
  62. Scolas S, El Ghouch A, Legrand C, Oulhaj A. 2016. Variable selection in a flexible parametric mixture cure model with interval-censored data. Stat. Med. 35:1210–25 [Google Scholar]
  63. Sy JP, Taylor JMG. 2000. Estimation of a Cox proportional hazards cure model. Biometrics 56:227–36 [Google Scholar]
  64. Taylor JMG. 1995. Semi-parametric estimation in failure time mixture models. Biometrics 51:899–907 [Google Scholar]
  65. Taylor JMG, Liu N. 2007. Statistical issues involved with extending standards models. Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A Doksum V Nair 299–311 Singapore: World Sci. [Google Scholar]
  66. Tournoud M, Ecochard R. 2008. Promotion time models with time-changing exposure and heterogeneity: application to infectious diseases. Biom. J. 3:395–407 [Google Scholar]
  67. Tsodikov A. 1998.a A proportional hazards model taking account of long-term survivors. Biometrics 54:1508–16 [Google Scholar]
  68. Tsodikov A. 1998.b Asymptotic efficiency of proportional hazards model with cure. Stat. Probab. Lett. 39:237–44 [Google Scholar]
  69. Tsodikov A. 2001. Estimation of survival based on proportional hazards when cure is a possibility. Math. Comput. Model. 33:1227–36 [Google Scholar]
  70. Tsodikov A. 2002. Semi-parametric models of long- and short-term survival: an application to the analysis of breast cancer survival in Utah by age and stage. Stat. Med. 21:895–920 [Google Scholar]
  71. Tsodikov AD, Ibrahim JG, Yakovlev AY. 2003. Estimating cure rates from survival data. J. Am. Stat. Assoc. 98:1063–78 [Google Scholar]
  72. Wang L, Pang D, Liang H. 2012. Two-component mixture cure rate model with spline estimated nonparametric components. Biometrics 68:726–35 [Google Scholar]
  73. Wang Y, Klijn JGM, Sieuwerts AM, Look MP, Yang F. et al. 2005. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–79 [Google Scholar]
  74. Wei LJ. 1992. The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat. Med. 11:1871–79 [Google Scholar]
  75. Wileyto EP, Li Y, Chen J, Heitjan DF. 2013. Assessing the fit of parametric cure models. Biostatistics 14:340–50 [Google Scholar]
  76. Xu J, Peng Y. 2014. Nonparametric cure rate estimation with covariates. Can. J. Stat. 42:1–17 [Google Scholar]
  77. Yakovlev AY, Asselain B, Bardou VJ, Fouquet A, Hoang T. et al. 1993. A simple stochastic model of tumor recurrence and its application to data on premenopausal breast cancer. Biom. Anal. Données Spatio-temporelles 12:66–83 [Google Scholar]
  78. Yakovlev AY, Tsodikov AD, Asselain B. 1996. Stochastic Models of Tumor Latency and Their Biostatistical Applications Singapore: World Sci.
  79. Yamaguchi K. 1992. Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of “permanent employment” in Japan. J. Am. Stat. Assoc. 87:284–92 [Google Scholar]
  80. Yin G, Ibrahim JG. 2005. Cure rate model: a unified approach. Can. J. Stat. 33:559–70 [Google Scholar]
  81. Zhao Y, Lee AH, Yau KKW, Burke V, McLachlan GJ. 2009. A score test for assessing the cured proportion in long-term survivor mixture model. Stat. Med. 28:3454–66 [Google Scholar]
  82. Zhang J, Peng Y. 2007. A new estimation method for the semiparametric accelerated failure time mixture cure model. Stat. Med. 26:3157–71 [Google Scholar]
  83. Zeng D, Yin G, Ibrahim JG. 2006. Semiparametric transformation for survival data with a cure fraction. J. Am. Stat. Assoc. 101:670–84 [Google Scholar]
/content/journals/10.1146/annurev-statistics-031017-100101
Loading
/content/journals/10.1146/annurev-statistics-031017-100101
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error