1932

Abstract

Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-010720-052252
2020-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-010720-052252.html?itemId=/content/journals/10.1146/annurev-virology-010720-052252&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ventola CL. 2017. Progress in nanomedicine: approved and investigational nanodrugs. Pharm. Ther. 42:742–55
    [Google Scholar]
  2. 2. 
    Shi J, Kantoff PW, Wooster R, Farokhzad OC 2017. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17:20–37
    [Google Scholar]
  3. 3. 
    Yildiz I, Shukla S, Steinmetz NF 2011. Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol. 22:901–8
    [Google Scholar]
  4. 4. 
    Wen AM, Steinmetz NF. 2016. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem. Soc. Rev. 45:4074–126
    [Google Scholar]
  5. 5. 
    Koudelka KJ, Pitek AS, Manchester M, Steinmetz NF 2015. Virus-based nanoparticles as versatile nanomachines. Annu. Rev. Virol. 2:379–401
    [Google Scholar]
  6. 6. 
    Glasgow J, Tullman-Ercek D. 2014. Production and applications of engineered viral capsids. Appl. Microbiol. Biotechnol. 98:5847–58
    [Google Scholar]
  7. 7. 
    Liu Z, Qiao J, Niu Z, Wang Q 2012. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem. Soc. Rev. 41:6178–94
    [Google Scholar]
  8. 8. 
    Pokorski JK, Steinmetz NF. 2011. The art of engineering viral nanoparticles. Mol. Pharm. 8:29–43
    [Google Scholar]
  9. 9. 
    Merabishvili M, Vervaet C, Pirnay JP, De Vos D, Verbeken G et al. 2013. Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization). PLOS ONE 8:7e68797
    [Google Scholar]
  10. 10. 
    Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S et al. 2017. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 249:100–33
    [Google Scholar]
  11. 11. 
    Manohar P, Ramesh N. 2019. Improved lyophilization conditions for long-term storage of bacteriophages. Sci. Rep. 9:115242
    [Google Scholar]
  12. 12. 
    Hollings M, Stone OM. 1970. The long‐term survival of some plant viruses preserved by lyophilization. Ann. Appl. Biol. 65:3411–18
    [Google Scholar]
  13. 13. 
    Fukuhara H, Ino Y, Todo T 2016. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107:1373–79
    [Google Scholar]
  14. 14. 
    Gulati NM, Stewart PL, Steinmetz NF 2018. Bioinspired shielding strategies for nanoparticle drug delivery applications. Mol. Pharm. 15:2900–9
    [Google Scholar]
  15. 15. 
    van Kan-Davelaar HE, van Hest JC, Cornelissen JJ, Koay MS 2014. Using viruses as nanomedicines. Br. J. Pharmacol. 171:4001–9
    [Google Scholar]
  16. 16. 
    Kim H, Choi H, Bae Y, Kang S 2019. Development of target-tunable P22 VLP-based delivery nanoplatforms using bacterial superglue. Biotechnol. Bioeng. 116:2843–51
    [Google Scholar]
  17. 17. 
    Le DH, Lee KL, Shukla S, Commandeur U, Steinmetz NF 2017. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 9:2348–57
    [Google Scholar]
  18. 18. 
    Manuel-Cabrera CA, Vallejo-Cardona AA, Padilla-Camberos E, Hernandez-Gutierrez R, Herrera-Rodriguez SE, Gutierrez-Ortega A 2016. Self-assembly of hexahistidine-tagged tobacco etch virus capsid protein into microfilaments that induce IgG2-specific response against a soluble porcine reproductive and respiratory syndrome virus chimeric protein. Virol. J. 13:196
    [Google Scholar]
  19. 19. 
    Thrane S, Janitzek CM, Agerbaek MO, Ditlev SB, Resende M et al. 2015. A novel virus-like particle based vaccine platform displaying the placental malaria antigen VAR2CSA. PLOS ONE 10:e0143071
    [Google Scholar]
  20. 20. 
    Czapar AE, Zheng YR, Riddell IA, Shukla S, Awuah SG et al. 2016. Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano 10:4119–26
    [Google Scholar]
  21. 21. 
    Vernekar AA, Berger G, Czapar AE, Veliz FA, Wang DI et al. 2018. Speciation of phenanthriplatin and its analogs in the core of tobacco mosaic virus. J. Am. Chem. Soc. 140:4279–87
    [Google Scholar]
  22. 22. 
    Bar H, Yacoby I, Benhar I 2008. Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol 8:37
    [Google Scholar]
  23. 23. 
    Suthiwangcharoen N, Li T, Li K, Thompson P, You S, Wang Q 2011. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res 4:483–93
    [Google Scholar]
  24. 24. 
    Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR 2016. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev. 106:45–62
    [Google Scholar]
  25. 25. 
    Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD et al. 2011. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5:5729–45
    [Google Scholar]
  26. 26. 
    Thong QX, Biabanikhankahdani R, Ho KL, Alitheen NB, Tan WS 2019. Thermally-responsive virus-like particle for targeted delivery of cancer drug. Sci. Rep. 9:3945
    [Google Scholar]
  27. 27. 
    Liu X, Liu B, Gao S, Wang Z, Tian Y et al. 2017. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J. Mater. Chem. B 5:2078–85
    [Google Scholar]
  28. 28. 
    Lin RD, Steinmetz NF. 2018. Tobacco mosaic virus delivery of mitoxantrone for cancer therapy. Nanoscale 10:16307–13
    [Google Scholar]
  29. 29. 
    Lomonossoff GP, Wege C. 2018. TMV particles: the journey from fundamental studies to bionanotechnology applications. Adv. Virus Res. 102:149–76
    [Google Scholar]
  30. 30. 
    Bowden SD, Salmond GPC. 2006. Exploitation of a β-lactamase reporter gene fusion in the carbapenem antibiotic production operon to study adaptive evolution in Erwinia carotovora. . Microbiology 152:Part 41089–97
    [Google Scholar]
  31. 31. 
    Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y 2013. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluidics 14:1–277–87
    [Google Scholar]
  32. 32. 
    Shukla S, Eber FJ, Nagarajan AS, DiFranco NA, Schmidt N et al. 2015. The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv. Healthc. Mater. 4:874–82
    [Google Scholar]
  33. 33. 
    Finbloom JA, Aanei IL, Bernard JM, Klass SH, Elledge SK et al. 2018. Evaluation of three morphologically distinct virus-like particles as nanocarriers for convection-enhanced drug delivery to glioblastoma. Nanomaterials 8:E1007
    [Google Scholar]
  34. 34. 
    Wen AM, Wang Y, Jiang K, Hsu GC, Gao H et al. 2015. Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. J. Mater. Chem. B 3:6037–45
    [Google Scholar]
  35. 35. 
    Pitek AS, Wang Y, Gulati S, Gao H, Stewart PL et al. 2017. Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Mol. Pharm. 14:3815–23
    [Google Scholar]
  36. 36. 
    Pitek AS, Park J, Wang Y, Gao H, Hu H et al. 2018. Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. Nanoscale 10:16547–55
    [Google Scholar]
  37. 37. 
    Le DHT, Commandeur U, Steinmetz NF 2019. Presentation and delivery of tumor necrosis factor-related apoptosis-inducing ligand via elongated plant viral nanoparticle enhances antitumor efficacy. ACS Nano 13:2501–10
    [Google Scholar]
  38. 38. 
    Sharma J, Uchida M, Miettinen HM, Douglas T 2017. Modular interior loading and exterior decoration of a virus-like particle. Nanoscale 9:10420–30
    [Google Scholar]
  39. 39. 
    Sanchez-Sanchez L, Cadena-Nava RD, Palomares LA, Ruiz-Garcia J, Koay MS et al. 2014. Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450. Enzyme Microb. Technol. 60:24–31
    [Google Scholar]
  40. 40. 
    Tapia-Moreno A, Juarez-Moreno K, Gonzalez-Davis O, Cadena-Nava RD, Vazquez-Duhalt R 2017. Biocatalytic virus capsid as nanovehicle for enzymatic activation of Tamoxifen in tumor cells. Biotechnol. J. 12:1600706
    [Google Scholar]
  41. 41. 
    Brasch M, Putri RM, de Ruiter MV, Luque D, Koay MS et al. 2017. Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J. Am. Chem. Soc. 139:1512–19
    [Google Scholar]
  42. 42. 
    Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB 2010. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4:6014–20
    [Google Scholar]
  43. 43. 
    Setaro F, Brasch M, Hahn U, Koay MS, Cornelissen JJ et al. 2015. Generation-dependent templated self-assembly of biohybrid protein nanoparticles around photosensitizer dendrimers. Nano Lett 15:1245–51
    [Google Scholar]
  44. 44. 
    Lee KL, Carpenter BL, Wen AM, Ghiladi RA, Steinmetz NF 2016. High aspect ratio nanotubes formed by tobacco mosaic virus for delivery of photodynamic agents targeting melanoma. ACS Biomater. Sci. Eng. 2:838–44
    [Google Scholar]
  45. 45. 
    Oh MH, Yu JH, Kim I, Nam YS 2015. Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl. Mater. Interfaces 7:22578–86
    [Google Scholar]
  46. 46. 
    Bansal A, Yang F, Xi T, Zhang Y, Ho JS 2018. In vivo wireless photonic photodynamic therapy. PNAS 115:71469–74
    [Google Scholar]
  47. 47. 
    Kim A, Zhou J, Samaddar S, Song SH, Elzey BD et al. 2019. An implantable ultrasonically-powered micro-light-source (μlight) for photodynamic therapy. Sci. Rep. 9:11395
    [Google Scholar]
  48. 48. 
    Yoon I, Li JZ, Shim YK 2013. Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 46:17–23
    [Google Scholar]
  49. 49. 
    Yacoby I, Bar H, Benhar I 2007. Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob. Agents Chemother. 51:2156–63
    [Google Scholar]
  50. 50. 
    Yacoby I, Shamis M, Bar H, Shabat D, Benhar I 2006. Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob. Agents Chemother. 50:2087–97
    [Google Scholar]
  51. 51. 
    Crooke SN, Schimer J, Raji I, Wu B, Oyelere AK, Finn MG 2019. Lung tissue delivery of virus-like particles mediated by macrolide antibiotics. Mol. Pharm. 16:2947–55
    [Google Scholar]
  52. 52. 
    Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS 2016. Antimicrobial resistance. JAMA 316:1193–204
    [Google Scholar]
  53. 53. 
    Thorpe KE, Joski P, Johnston KJ 2018. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually. Health Aff 37:662–69
    [Google Scholar]
  54. 54. 
    Gordillo Altamirano FL, Barr JJ 2019. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 32:e00066-18
    [Google Scholar]
  55. 55. 
    Lin DM, Koskella B, Lin HC Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 8:3162–73
    [Google Scholar]
  56. 56. 
    Van Belleghem JD, Dąbrowska K, Vaneechoutte M, Barr JJ, Bollyky PL 2018. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 11:110
    [Google Scholar]
  57. 57. 
    Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E et al. 2015. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci. Rep. 5:14802
    [Google Scholar]
  58. 58. 
    Cui Z, Guo X, Feng T, Li L 2019. Exploring the whole standard operating procedure for phage therapy in clinical practice. J. Transl. Med. 17:1373
    [Google Scholar]
  59. 59. 
    Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M et al. 2009. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLOS ONE 4:3e4944
    [Google Scholar]
  60. 60. 
    Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K et al. 2007. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chemother. 51:2446–52
    [Google Scholar]
  61. 61. 
    Ramesh V, Fralick JA, Rolfe RD 1999. Prevention of Clostridium difficile-induced ileocecitis with Bacteriophage. Anaerobe 5:269–78
    [Google Scholar]
  62. 62. 
    Pouillot F, Chomton M, Blois H, Courroux C, Noelig J et al. 2012. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother. 56:73568–75
    [Google Scholar]
  63. 63. 
    Jun JW, Shin TH, Kim JH, Shin SP, Han JE et al. 2014. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J. Infect. Dis. 210:172–78
    [Google Scholar]
  64. 64. 
    Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S 2016. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J. Wound Care 25:Suppl. 7S27–27
    [Google Scholar]
  65. 65. 
    Wright A, Hawkins CH, Anggård EE, Harper DR 2009. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 34:4349–57
    [Google Scholar]
  66. 66. 
    Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J et al. 2017. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61:e00954-17
    [Google Scholar]
  67. 67. 
    LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D 2018. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect. Dis. 5:ofy064
    [Google Scholar]
  68. 68. 
    Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT 2019. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J. Heart Lung Transplant. 38:475–76
    [Google Scholar]
  69. 69. 
    Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K et al. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med 25:730–33
    [Google Scholar]
  70. 70. 
    Rubalskii E, Ruemke S, Salmoukas C, Aleshkin A, Bochkareva S et al. 2019. Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci. Rep. 9:2091
    [Google Scholar]
  71. 71. 
    Abedon ST. 2015. Ecology of anti-biofilm agents I: antibiotics versus bacteriophages. Pharmaceuticals (Basel.) 8:3525–58
    [Google Scholar]
  72. 72. 
    Hughes KA, Sutherland IW, Jones MV 1998. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:Part 113039–47
    [Google Scholar]
  73. 73. 
    Mai V, Ukhanova M, Reinhard MK, Li M, Sulakvelidze A 2015. Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage 5:4e1088124
    [Google Scholar]
  74. 74. 
    Galtier M, De Sordi L, Maura D, Arachchi H, Volant S et al. 2016. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ. Microbiol. 18:72237–45
    [Google Scholar]
  75. 75. 
    Beitelshees M, Hill A, Rostami P, Jones CH, Pfeifer BA 2017. Pressing diseases that represent promising targets for gene therapy. Discov. Med. 24:313–22
    [Google Scholar]
  76. 76. 
    Xi S, Grandis J. 2003. Gene therapy for the treatment of oral squamous cell carcinoma. J. Dent. Res. 82:11–16
    [Google Scholar]
  77. 77. 
    Sidransky D. 1995. Molecular genetics of head and neck cancer. Curr. Opin. Oncol. 7:229–33
    [Google Scholar]
  78. 78. 
    Mali S. 2013. Delivery systems for gene therapy. Indian J. Hum. Genet. 19:3–8
    [Google Scholar]
  79. 79. 
    David RM, Doherty AT. 2015. Viral vectors: the road to reducing genotoxicity. Toxicol. Sci. 155:2315–25
    [Google Scholar]
  80. 80. 
    Rao VK, Kapp D, Schroth M 2018. Gene therapy for spinal muscular atrophy: an emerging treatment option for a devastating disease. J. Manag. Care Spec. Pharm. 24:S3–3
    [Google Scholar]
  81. 81. 
    Russell S, Bennett J, Wellman JA, Chung DC, Yu Z-F et al. 2017. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390:849–60
    [Google Scholar]
  82. 82. 
    Zhang W-W, Li L, Li D, Liu J, Li X et al. 2018. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 29:160–79
    [Google Scholar]
  83. 83. 
    Monaco L, Faccio L. 2017. Patient‐driven search for rare disease therapies: the Fondazione Telethon success story and the strategy leading to Strimvelis. EMBO Mol. Med. 9:289–92
    [Google Scholar]
  84. 84. 
    Zheng P-P, Kros JM, Li J 2018. Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov. Today 23:1175–82
    [Google Scholar]
  85. 85. 
    Ghani K, Boivin-Welch M, Roy S, Dakiw-Piaceski A, Barbier M et al. 2019. Generation of high-titer self-inactivated γ-retroviral vector producer cells. Mol. Ther.-Methods Clin. Dev. 14:90–99
    [Google Scholar]
  86. 86. 
    Karponi G, Zogas N. 2019. Gene therapy for beta-thalassemia: updated perspectives. Appl. Clin. Genet. 12:167–80
    [Google Scholar]
  87. 87. 
    Rehman H, Silk AW, Kane MP, Kaufman HL 2016. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer 4:53
    [Google Scholar]
  88. 88. 
    Azizgolshani O, Garmann RF, Cadena-Nava R, Knobler CM, Gelbart WM 2013. Reconstituted plant viral capsids can release genes to mammalian cells. Virology 441:12–17
    [Google Scholar]
  89. 89. 
    Gitlin L, Hagai T, LaBarbera A, Solovey M, Andino R 2014. Rapid evolution of virus sequences in intrinsically disordered protein regions. PLOS Pathog 10:e1004529
    [Google Scholar]
  90. 90. 
    Ball LA, Amann JM, Garrett BK 1992. Replication of nodamura virus after transfection of viral RNA into mammalian cells in culture. J. Virol. 66:2326–34
    [Google Scholar]
  91. 91. 
    Biddlecome A, Habte HH, McGrath KM, Sambanthamoorthy S, Wurm M et al. 2019. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles. PLOS ONE 14:e0215031
    [Google Scholar]
  92. 92. 
    Zhou Y, Maharaj PD, Mallajosyula JK, McCormick AA, Kearney CM 2015. In planta production of Flock House virus transencapsidated RNA and its potential use as a vaccine. Mol. Biotechnol. 57:325–36
    [Google Scholar]
  93. 93. 
    Lam P, Steinmetz NF. 2019. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater. Sci. 7:3138–42
    [Google Scholar]
  94. 94. 
    Tian Y, Zhou M, Shi H, Gao S, Xie G et al. 2018. Integration of cell-penetrating peptides with rod-like bionanoparticles: virus-inspired gene-silencing technology. Nano Lett 18:5453–60
    [Google Scholar]
  95. 95. 
    Pang H-H, Huang C-Y, Chou Y-W, Lin C-J, Zhou Z-L et al. 2019. Bioengineering fluorescent virus-like particle/RNAi nanocomplexes act synergistically with temozolomide to eradicate brain tumors. Nanoscale 11:8102–9
    [Google Scholar]
  96. 96. 
    Wu M, Sherwin T, Brown WL, Stockley PG 2005. Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine 1:67–76
    [Google Scholar]
  97. 97. 
    Ehrke-Schulz E, Schiwon M, Leitner T, Dávid S, Bergmann T et al. 2017. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Sci. Rep. 7:17113
    [Google Scholar]
  98. 98. 
    Gao J, Bergmann T, Zhang W, Schiwon M, Ehrke-Schulz E, Ehrhardt A 2019. Viral vector-based delivery of CRISPR/Cas9 and donor DNA for homology-directed repair in an in vitro model for canine hemophilia B. Mol. Ther.-Nucleic Acids 14:364–76
    [Google Scholar]
  99. 99. 
    Qazi S, Miettinen HM, Wilkinson RA, McCoy K, Douglas T, Wiedenheft B 2016. Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol. Pharm. 13:1191–96
    [Google Scholar]
  100. 100. 
    Wu M, Shu J. 2018. Multimodal molecular imaging: current status and future directions. Contrast Media Mol. Imaging 2018.1382183
    [Google Scholar]
  101. 101. 
    Schwarz B, Douglas T. 2015. Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7:722–35
    [Google Scholar]
  102. 102. 
    Shukla S, Dickmeis C, Fischer R, Commandeur U, Steinmetz NF 2018. In planta production of fluorescent filamentous plant virus-based nanoparticles. Methods Mol. Biol. 1776:61–84
    [Google Scholar]
  103. 103. 
    Dashti NH, Abidin RS, Sainsbury F 2018. Programmable in vitro coencapsidation of guest proteins for intracellular delivery by virus-like particles. ACS Nano 12:4615–23
    [Google Scholar]
  104. 104. 
    Jung B, Anvari B. 2013. Virus-mimicking optical nanomaterials: near infrared absorption and fluorescence characteristics and physical stability in biological environments. ACS Appl. Mater. Interfaces 5:7492–500
    [Google Scholar]
  105. 105. 
    Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P et al. 2007. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. . Nano Lett 7:2650–54
    [Google Scholar]
  106. 106. 
    Hu H, Masarapu H, Gu Y, Zhang Y, Yu X, Steinmetz NF 2019. Physalis mottle virus-like nanoparticles for targeted cancer imaging. ACS Appl. Mater. Interfaces 11:18213–23
    [Google Scholar]
  107. 107. 
    Leong HS, Steinmetz NF, Ablack A, Destito G, Zijlstra A et al. 2010. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat. Protoc. 5:1406
    [Google Scholar]
  108. 108. 
    Cho C-F, Yu L, Nsiama TK, Kadam AN, Raturi A et al. 2017. Viral nanoparticles decorated with novel EGFL7 ligands enable intravital imaging of tumor neovasculature. Nanoscale 9:12096–109
    [Google Scholar]
  109. 109. 
    Park J, Gao H, Wang Y, Hu H, Simon DI, Steinmetz NF 2019. S100A9-targeted tobacco mosaic virus nanoparticles exhibit high specificity toward atherosclerotic lesions in ApoE−/− mice. J. Mater. Chem. B 7:1842–46
    [Google Scholar]
  110. 110. 
    Aanei IL, Huynh T, Seo Y, Francis MB 2018. Vascular cell adhesion molecule-targeted MS2 viral capsids for the detection of early-stage atherosclerotic plaques. Bioconjug. Chem. 29:2526–30
    [Google Scholar]
  111. 111. 
    Ceppi L, Bardhan NM, Na Y, Siegel A, Rajan N et al. 2019. Real-time single-walled carbon nanotube-based fluorescence imaging improves survival after debulking surgery in an ovarian cancer model. ACS Nano 13:5356–65
    [Google Scholar]
  112. 112. 
    Nakada T. 2007. Clinical application of high and ultra high-field MRI. Brain Dev 29:325–35
    [Google Scholar]
  113. 113. 
    Quazi S, Leipold LO, Abedin MJ, Johnson B, Prevelige P et al. 2013. P22 viral capsids as nanocomposite high-relaxivity MRI contrast agents. Mol. Pharm. 10:11–17
    [Google Scholar]
  114. 114. 
    Quazi S, Uchida M, Usselman R, Shearer R, Edwards E, Douglas T 2014. Manganese(III) porphyrins complexed with P22 virus-like particles as T1-enhanced contrast agents for magnetic resonance imaging. J. Biol. Inorg. Chem. 19:237–46
    [Google Scholar]
  115. 115. 
    Bruckman MA, Jiang K, Simpson EJ, Randolph LN, Luyt LG et al. 2014. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett 14:1551–58
    [Google Scholar]
  116. 116. 
    Malyutin AG, Cheng H, Sanchez-Felix OR, Carlson K, Stein BD et al. 2015. Coat protein-dependent behavior of poly(ethylene glycol) tails in iron oxide core virus-like nanoparticles. ACS Appl. Mater. Interfaces 7:12089–98
    [Google Scholar]
  117. 117. 
    Ghosh D, Lee Y, Thomas S, Kohli AG, Yun DS et al. 2012. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol. 7:677–82
    [Google Scholar]
  118. 118. 
    Hu H, Zhang Y, Shukla S, Gu Y, Yu X, Steinmetz NF 2017. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. ACS Nano 11:9249–58
    [Google Scholar]
  119. 119. 
    Norek M, Peters JA. 2011. MRI contrast agents based on dysprosium or holmium. Prog. Nucl. Magn. Reson. Spectrosc. 59:64–82
    [Google Scholar]
  120. 120. 
    Jayapaul J, Schroder L. 2019. Nanoparticle-based contrast agents for 129Xe HyperCEST NMR and MRI applications. Contrast Media Mol. Imaging 2019.9498173
    [Google Scholar]
  121. 121. 
    Wang Y, Dmochowski IJ. 2016. An expanded palette of xenon-129 NMR biosensors. Acc. Chem. Res. 49:2179–87
    [Google Scholar]
  122. 122. 
    Stevens TK, Palaniappan KK, Ramirez RM, Francis MB, Wemmer DE, Pines A 2013. HyperCEST detection of a 129Xe-based contrast agent composed of cryptophane-A molecular cages on a bacteriophage scaffold. Magn. Reson. Med. 69:1245–52
    [Google Scholar]
  123. 123. 
    Meldrum T, Seim KL, Bajaj VS, Palaniappan KK, Wu W et al. 2010. A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. J. Am. Chem. Soc. 132:5936–37
    [Google Scholar]
  124. 124. 
    Jeong K, Netirojjanakul C, Munch HK, Sun J, Finbloom JA et al. 2016. Targeted molecular imaging of cancer cells using MS2-based 129Xe NMR. Bioconjug. Chem. 27:1796–801
    [Google Scholar]
  125. 125. 
    Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB 2013. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew. Chem. Int. Ed. Engl. 52:4849–53
    [Google Scholar]
  126. 126. 
    Dharmarwardana M, Martins AF, Chen Z, Palacios PM, Nowak CM et al. 2018. Nitroxyl modified tobacco mosaic virus as a metal-free high-relaxivity MRI and EPR active superoxide sensor. Mol. Pharm. 15:2973–83
    [Google Scholar]
  127. 127. 
    Farkas ME, Aanei IL, Behrens CR, Tong GJ, Murphy ST et al. 2013. PET imaging and biodistribution of chemically modified bacteriophage MS2. Mol. Pharm. 10:69–76
    [Google Scholar]
  128. 128. 
    Aanei IL, ElSohly AM, Farkas ME, Netirojjanakul C, Regan M et al. 2016. Biodistribution of antibody-MS2 viral capsid conjugates in breast cancer models. Mol. Pharm. 13:3764–72
    [Google Scholar]
  129. 129. 
    Li Z, Jin Q, Huang C, Dasa S, Chen L et al. 2011. Trackable and targeted phage as positron emission tomography (PET) agent for cancer imaging. Theranostics 1:371–80
    [Google Scholar]
  130. 130. 
    Brader P, Kelly K, Gang S, Shah JP, Wong RJ et al. 2009. Imaging of lymph node micrometastases using an oncolytic herpes virus and [18F]FEAU PET. PLOS ONE 4:e4789
    [Google Scholar]
  131. 131. 
    Aljabali AAA, Zoubi MSA, Al-Batanyeh KM, Al-Radaideh A, Obeid MA et al. 2019. Gold-coated plant virus as computed tomography imaging contrast agent. Beilstein J. Nanotechnol. 10:1983–93
    [Google Scholar]
  132. 132. 
    Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM 2012. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth. Biol. 1:576–82
    [Google Scholar]
  133. 133. 
    Sun X, Li W, Zhang X, Qi M, Zhang Z et al. 2016. In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of Simian virus 40. Nano Lett 16:6164–71
    [Google Scholar]
  134. 134. 
    Hu H, Yang Q, Baroni S, Yang H, Aime S, Steinmetz NF 2019. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy. Nanoscale 11:9760–68
    [Google Scholar]
  135. 135. 
    Shan W, Chen R, Zhang Q, Zhao J, Chen B et al. 2018. Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis B core particles. Adv. Mater. 30:e1707567
    [Google Scholar]
  136. 136. 
    Zhang Q, Shan W, Ai C, Chen Z, Zhou T et al. 2018. Construction of multifunctional Fe3O4-MTX@HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy. Nanotheranostics 2:87–95
    [Google Scholar]
  137. 137. 
    Mohsen MO, Gomes AC, Vogel M, Bachmann MF 2018. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines 6:37
    [Google Scholar]
  138. 138. 
    Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J et al. 2002. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. 76:178729–36
    [Google Scholar]
  139. 139. 
    Ge Y, Mansell A, Ussher JE, Brooks AE, Manning K et al. 2013. Rotavirus NSP4 triggers secretion of proinflammatory cytokines from macrophages via toll-like receptor 2. J. Virol. 87:2011160–67
    [Google Scholar]
  140. 140. 
    Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP et al. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1:5398–401
    [Google Scholar]
  141. 141. 
    Lester SN, Li K. 2014. Toll-like receptors in antiviral innate immunity. J. Mol. Biol. 426:61246–64
    [Google Scholar]
  142. 142. 
    Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K et al. 2015. Plant virus particles carrying tumour antigen activate TLR7 and induce high levels of protective antibody. PLOS ONE 10:2e0118096
    [Google Scholar]
  143. 143. 
    Albakri MM, Veliz FA, Fiering SN, Steinmetz NF, Sieg SF 2020. Endosomal toll-like receptors play a key role in activation of primary human monocytes by cowpea mosaic virus. Immunology 159:2183–92
    [Google Scholar]
  144. 144. 
    Carroll-Portillo A, Lin HC. 2019. Bacteriophage and the innate immune system: access and signaling. Microorganisms 7:12E625
    [Google Scholar]
  145. 145. 
    Andre FE, Booy R, Bock HL, Clemens J, Datta SK et al. 2008. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 86:140–46
    [Google Scholar]
  146. 146. 
    Fauci AS, Morens DM. 2012. The perpetual challenge of infectious diseases. N. Engl. J. Med. 366:454–61
    [Google Scholar]
  147. 147. 
    Mehand MS, Al-Shorbaji F, Millett P, Murgue B 2018. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antivir. Res. 159:63–67
    [Google Scholar]
  148. 148. 
    Reperant LA, Osterhaus A. 2017. AIDS, Avian flu, SARS, MERS, Ebola, Zika…what next. ? Vaccine 35:4470–74
    [Google Scholar]
  149. 149. 
    Draper SJ, Heeney JL. 2010. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol. 8:62–73
    [Google Scholar]
  150. 150. 
    Humphreys IR, Sebastian S. 2018. Novel viral vectors in infectious diseases. Immunology 153:1–9
    [Google Scholar]
  151. 151. 
    Lauer KB, Borrow R, Blanchard TJ 2017. Multivalent and multipathogen viral vector vaccines. Clin. Vaccine Immunol. 24:e00298-16
    [Google Scholar]
  152. 152. 
    Yazdani R, Shams-Bakhsh M, Hassani-Mehraban A, Arab SS, Thelen N et al. 2019. Production and characterization of virus-like particles of grapevine fanleaf virus presenting L2 epitope of human papillomavirus minor capsid protein. BMC Biotechnol 19:81
    [Google Scholar]
  153. 153. 
    Zhai L, Peabody J, Pang YS, Schiller J, Chackerian B, Tumban E 2017. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antivir. Res. 147:116–23
    [Google Scholar]
  154. 154. 
    Sunay MME, Martins KAO, Steffens JT, Gregory M, Vantongeren SA et al. 2019. Glucopyranosyl lipid adjuvant enhances immune response to Ebola virus-like particle vaccine in mice. Vaccine 37:3902–10
    [Google Scholar]
  155. 155. 
    Tao P, Mahalingam M, Zhu J, Moayeri M, Sha J et al. 2018. A bacteriophage T4 nanoparticle-based dual vaccine against anthrax and plague. mBio 9:e01926-18
    [Google Scholar]
  156. 156. 
    Alves E, Salman AM, Leoratti F, Lopez-Camacho C, Viveros-Sandoval ME et al. 2017. Evaluation of Plasmodium vivax cell-traversal protein for ookinetes and sporozoites as a preerythrocytic P. vivax vaccine. Clin. Vaccine Immunol. 24:e00501-16
    [Google Scholar]
  157. 157. 
    Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H 2018. Current challenges for cancer vaccine adjuvant development. Expert Rev. Vaccines 17:207–15
    [Google Scholar]
  158. 158. 
    Mohsen MO, Speiser DE, Knuth A, Bachmann MF 2020. Virus-like particles for vaccination against cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12:e1579
    [Google Scholar]
  159. 159. 
    Palladini A, Thrane S, Janitzek CM, Pihl J, Clemmensen SB et al. 2018. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology 7:e1408749
    [Google Scholar]
  160. 160. 
    Shukla S, Dorand RD, Myers JT, Woods SE, Gulati NM et al. 2016. Multiple administrations of viral nanoparticles alter in vivo behavior-insights from intravital microscopy. ACS Biomater. Sci. Eng. 2:829–37
    [Google Scholar]
  161. 161. 
    Shukla S, Jandzinski M, Wang C, Gong X, Bonk KW et al. 2019. A viral nanoparticle cancer vaccine delays tumor progression and prolongs survival in a HER2+ tumor mouse model. Adv. Ther. 2:1800139
    [Google Scholar]
  162. 162. 
    Woodland DL. 2004. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol 25:298–104
    [Google Scholar]
  163. 163. 
    Ramshaw IA, Ramsay AJ. 2000. The prime-boost strategy: exciting prospects for improved vaccination. Immunol. Today 21:4163–65
    [Google Scholar]
  164. 164. 
    Cai H, Shukla S, Wang C, Masarapu H, Steinmetz NF 2019. Heterologous prime-boost enhances the antitumor immune response elicited by plant-virus-based cancer vaccine. J. Am. Chem. Soc. 141:6509–18
    [Google Scholar]
  165. 165. 
    Yin Z, Comellas-Aragones M, Chowdhury S, Bentley P, Kaczanowska K et al. 2013. Boosting immunity to small tumor-associated carbohydrates with bacteriophage Qβ capsids. ACS Chem. Biol. 8:1253–62
    [Google Scholar]
  166. 166. 
    Yin Z, Dulaney S, McKay CS, Baniel C, Kaczanowska K et al. 2016. Chemical synthesis of GM2 glycans, bioconjugation with bacteriophage Qβ, and the induction of anticancer antibodies. Chembiochem 17:174–80
    [Google Scholar]
  167. 167. 
    Wu X, Yin Z, McKay C, Pett C, Yu J et al. 2018. Protective epitope discovery and design of MUC1-based vaccine for effective tumor protections in immunotolerant mice. J. Am. Chem. Soc. 140:16596–609
    [Google Scholar]
  168. 168. 
    Wu X, McKay C, Pett C, Yu J, Schorlemer M et al. 2019. Synthesis and immunological evaluation of disaccharide bearing MUC-1 glycopeptide conjugates with virus-like particles. ACS Chem. Biol. 14:2176–84
    [Google Scholar]
  169. 169. 
    Sahin U, Tureci O. 2018. Personalized vaccines for cancer immunotherapy. Science 359:1355–60
    [Google Scholar]
  170. 170. 
    Mohsen MO, Vogel M, Riether C, Muller J, Salatino S et al. 2019. Targeting mutated plus germline epitopes confers pre-clinical efficacy of an instantly formulated cancer nano-vaccine. Front. Immunol. 10:1015
    [Google Scholar]
  171. 171. 
    Crossey E, Amar MJA, Sampson M, Peabody J, Schiller JT et al. 2015. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine 33:5747–55
    [Google Scholar]
  172. 172. 
    Gonzalez-Castro R, Acero Galindo G, Garcia Salcedo Y, Uribe Campero L, Vazquez Perez V et al. 2018. Plant-based chimeric HPV-virus-like particles bearing amyloid-β epitopes elicit antibodies able to recognize amyloid plaques in APP-tg mouse and Alzheimer's disease brains. Inflammopharmacology 26:817–27
    [Google Scholar]
  173. 173. 
    von Loga IS, El-Turabi A, Jostins L, Miotla-Zarebska J, Mackay-Alderson J et al. 2019. Active immunisation targeting nerve growth factor attenuates chronic pain behaviour in murine osteoarthritis. Ann. Rheum. Dis. 78:672–75
    [Google Scholar]
  174. 174. 
    Rohn TA, Jennings GT, Hernandez M, Grest P, Beck M et al. 2006. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. Eur. J. Immunol. 36:2857–67
    [Google Scholar]
  175. 175. 
    Mackenzie SM, McLaughlin EA, Perkins HD, French N, Sutherland T et al. 2006. Immunocontraceptive effects on female rabbits infected with recombinant myxoma virus expressing rabbit ZP2 or ZP3. Biol. Reprod. 74:3511–21
    [Google Scholar]
  176. 176. 
    Jackson RJ, Maguire DJ, Hinds LA, Ramshaw LA 1998. Infertility in mice induced by a recombinant ectromelia virus expressing mouse zona pellucida glycoprotein 3. Biol. Reprod. 58:1152–59
    [Google Scholar]
  177. 177. 
    Lloyd ML, Shellam GR, Papadimitriou JM, Lawson MA 2003. Immunocontraception is induced in BALB/c mice inoculated with murine cytomegalovirus expressing mouse zona pellucida 3. Biol. Reprod. 68:62024–32
    [Google Scholar]
  178. 178. 
    Choudhury S, Kakkar V, Suman P, Chakrabarti K, Vrati S, Gupta SK 2009. Immunogenicity of zona pellucida glycoprotein-3 and spermatozoa YLP12 peptides presented on Johnson grass mosaic virus-like particles. Vaccine 27:2948–53
    [Google Scholar]
  179. 179. 
    Thoms F, Jennings GT, Maudrich M, Vogel M, Haas S et al. 2019. Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects. J. Allergy Clin. Immunol. 144:193–203
    [Google Scholar]
  180. 180. 
    Fettelschoss-Gabriel A, Fettelschoss V, Olomski F, Birkmann K, Thoms F et al. 2019. Active vaccination against interleukin-5 as long-term treatment for insect-bite hypersensitivity in horses. Allergy 74:572–82
    [Google Scholar]
  181. 181. 
    Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS 2018. Oncolytic virus immunotherapy: future prospects for oncology. J. Immunother. Cancer 6:140
    [Google Scholar]
  182. 182. 
    Ott PA, Hodi FS. 2016. Talimogene laherparepvec for the treatment of advanced melanoma. Clin. Cancer Res. 22:3127–31
    [Google Scholar]
  183. 183. 
    Chen DS, Mellman I. 2013. Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10
    [Google Scholar]
  184. 184. 
    Russell L, Peng KW, Russell SJ, Diaz RM 2019. Oncolytic viruses: priming time for cancer immunotherapy. Biodrugs 33:485–501
    [Google Scholar]
  185. 185. 
    Zou W. 2005. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5:4263–74
    [Google Scholar]
  186. 186. 
    Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P et al. 2016. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11:295–303
    [Google Scholar]
  187. 187. 
    Murray AA, Wang C, Fiering S, Steinmetz NF 2018. In situ vaccination with cowpea versus tobacco mosaic virus against melanoma. Mol. Pharm. 15:3700–16
    [Google Scholar]
  188. 188. 
    Wang C, Beiss V, Steinmetz NF 2019. Cowpea mosaic virus nanoparticles and empty virus-like particles show distinct but overlapping immunostimulatory properties. J. Virol. 93:e00129-19
    [Google Scholar]
  189. 189. 
    Kerstetter-Fogle A, Shukla S, Wang C, Beiss V, Harris PLR et al. 2019. Plant virus-like particle in situ vaccine for intracranial glioma immunotherapy. Cancers 11:515
    [Google Scholar]
  190. 190. 
    Hoopes PJ, Wagner RJ, Duval K, Kang K, Gladstone DJ et al. 2018. Treatment of canine oral melanoma with nanotechnology-based immunotherapy and radiation. Mol. Pharm. 15:3717–22
    [Google Scholar]
  191. 191. 
    Cai H, Wang C, Shukla S, Steinmetz NF 2019. Cowpea mosaic virus immunotherapy combined with cyclophosphamide reduces breast cancer tumor burden and inhibits lung metastasis. Adv. Sci. 6:1802281
    [Google Scholar]
  192. 192. 
    Patel R, Czapar AE, Fiering S, Oleinick NL, Steinmetz NF 2018. Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS Omega 3:3702–7
    [Google Scholar]
  193. 193. 
    Lee KL, Murray AA, Le DHT, Sheen MR, Shukla S et al. 2017. Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett 17:4019–28
    [Google Scholar]
  194. 194. 
    Murgas P, Bustamante N, Araya N, Cruz-Gomez S, Duran E et al. 2018. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer. Cancer Immunol. Immunother. 67:183–93
    [Google Scholar]
  195. 195. 
    Weber JS, Yang JC, Atkins MB, Disis ML 2015. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol. 33:2092–99
    [Google Scholar]
  196. 196. 
    Shimabukuro-Vornhagen A, Godel P, Subklewe M, Stemmler HJ, Schlosser HA et al. 2018. Cytokine release syndrome. J. Immunother. Cancer 6:56
    [Google Scholar]
  197. 197. 
    Goldberg MS. 2019. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 19:587–602
    [Google Scholar]
  198. 198. 
    Irvine DJ, Hanson MC, Rakhra K, Tokatlian T 2015. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115:11109–46
    [Google Scholar]
  199. 199. 
    Li J, Ge J, Ren S, Zhou T, Sun Y et al. 2015. Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection. Vaccine 33:4247–54
    [Google Scholar]
  200. 200. 
    Bryson PD, Han X, Truong N, Wang P 2017. Breast cancer vaccines delivered by dendritic cell-targeted lentivectors induce potent antitumor immune responses and protect mice from mammary tumor growth. Vaccine 35:5842–49
    [Google Scholar]
  201. 201. 
    Yang L, Yang H, Rideout K, Cho T, Joo KI et al. 2008. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat. Biotechnol. 26:326–34
    [Google Scholar]
  202. 202. 
    Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF 2004. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol. 172:1777–85
    [Google Scholar]
  203. 203. 
    Chartrand K, Lebel ME, Tarrab E, Savard P, Leclerc D, Lamarre A 2017. Efficacy of a virus-like nanoparticle as treatment for a chronic viral infection is hindered by IRAK1 regulation and antibody interference. Front. Immunol. 8:1885
    [Google Scholar]
  204. 204. 
    Pratt KP. 2018. Anti-drug antibodies: emerging approaches to predict, reduce or reverse biotherapeutic immunogenicity. Antibodies 7:19
    [Google Scholar]
  205. 205. 
    Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ et al. 2017. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N. Engl. J. Med. 376:1517–26
    [Google Scholar]
  206. 206. 
    Pitek AS, Jameson SA, Veliz FA, Shukla S, Steinmetz NF 2016. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 89:89–97
    [Google Scholar]
  207. 207. 
    Srivastava IK, VanDorsten K, Vojtech L, Barnett SW, Stamatatos L 2003. Changes in the immunogenic properties of soluble gp140 human immunodeficiency virus envelope constructs upon partial deletion of the second hypervariable region. J. Virol. 77:2310–20
    [Google Scholar]
  208. 208. 
    Yang ZY, Chakrabarti BK, Xu L, Welcher B, Kong WP et al. 2004. Selective modification of variable loops alters tropism and enhances immunogenicity of human immunodeficiency virus type 1 envelope. J. Virol. 78:4029–36
    [Google Scholar]
  209. 209. 
    Lee PW, Shukla S, Wallat JD, Danda C, Steinmetz NF et al. 2017. Biodegradable viral nanoparticle/polymer implants prepared via melt-processing. ACS Nano 11:8777–89
    [Google Scholar]
  210. 210. 
    Czapar AE, Tiu BDB, Veliz FA, Pokorski JK, Steinmetz NF 2018. Slow-release formulation of cowpea mosaic virus for in situ vaccine delivery to treat ovarian cancer. Adv. Sci. 5:1700991
    [Google Scholar]
  211. 211. 
    Cao J, Liu S, Chen Y, Shi L, Zhang Z 2014. Synthesis of end-functionalized boronic acid containing copolymers and their bioconjugates with rod-like viruses for multiple responsive hydrogels. Polym. Chem. 5:5029–36
    [Google Scholar]
  212. 212. 
    Serradell MC, Rupil LL, Martino RA, Prucca CG, Carranza PG et al. 2019. Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat. Commun. 10:361
    [Google Scholar]
/content/journals/10.1146/annurev-virology-010720-052252
Loading
/content/journals/10.1146/annurev-virology-010720-052252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error