1932

Abstract

Viruses are obligatory intracellular parasites that reprogram host cells upon infection to produce viral progeny. Here, we review recent structural insights into virus-host interactions in bacteria, archaea, and eukaryotes unveiled by cellular electron cryo-tomography (cryoET). This advanced three-dimensional imaging technique of vitreous samples in near-native state has matured over the past two decades and proven powerful in revealing molecular mechanisms underlying viral replication. Initial studies were restricted to cell peripheries and typically focused on early infection steps, analyzing surface proteins and viral entry. Recent developments including cryo-thinning techniques, phase-plate imaging, and correlative approaches have been instrumental in also targeting rare events inside infected cells. When combined with advances in dedicated image analyses and processing methods, details of virus assembly and egress at (sub)nanometer resolution were uncovered. Altogether, we provide a historical and technical perspective and discuss future directions and impacts of cryoET for integrative structural cell biology analyses of viruses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-021920-115935
2020-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-021920-115935.html?itemId=/content/journals/10.1146/annurev-virology-021920-115935&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kuhn JH, Wolf YI, Krupovic M, Zhang YZ, Maes P et al. 2019. Classify viruses—The gain is worth the pain. Nature 566:318–20
    [Google Scholar]
  2. 2. 
    Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74:5088–90
    [Google Scholar]
  3. 3. 
    Rodrigues RAL, Andrade A, Boratto PVM, Trindade GS, Kroon EG, Abrahao JS 2017. An anthropocentric view of the virosphere-host relationship. Front. Microbiol. 8:1673
    [Google Scholar]
  4. 4. 
    Ackermann HW. 2012. Bacteriophage electron microscopy. Adv. Virus Res. 82:1–32
    [Google Scholar]
  5. 5. 
    Ackermann HW, Prangishvili D. 2012. Prokaryote viruses studied by electron microscopy. Arch. Virol. 157:1843–49
    [Google Scholar]
  6. 6. 
    Adrian M, Dubochet J, Lepault J, McDowall AW 1984. Cryo-electron microscopy of viruses. Nature 308:32–36
    [Google Scholar]
  7. 7. 
    Baker TS, Olson NH, Fuller SD 1999. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63:862–922
    [Google Scholar]
  8. 8. 
    Huiskonen JT, Butcher SJ. 2007. Membrane-containing viruses with icosahedrally symmetric capsids. Curr. Opin. Struct. Biol. 17:229–36
    [Google Scholar]
  9. 9. 
    Stass R, Ilca SL, Huiskonen JT 2018. Beyond structures of highly symmetric purified viral capsids by cryo-EM. Curr. Opin. Struct. Biol. 52:25–31
    [Google Scholar]
  10. 10. 
    Rossmann MG. 2013. Structure of viruses: a short history. Q. Rev. Biophys. 46:133–80
    [Google Scholar]
  11. 11. 
    Bloomer AC, Champness JN, Bricogne G, Staden R, Klug A 1978. Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature 276:362–68
    [Google Scholar]
  12. 12. 
    Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AG, Rayment I et al. 1980. Structure of southern bean mosaic virus at 2.8 Å resolution. Nature 286:33–39
    [Google Scholar]
  13. 13. 
    Liu YT, Jih J, Dai X, Bi GQ, Zhou ZH 2019. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 570:257–61
    [Google Scholar]
  14. 14. 
    Dai X, Li Z, Lai M, Shu S, Du Y et al. 2017. In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541:112–16
    [Google Scholar]
  15. 15. 
    Grünewald K, Medalia O, Gross A, Steven AC, Baumeister W 2003. Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. 100:577–91
    [Google Scholar]
  16. 16. 
    Obr M, Schur FKM. 2019. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv. Virus Res. 105:117–59
    [Google Scholar]
  17. 17. 
    Grünewald K, Desai P, Winkler DC, Heymann JB, Belnap DM et al. 2003. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–98
    [Google Scholar]
  18. 18. 
    Cyrklaff M, Risco C, Fernandez JJ, Jimenez MV, Esteban M et al. 2005. Cryo-electron tomography of vaccinia virus. PNAS 102:2772–77
    [Google Scholar]
  19. 19. 
    Grünewald K, Cyrklaff M. 2006. Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr. Opin. Microbiol. 9:437–42
    [Google Scholar]
  20. 20. 
    Dubochet J. 2018. On the development of electron cryo-microscopy (Nobel lecture). Angew. Chem. Int. Ed. 57:10842–46
    [Google Scholar]
  21. 21. 
    von Borries B, Ruska E, Ruska H 1938. Bakterien und Virus in übermikroskopischer Aufnahme. Klin. Wochenschrift 17:921–25
    [Google Scholar]
  22. 22. 
    Richert-Poggeler KR, Franzke K, Hipp K, Kleespies RG 2018. Electron microscopy methods for virus diagnosis and high resolution analysis of viruses. Front. Microbiol. 9:3255
    [Google Scholar]
  23. 23. 
    Romero-Brey I. 2018. 3D electron microscopy (EM) and correlative light electron microscopy (CLEM) methods to study virus-host interactions. Methods Mol. Biol. 1836:213–36
    [Google Scholar]
  24. 24. 
    Romero-Brey I, Bartenschlager R. 2015. Viral infection at high magnification: 3D electron microscopy methods to analyze the architecture of infected cells. Viruses 7:6316–45
    [Google Scholar]
  25. 25. 
    Bykov YS, Cortese M, Briggs JA, Bartenschlager R 2016. Correlative light and electron microscopy methods for the study of virus-cell interactions. FEBS Lett 590:1877–95
    [Google Scholar]
  26. 26. 
    San Martin C. 2015. Transmission electron microscopy and the molecular structure of icosahedral viruses. Arch. Biochem. Biophys. 581:59–67
    [Google Scholar]
  27. 27. 
    Sachse M, Fernandez de Castro I, Tenorio R, Risco C 2019. The viral replication organelles within cells studied by electron microscopy. Adv. Virus Res. 105:1–33
    [Google Scholar]
  28. 28. 
    Subramaniam S. 2019. The cryo-EM revolution: fueling the next phase. IUCrJ 6:1–2
    [Google Scholar]
  29. 29. 
    McDowall AW, Chang JJ, Freeman R, Lepault J, Walter CA, Dubochet J 1983. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131:1–9
    [Google Scholar]
  30. 30. 
    Tivol WF, Briegel A, Jensen GJ 2008. An improved cryogen for plunge freezing. Microsc. Microanal. 14:375–79
    [Google Scholar]
  31. 31. 
    Razinkov I, Dandey V, Wei H, Zhang Z, Melnekoff D et al. 2016. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195:190–98
    [Google Scholar]
  32. 32. 
    Ravelli RBG, Nijpels FJT, Henderikx RJM, Weissenberger G, Thewessem S et al. 2019. Automated cryo-EM sample preparation by pin-printing and jet vitrification. bioRxiv 651208. https://doi.org/10.1101/651208
    [Crossref]
  33. 33. 
    Studer D, Graber W, Al-Amoudi A, Eggli P 2001. A new approach for cryofixation by high-pressure freezing. J. Microsc. 203:285–94
    [Google Scholar]
  34. 34. 
    Al-Amoudi A, Chang JJ, Leforestier A, McDowall A, Salamin LM et al. 2004. Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–88
    [Google Scholar]
  35. 35. 
    Marko M, Hsieh C, Schalek R, Frank J, Mannella C 2007. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods 4:215–17
    [Google Scholar]
  36. 36. 
    Rigort A, Bauerlein FJ, Leis A, Gruska M, Hoffmann C et al. 2010. Micromachining tools and correlative approaches for cellular cryo-electron tomography. J. Struct. Biol. 172:169–79
    [Google Scholar]
  37. 37. 
    Baker LA, Rubinstein JL. 2010. Radiation damage in electron cryomicroscopy. Methods Enzymol 481:371–88
    [Google Scholar]
  38. 38. 
    Ruskin RS, Yu Z, Grigorieff N 2013. Quantitative characterization of electron detectors for transmission electron microscopy. J. Struct. Biol. 184:385–93
    [Google Scholar]
  39. 39. 
    Galaz-Montoya JG, Hecksel CW, Baldwin PR, Wang E, Weaver SC et al. 2016. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J. Struct. Biol. 194:383–94
    [Google Scholar]
  40. 40. 
    Winkler H, Taylor KA. 2006. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106:240–54
    [Google Scholar]
  41. 41. 
    Nickell S, Forster F, Linaroudis A, Net WD, Beck F et al. 2005. TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149:227–34
    [Google Scholar]
  42. 42. 
    Heymann JB, Cardone G, Winkler DC, Steven AC 2008. Computational resources for cryo-electron tomography in Bsoft. J. Struct. Biol. 161:232–42
    [Google Scholar]
  43. 43. 
    Bender R, Bellman SH, Gordon R 1970. ART and the ribosome: a preliminary report on the three-dimensional structure of individual ribosomes determined by an algebraic reconstruction technique. J. Theor. Biol. 29:483–87
    [Google Scholar]
  44. 44. 
    Kak AC. 1988. Principles of Computerized Tomographic Imaging New York: IEEE
  45. 45. 
    Penczek PA, Renka R, Schomberg H 2004. Gridding-based direct Fourier inversion of the three-dimensional ray transform. J. Opt. Soc. Am. A 21:499–509
    [Google Scholar]
  46. 46. 
    Kremer JR, Mastronarde DN, McIntosh JR 1996. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116:71–76
    [Google Scholar]
  47. 47. 
    Patwardhan A, Lawson CL. 2016. Databases and archiving for CryoEM. Methods Enzymol 579:393–412
    [Google Scholar]
  48. 48. 
    Luengo I, Darrow MC, Spink MC, Sun Y, Dai W et al. 2017. SuRVoS: super-region volume segmentation workbench. J. Struct. Biol. 198:43–53
    [Google Scholar]
  49. 49. 
    Chen M, Dai W, Sun SY, Jonasch D, He CY et al. 2017. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14:983–85
    [Google Scholar]
  50. 50. 
    Briggs JA. 2013. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23:261–67
    [Google Scholar]
  51. 51. 
    Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR 2006. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–48
    [Google Scholar]
  52. 52. 
    Castano-Diez D, Kudryashev M, Arheit M, Stahlberg H 2012. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178:139–51
    [Google Scholar]
  53. 53. 
    Himes BA, Zhang P. 2018. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15:955–61
    [Google Scholar]
  54. 54. 
    Bharat TA, Scheres SH. 2016. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 11:2054–65
    [Google Scholar]
  55. 55. 
    Hrabe T, Chen Y, Pfeffer S, Cuellar LK, Mangold AV, Forster F 2012. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178:177–88
    [Google Scholar]
  56. 56. 
    Schur FK, Obr M, Hagen WJ, Wan W, Jakobi AJ et al. 2016. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:506–8
    [Google Scholar]
  57. 57. 
    Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y et al. 2015. Structure of the native Sec61 protein-conducting channel. Nat. Commun. 6:8403
    [Google Scholar]
  58. 58. 
    Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W 2002. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–13
    [Google Scholar]
  59. 59. 
    Forterre P. 2013. The virocell concept and environmental microbiology. ISME J 7:233–36
    [Google Scholar]
  60. 60. 
    Cyrklaff M, Linaroudis A, Boicu M, Chlanda P, Baumeister W et al. 2007. Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLOS ONE 2:e420
    [Google Scholar]
  61. 61. 
    Maurer UE, Sodeik B, Grünewald K 2008. Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. PNAS 105:10559–64
    [Google Scholar]
  62. 62. 
    Ibiricu I, Huiskonen JT, Dohner K, Bradke F, Sodeik B, Grünewald K 2011. Cryo electron tomography of herpes simplex virus during axonal transport and secondary envelopment in primary neurons. PLOS Pathog 7:e1002406
    [Google Scholar]
  63. 63. 
    Carlson LA, de Marco A, Oberwinkler H, Habermann A, Briggs JA et al. 2010. Cryo electron tomography of native HIV-1 budding sites. PLOS Pathog 6:e1001173
    [Google Scholar]
  64. 64. 
    Wolff G, Hagen C, Grünewald K, Kaufmann R 2016. Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol. Cell 108:245–58
    [Google Scholar]
  65. 65. 
    Jun S, Ke D, Debiec K, Zhao G, Meng X et al. 2011. Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography. Structure 19:1573–81
    [Google Scholar]
  66. 66. 
    Schellenberger P, Kaufmann R, Siebert CA, Hagen C, Wodrich H, Grünewald K 2014. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143:41–51
    [Google Scholar]
  67. 67. 
    Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB et al. 2010. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat. Struct. Mol. Biol 17:830–36
    [Google Scholar]
  68. 68. 
    Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W 2010. Visualizing the structural changes of bacteriophage epsilon15 and its Salmonella host during infection. J. Mol. Biol. 402:731–40
    [Google Scholar]
  69. 69. 
    Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA et al. 2013. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502:707–10
    [Google Scholar]
  70. 70. 
    Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF 2009. Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J 3:159–67
    [Google Scholar]
  71. 71. 
    Fu CY, Wang K, Gan L, Lanman J, Khayat R et al. 2010. In vivo assembly of an archaeal virus studied with whole-cell electron cryotomography. Structure 18:1579–86
    [Google Scholar]
  72. 72. 
    Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB et al. 2015. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163:1692–701
    [Google Scholar]
  73. 73. 
    Hagen C, Grünewald K. 2008. Microcarriers for high-pressure freezing and cryosectioning of adherent cells. J. Microsc. 230:288–96
    [Google Scholar]
  74. 74. 
    Chlanda P, Carbajal MA, Cyrklaff M, Griffiths G, Krijnse-Locker J 2009. Membrane rupture generates single open membrane sheets during vaccinia virus assembly. Cell Host Microbe 6:81–90
    [Google Scholar]
  75. 75. 
    Rigort A, Bauerlein FJ, Villa E, Eibauer M, Laugks T et al. 2012. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. PNAS 109:4449–54
    [Google Scholar]
  76. 76. 
    Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML et al. 2017. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355:194–97
    [Google Scholar]
  77. 77. 
    Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME et al. 2019. Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell 177:1771–80
    [Google Scholar]
  78. 78. 
    Chaikeeratisak V, Nguyen K, Egan ME, Erb ML, Vavilina A, Pogliano J 2017. The phage nucleus and tubulin spindle are conserved among large pseudomonas phages. Cell Rep 20:1563–71
    [Google Scholar]
  79. 79. 
    Fernandes S, Sao-Jose C. 2018. Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers. Viruses 10:396
    [Google Scholar]
  80. 80. 
    Krupovic M, Bamford DH. 2007. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria. BMC Genom 8:236
    [Google Scholar]
  81. 81. 
    Xu J, Xiang Y. 2017. Membrane penetration by bacterial viruses. J. Virol. 91:e00162-17
    [Google Scholar]
  82. 82. 
    Farley MM, Hu B, Margolin W, Liu J 2016. Minicells, back in fashion. J. Bacteriol. 198:1186–95
    [Google Scholar]
  83. 83. 
    Bertozzi Silva J, Storms Z, Sauvageau D 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363:fnw002
    [Google Scholar]
  84. 84. 
    Lake JA, Leonard KR. 1974. Bacteriophage structure: determination of head-tail symmetry mismatch for Caulobacter crescentus phage φCbK. Science 183:744–77
    [Google Scholar]
  85. 85. 
    Gill JJ, Berry JD, Russell WK, Lessor L, Escobar-Garcia DA et al. 2012. The Caulobacter crescentus phage phiCbK: genomics of a canonical phage. BMC Genom 13:542
    [Google Scholar]
  86. 86. 
    Papadopoulos S, Smith PR. 1982. The structure of the tail of the bacteriophage φCbK. J. Ultrastruct. Res. 80:62–70
    [Google Scholar]
  87. 87. 
    Arnaud CA, Effantin G, Vives C, Engilberge S, Bacia M et al. 2017. Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat. Commun. 8:1953
    [Google Scholar]
  88. 88. 
    Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M et al. 2011. Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. . PNAS 108:9963–68
    [Google Scholar]
  89. 89. 
    Hu B, Morado DR, Margolin W, Rohde JR, Arizmendi O et al. 2015. Visualization of the type III secretion sorting platform of Shigella flexneri. . PNAS 112:1047–52
    [Google Scholar]
  90. 90. 
    Hu B, Margolin W, Molineux IJ, Liu J 2013. The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science 339:576–79
    [Google Scholar]
  91. 91. 
    Farley MM, Tu J, Kearns DB, Molineux IJ, Liu J 2017. Ultrastructural analysis of bacteriophage Φ29 during infection of Bacillus subtilis. J. Struct. Biol 197:163–71
    [Google Scholar]
  92. 92. 
    Liu J, Chen CY, Shiomi D, Niki H, Margolin W 2011. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli. . Virology 417:304–11
    [Google Scholar]
  93. 93. 
    Guerrero-Ferreira RC, Hupfeld M, Nazarov S, Taylor NM, Shneider MM et al. 2019. Structure and transformation of bacteriophage A511 baseplate and tail upon infection of Listeria cells. EMBO J 38:e99455
    [Google Scholar]
  94. 94. 
    Bohm J, Lambert O, Frangakis AS, Letellier L, Baumeister W, Rigaud JL 2001. FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr. Biol. 11:1168–75
    [Google Scholar]
  95. 95. 
    Murata K, Zhang Q, Galaz-Montoya JG, Fu C, Coleman ML et al. 2017. Visualizing adsorption of cyanophage P-SSP7 onto marine Prochlorococcus. Sci. . Rep 7:44176
    [Google Scholar]
  96. 96. 
    Wang C, Tu J, Liu J, Molineux IJ 2019. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat. Microbiol. 4:1049–56
    [Google Scholar]
  97. 97. 
    Sun L, Young LN, Zhang X, Boudko SP, Fokine A et al. 2014. Icosahedral bacteriophage ΦX174 forms a tail for DNA transport during infection. Nature 505:432–35
    [Google Scholar]
  98. 98. 
    Peralta B, Gil-Carton D, Castano-Diez D, Bertin A, Boulogne C et al. 2013. Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLOS Biol 11:e1001667
    [Google Scholar]
  99. 99. 
    Santos-Perez I, Oksanen HM, Bamford DH, Goni FM, Reguera D, Abrescia NGA 2017. Membrane-assisted viral DNA ejection. Biochim. Biophys. Acta 1861:664–72
    [Google Scholar]
  100. 100. 
    Gigante AM, Hampton CM, Dillard RS, Gil F, Catalao MJ et al. 2017. The Ms6 mycolyl-arabinogalactan esterase LysB is essential for an efficient mycobacteriophage-induced lysis. Viruses 9:343
    [Google Scholar]
  101. 101. 
    Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV, Krupovic M 2017. The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15:724–39
    [Google Scholar]
  102. 102. 
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048
    [Google Scholar]
  103. 103. 
    Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV 2018. Viruses of archaea: structural, functional, environmental and evolutionary genomics. Virus Res 244:181–93
    [Google Scholar]
  104. 104. 
    DiMaio F, Yu X, Rensen E, Krupovic M, Prangishvili D, Egelman EH 2015. A virus that infects a hyperthermophile encapsidates A-form DNA. Science 348:914–17
    [Google Scholar]
  105. 105. 
    Kasson P, DiMaio F, Yu X, Lucas-Staat S, Krupovic M et al. 2017. Model for a novel membrane envelope in a filamentous hyperthermophilic virus. eLife 6:e26268
    [Google Scholar]
  106. 106. 
    El Omari K, Li S, Kotecha A, Walter TS, Bignon EA et al. 2019. The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins. Nat. Commun. 10:846
    [Google Scholar]
  107. 107. 
    Quemin ER, Lucas S, Daum B, Quax TE, Kuhlbrandt W et al. 2013. First insights into the entry process of hyperthermophilic archaeal viruses. J. Virol. 87:13379–85
    [Google Scholar]
  108. 108. 
    Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM 2017. Archaeal S-layers: overview and current state of the art. Front. Microbiol. 8:2597
    [Google Scholar]
  109. 109. 
    Daum B, Quax TE, Sachse M, Mills DJ, Reimann J et al. 2014. Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids. PNAS 111:3829–34
    [Google Scholar]
  110. 110. 
    Hochstein R, Bollschweiler D, Dharmavaram S, Lintner NG, Plitzko JM et al. 2018. Structural studies of Acidianus tailed spindle virus reveal a structural paradigm used in the assembly of spindle-shaped viruses. PNAS 115:2120–25
    [Google Scholar]
  111. 111. 
    Hampton CM, Strauss JD, Ke Z, Dillard RS, Hammonds JE et al. 2017. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat. Protoc. 12:150–67
    [Google Scholar]
  112. 112. 
    Li S, Sun Z, Pryce R, Parsy ML, Fehling SK et al. 2016. Acidic pH-induced conformations and LAMP1 binding of the Lassa virus glycoprotein spike. PLOS Pathog 12:e1005418
    [Google Scholar]
  113. 113. 
    Halldorsson S, Li S, Li M, Harlos K, Bowden TA, Huiskonen JT 2018. Shielding and activation of a viral membrane fusion protein. Nat. Commun. 9:349
    [Google Scholar]
  114. 114. 
    Backovic M, Jardetzky TS. 2011. Class III viral membrane fusion proteins. Adv. Exp. Med. Biol. 714:91–101
    [Google Scholar]
  115. 115. 
    Vollmer B, Grünewald K. 2020. Herpesvirus membrane fusion—a team effort. Curr. Opin. Struct. Biol. 62:112–20
    [Google Scholar]
  116. 116. 
    Zeev-Ben-Mordehai T, Vasishtan D, Hernandez Duran A, Vollmer B, White P et al. 2016. Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. PNAS 113:4176–81
    [Google Scholar]
  117. 117. 
    Fontana J, Atanasiu D, Saw WT, Gallagher JR, Cox RG et al. 2017. The fusion loops of the initial prefusion conformation of herpes simplex virus 1 fusion protein point toward the membrane. mBio 8:e01268-17
    [Google Scholar]
  118. 118. 
    Si Z, Zhang J, Shivakoti S, Atanasov I, Tao CL et al. 2018. Different functional states of fusion protein gB revealed on human cytomegalovirus by cryo electron tomography with Volta phase plate. PLOS Pathog 14:e1007452
    [Google Scholar]
  119. 119. 
    Calder LJ, Rosenthal PB. 2016. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion. Nat. Struct. Mol. Biol. 23:853–58
    [Google Scholar]
  120. 120. 
    Gui L, Ebner JL, Mileant A, Williams JA, Lee KK 2016. Visualization and sequencing of membrane remodeling leading to influenza virus fusion. J. Virol. 90:6948–62
    [Google Scholar]
  121. 121. 
    Chlanda P, Mekhedov E, Waters H, Schwartz CL, Fischer ER et al. 2016. The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes. Nat. Microbiol. 1:16050
    [Google Scholar]
  122. 122. 
    Ertel KJ, Benefield D, Castano-Diez D, Pennington JG, Horswill M et al. 2017. Cryo-electron tomography reveals novel features of a viral RNA replication compartment. eLife 6:e25940
    [Google Scholar]
  123. 123. 
    Ahlquist P. 2006. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol. 4:371–82
    [Google Scholar]
  124. 124. 
    den Boon JA, Diaz A, Ahlquist P 2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8:77–85
    [Google Scholar]
  125. 125. 
    Miller S, Krijnse-Locker J. 2008. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 6:363–74
    [Google Scholar]
  126. 126. 
    Briggs JA, Grünewald K, Glass B, Forster F, Kräusslich HG, Fuller SD 2006. The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 14:15–20
    [Google Scholar]
  127. 127. 
    Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B et al. 2013. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497:643–46
    [Google Scholar]
  128. 128. 
    Woodward CL, Cheng SN, Jensen GJ 2015. Electron cryotomography studies of maturing HIV-1 particles reveal the assembly pathway of the viral core. J. Virol. 89:1267–77
    [Google Scholar]
  129. 129. 
    Jin J, Galaz-Montoya JG, Sherman MB, Sun SY, Goldsmith CS et al. 2018. Neutralizing antibodies inhibit chikungunya virus budding at the plasma membrane. Cell Host Microbe 24:417–28
    [Google Scholar]
  130. 130. 
    Ke Z, Dillard RS, Chirkova T, Leon F, Stobart CC et al. 2018. The morphology and assembly of respiratory syncytial virus revealed by cryo-electron tomography. Viruses 10:446
    [Google Scholar]
  131. 131. 
    Bharat TA, Riches JD, Kolesnikova L, Welsch S, Krahling V et al. 2011. Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLOS Biol 9:e1001196
    [Google Scholar]
  132. 132. 
    Bigalke JM, Heldwein EE. 2015. The great (nuclear) escape: new insights into the role of the nuclear egress complex of herpesviruses. J. Virol. 89:9150–53
    [Google Scholar]
  133. 133. 
    Newcomb WW, Fontana J, Winkler DC, Cheng N, Heymann JB, Steven AC 2017. The primary enveloped virion of herpes simplex virus 1: its role in nuclear egress. mBio 8:e00825-17
    [Google Scholar]
  134. 134. 
    Ibiricu I, Maurer UE, Grünewald K 2013. Characterization of herpes simplex virus type 1 L-particle assembly and egress in hippocampal neurones by electron cryo-tomography. Cell. Microbiol. 15:285–91
    [Google Scholar]
  135. 135. 
    Liu YT, Shivakoti S, Jia F, Tao CL, Zhang B et al. 2020. Biphasic exocytosis of herpesvirus from hippocampal neurons and mechanistic implication to membrane fusion. Cell Discov 6:2
    [Google Scholar]
  136. 136. 
    Clare DK, Siebert CA, Hecksel C, Hagen C, Mordhorst V et al. 2017. Electron Bio-Imaging Centre (eBIC): the UK national research facility for biological electron microscopy. Acta Crystallogr. D Struct. Biol. 73:488–95
    [Google Scholar]
  137. 137. 
    Kato A, Kawaguchi Y. 2018. Us3 protein kinase encoded by HSV: the precise function and mechanism on viral life cycle. Adv. Exp. Med. Biol. 1045:45–62
    [Google Scholar]
  138. 138. 
    Tandon R, Mocarski ES, Conway JF 2015. The A, B, Cs of herpesvirus capsids. Viruses 7:899–914
    [Google Scholar]
  139. 139. 
    Preston VG, al-Kobaisi MF, McDougall IM, Rixon FJ 1994. The herpes simplex virus gene UL26 proteinase in the presence of the UL26.5 gene product promotes the formation of scaffold-like structures. J. Gen. Virol. 75:Part 92355–66
    [Google Scholar]
  140. 140. 
    Crump C. 2018. Virus assembly and egress of HSV. Adv. Exp. Med. Biol. 1045:23–44
    [Google Scholar]
  141. 141. 
    Brown JC, Newcomb WW. 2011. Herpesvirus capsid assembly: insights from structural analysis. Curr. Opin. Virol. 1:142–49
    [Google Scholar]
  142. 142. 
    Newcomb WW, Homa FL, Thomsen DR, Booy FP, Trus BL et al. 1996. Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol. 263:432–46
    [Google Scholar]
  143. 143. 
    Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M et al. 2017. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171:148–62
    [Google Scholar]
  144. 144. 
    Shi X, Chen M, Yu Z, Bell JM, Wang H et al. 2019. In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat. Commun. 10:2635
    [Google Scholar]
  145. 145. 
    Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S et al. 2017. Dissecting the molecular organization of the translocon-associated protein complex. Nat. Commun. 8:14516
    [Google Scholar]
  146. 146. 
    Rast A, Schaffer M, Albert S, Wan W, Pfeffer S et al. 2019. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5:436–46
    [Google Scholar]
  147. 147. 
    Guo Q, Lehmer C, Martinez-Sanchez A, Rudack T, Beck F et al. 2018. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172:696–705
    [Google Scholar]
  148. 148. 
    Malhotra S, Trager S, Dal Peraro M, Topf M 2019. Modelling structures in cryo-EM maps. Curr. Opin. Struct. Biol. 58:105–14
    [Google Scholar]
  149. 149. 
    Schwartz CL, Sarbash VI, Ataullakhanov FI, McIntosh JR, Nicastro D 2007. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227:98–109
    [Google Scholar]
  150. 150. 
    Moser F, Prazak V, Mordhorst V, Andrade DM, Baker LA et al. 2019. Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. PNAS 116:4804–9
    [Google Scholar]
  151. 151. 
    Rivas G, Minton AP. 2016. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41:970–81
    [Google Scholar]
  152. 152. 
    Bharat TAM, Hoffmann PC, Kukulski W 2018. Correlative microscopy of vitreous sections provides insights into BAR-domain organization in situ. . Structure 26:879–86
    [Google Scholar]
  153. 153. 
    Dierksen K, Typke D, Hegerl R, Baumeister W 1993. Towards automatic electron tomography II. Implementation of autofocus and low-dose procedures. Ultramicroscopy 49:109–20
    [Google Scholar]
/content/journals/10.1146/annurev-virology-021920-115935
Loading
/content/journals/10.1146/annurev-virology-021920-115935
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error