1932

Abstract

Every surface of the human body is colonized by a diverse microbial community called the microbiota, yet the impact of this community on viruses is unclear. Recent research has advanced our understanding of how microbiota influence viral infection. Microbiota inhibit infection by some viruses and promote infection by others. These effects can occur through direct and/or indirect effects on the host and/or the virus. This review examines the known effects and mechanisms by which microbiota influence mammalian virus infections. Furthermore, we suggest strategies for future research on how microbiota impact viruses. Overall, microbiota may influence a wide array of viruses through diverse mechanisms, making the study of virus-microbiota interactions a fertile area for future investigation.

Associated Article

There are media items related to this article:
Viruses and the Microbiota
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-031413-085550
2014-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/1/1/annurev-virology-031413-085550.html?itemId=/content/journals/10.1146/annurev-virology-031413-085550&mimeType=html&fmt=ahah

Literature Cited

  1. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R. 1.  et al. 2013. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40:463–71 [Google Scholar]
  2. Hao WL, Lee YK. 2.  2004. Microflora of the gastrointestinal tract: a review. Methods Mol. Biol. 268:491–502 [Google Scholar]
  3. Whitman WB, Coleman DC, Wiebe WJ. 3.  1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578–83 [Google Scholar]
  4. Grice EA, Kong HH, Conlan S, Deming CB, Davis J. 4.  et al. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–92 [Google Scholar]
  5. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH. 5.  et al. 2008. Pyrosequencing analysis of the oral microflora of healthy adults. J. Dental Res. 87:1016–20 [Google Scholar]
  6. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC. 6.  et al. 2010. The human oral microbiome. J. Bacteriol. 192:5002–17 [Google Scholar]
  7. Nelson DE, Van Der Pol B, Dong Q, Revanna KV, Fan B. 7.  et al. 2010. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 5:e14116 [Google Scholar]
  8. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS. 8.  et al. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108:Suppl. 14680–87 [Google Scholar]
  9. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 9.  2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–97 [Google Scholar]
  10. Costello EK, Carlisle EM, Bik EM, Morowitz MJ, Relman DA. 10.  2013. Microbiome assembly across multiple body sites in low-birthweight infants. mBio 4:e00782–13 [Google Scholar]
  11. Conly JM, Stein K, Worobetz L, Rutledge-Harding S. 11.  1994. The contribution of vitamin K2 (menaquinones) produced by the intestinal microflora to human nutritional requirements for vitamin K. Am. J. Gastroenterol. 89:915–23 [Google Scholar]
  12. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ. 12.  et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–59 [Google Scholar]
  13. Buffie CG, Pamer EG. 13.  2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13:790–801 [Google Scholar]
  14. Maynard CL, Elson CO, Hatton RD, Weaver CT. 14.  2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–41 [Google Scholar]
  15. Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D. 15.  et al. 2010. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 3:148–58 [Google Scholar]
  16. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 16.  2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–18 [Google Scholar]
  17. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 17.  2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104:13780–85 [Google Scholar]
  18. Malinen E, Rinttila T, Kajander K, Matto J, Kassinen A. 18.  et al. 2005. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 100:373–82 [Google Scholar]
  19. Kerckhoffs AP, Ben-Amor K, Samsom M, van der Rest ME, de Vogel J. 19.  et al. 2011. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J. Med. Microbiol. 60:236–45 [Google Scholar]
  20. Gerritsen J, Smidt H, Rijkers GT, de Vos WM. 20.  2011. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6:209–40 [Google Scholar]
  21. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A. 21.  et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:480–84 [Google Scholar]
  22. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS. 22.  et al. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085 [Google Scholar]
  23. Wostmann BS, Larkin C, Moriarty A, Bruckner-Kardoss E. 23.  1983. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab. Anim. Sci. 33:46–50 [Google Scholar]
  24. Falk PG, Hooper LV, Midtvedt T, Gordon JI. 24.  1998. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62:1157–70 [Google Scholar]
  25. Hooper LV. 25.  2004. Bacterial contributions to mammalian gut development. Trends Microbiol. 12:129–34 [Google Scholar]
  26. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. 26.  2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 4:269–73 [Google Scholar]
  27. Shroff KE, Meslin K, Cebra JJ. 27.  1995. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63:3904–13 [Google Scholar]
  28. Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, Itoh K. 28.  1999. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect. Immun. 67:3504–11 [Google Scholar]
  29. Umesaki Y, Setoyama H, Matsumoto S, Okada Y. 29.  1993. Expansion of αβ T-cell receptor–bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79:32–37 [Google Scholar]
  30. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. 30.  2004. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:229–41 [Google Scholar]
  31. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM. 31.  et al. 2011. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334:249–52 [Google Scholar]
  32. Guandalini S, Pensabene L, Zikri MA, Dias JA, Casali LG. 32.  et al. 2000. Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J. Pediatr. Gastroenterol. Nutr. 30:54–60 [Google Scholar]
  33. Saavedra J. 33.  2000. Probiotics and infectious diarrhea. Am. J. Gastroenterol. 95:S16–18 [Google Scholar]
  34. Guarino A, Canani RB, Spagnuolo MI, Albano F, Di Benedetto L. 34.  1997. Oral bacterial therapy reduces the duration of symptoms and of viral excretion in children with mild diarrhea. J. Pediatr. Gastroenterol. Nutr. 25:516–19 [Google Scholar]
  35. Varyukhina S, Freitas M, Bardin S, Robillard E, Tavan E. 35.  et al. 2012. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect. 14:273–78 [Google Scholar]
  36. Dolowy WC, Muldoon RL. 36.  1964. Studies of germfree animals. I. Response of mice to infection with influenza A virus. Proc. Soc. Exp. Biol. Med. 116:365–71 [Google Scholar]
  37. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH. 37.  et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108:5354–59 [Google Scholar]
  38. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T. 38.  et al. 2012. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37:158–70 [Google Scholar]
  39. Wang J, Li F, Sun R, Gao X, Wei H. 39.  et al. 2013. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat. Commun. 4:2106 [Google Scholar]
  40. Xi Z, Ramirez JL, Dimopoulos G. 40.  2008. The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog. 4:e1000098 [Google Scholar]
  41. Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A. 41.  et al. 2012. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl. Trop. Dis. 6:e1561 [Google Scholar]
  42. Xi Z, Khoo CC, Dobson SL. 42.  2005. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–28 [Google Scholar]
  43. Iturbe-Ormaetxe I, Walker T, O'Neill SL. 43.  2011. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 12:508–18 [Google Scholar]
  44. Pan X, Zhou G, Wu J, Bian G, Lu P. 44.  et al. 2012. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. USA 109:E23–31 [Google Scholar]
  45. Pullen LC, Park SH, Miller SD, Dal Canto MC, Kim BS. 45.  1995. Treatment with bacterial LPS renders genetically resistant C57BL/6 mice susceptible to Theiler's virus–induced demyelinating disease. J. Immunol. 155:4497–503 [Google Scholar]
  46. Robinson CM, Jesudhasan PR, Pfeiffer JK. 46.  2014. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 15:36–46 [Google Scholar]
  47. Outzen HC, Corrow D, Shultz LD. 47.  1985. Attenuation of exogenous murine mammary tumor virus virulence in the C3H/HeJ mouse substrain bearing the Lps mutation. J. Natl. Cancer Inst. 75:917–23 [Google Scholar]
  48. Jude BA, Pobezinskaya Y, Bishop J, Parke S, Medzhitov RM. 48.  et al. 2003. Subversion of the innate immune system by a retrovirus. Nat. Immunol. 4:573–78 [Google Scholar]
  49. Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C. 49.  et al. 2011. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334:245–49 [Google Scholar]
  50. Gropp R, Frye M, Wagner TO, Bargon J. 50.  1999. Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum. Gene Ther. 10:957–64 [Google Scholar]
  51. Smith JG, Nemerow GR. 51.  2008. Mechanism of adenovirus neutralization by human α-defensins. Cell Host Microbe 3:11–19 [Google Scholar]
  52. Smith JG, Silvestry M, Lindert S, Lu W, Nemerow GR, Stewart PL. 52.  2010. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog. 6:e1000959 [Google Scholar]
  53. Nguyen EK, Nemerow GR, Smith JG. 53.  2010. Direct evidence from single-cell analysis that human α-defensins block adenovirus uncoating to neutralize infection. J. Virol. 84:4041–49 [Google Scholar]
  54. Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. 54.  2012. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J. Biol. Chem. 287:24554–62 [Google Scholar]
  55. Wilson SS, Wiens ME, Smith JG. 55.  2013. Antiviral mechanisms of human defensins. J. Mol. Biol. 425:4965–80 [Google Scholar]
  56. Schaffer J, Beamer PR, Trexler PC, Breidenbach G, Walcher DN. 56.  1963. Response of germ-free animals to experimental virus monocontamination. I. Observation on coxsackie B virus. Proc. Soc. Exp. Biol. Med. 112:561–64 [Google Scholar]
  57. Nelson AM, Walk ST, Taube S, Taniuchi M, Houpt ER. 57.  et al. 2012. Disruption of the human gut microbiota following Norovirus infection. PLoS ONE 7:e48224 [Google Scholar]
  58. Nelson AM, Elftman MD, Pinto AK, Baldridge M, Hooper P. 58.  et al. 2013. Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota. Microbiome 1:7 [Google Scholar]
  59. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC. 59.  et al. 2010. Virus–plus–susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–45 [Google Scholar]
  60. Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M. 60.  et al. 2013. Histo-blood group antigen–like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol. 87:9441–51 [Google Scholar]
  61. Isaak DD, Bartizal KF, Caulfield MJ. 61.  1988. Decreased pathogenicity of murine leukemia virus–Moloney in gnotobiotic mice. Leukemia 2:540–44 [Google Scholar]
  62. Kouttab NM, Jutila JW. 62.  1972. Friend leukemia virus infection in germfree mice following antigen stimulation. J. Immunol. 108:591–95 [Google Scholar]
  63. Mirand EA, Grace JT Jr. 63.  1963. Responses of germ-free mice to Friend virus. Nature 200:92–93 [Google Scholar]
  64. Wilks J, Golovkina T. 64.  2012. Influence of microbiota on viral infections. PLoS Pathog. 8:e1002681 [Google Scholar]
  65. Shu Z, Ma J, Tuerhong D, Yang C, Upur H. 65.  2013. How intestinal bacteria can promote HIV replication. AIDS Rev. 15:32–37 [Google Scholar]
  66. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G. 66.  et al. 2006. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12:1365–71 [Google Scholar]
  67. Majerle A, Pristovsek P, Mancek-Keber M, Jerala R. 67.  2011. Interaction of the HIV-1 gp120 viral protein V3 loop with bacterial lipopolysaccharide: a pattern recognition inhibition. J. Biol. Chem. 286:26228–37 [Google Scholar]
  68. Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UM. 68.  et al. 2012. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4:132ra52 [Google Scholar]
  69. O'Hanlon DE, Moench TR, Cone RA. 69.  2013. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 8:e80074 [Google Scholar]
  70. Lai SK, Hida K, Shukair S, Wang YY, Figueiredo A. 70.  et al. 2009. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J. Virol. 83:11196–200 [Google Scholar]
  71. Aldunate M, Tyssen D, Johnson A, Zakir T, Sonza S. 71.  et al. 2013. Vaginal concentrations of lactic acid potently inactivate HIV. J. Antimicrob. Chemother. 68:2015–25 [Google Scholar]
  72. Veldhuijzen NJ, Snijders PJ, Reiss P, Meijer CJ, van de Wijgert JH. 72.  2010. Factors affecting transmission of mucosal human papillomavirus. Lancet Infect. Dis. 10:862–74 [Google Scholar]
  73. Gao W, Weng J, Gao Y, Chen X. 73.  2013. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect. Dis. 13:271 [Google Scholar]
  74. Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA. 74.  1996. Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes 45:557–62 [Google Scholar]
  75. Ghazarian L, Diana J, Simoni Y, Beaudoin L, Lehuen A. 75.  2013. Prevention or acceleration of type 1 diabetes by viruses. Cell. Mol. Life Sci. 70:239–55 [Google Scholar]
  76. Mathis D, Benoist C. 76.  2012. The influence of the microbiota on type-1 diabetes: on the threshold of a leap forward in our understanding. Immunol. Rev. 245:239–49 [Google Scholar]
  77. Hara N, Alkanani AK, Ir D, Robertson CE, Wagner BD. 77.  et al. 2012. Prevention of virus-induced type 1 diabetes with antibiotic therapy. J. Immunol. 189:3805–14 [Google Scholar]
  78. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L. 78.  et al. 2008. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–13 [Google Scholar]
  79. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA. 79.  et al. 2011. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21:1616–25 [Google Scholar]
  80. Lecuit M, Eloit M. 80.  2013. The human virome: new tools and concepts. Trends Microbiol. 21:510–15 [Google Scholar]
  81. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC. 81.  et al. 2010. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–38 [Google Scholar]
  82. Foulongne V, Sauvage V, Hebert C, Dereure O, Cheval J. 82.  et al. 2012. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7:e38499 [Google Scholar]
  83. Duerkop BA, Hooper LV. 83.  2013. Resident viruses and their interactions with the immune system. Nat. Immunol. 14:654–59 [Google Scholar]
  84. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. 84.  2006. HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/−γc−/− (RAG-hu) mouse model. Retrovirology 3:76 [Google Scholar]
  85. Koyanagi Y, Tanaka Y, Ito M, Yamamoto N. 85.  2008. Humanized mice for human retrovirus infection. Curr. Top. Microbiol. Immunol. 324:133–48 [Google Scholar]
  86. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL. 86.  et al. 2007. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J. Exp. Med. 204:705–14 [Google Scholar]
  87. Xu J, Hopkins K, Sabin L, Yasunaga A, Subramanian H. 87.  et al. 2013. ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc. Natl. Acad. Sci. USA 110:15025–30 [Google Scholar]
  88. Pfeiffer JK, Sonnenburg JL. 88.  2011. The intestinal microbiota and viral susceptibility. Front. Microbiol. 2:92 [Google Scholar]
  89. Wilks J, Beilinson H, Golovkina TV. 89.  2013. Dual role of commensal bacteria in viral infections. Immunol. Rev. 255:222–29 [Google Scholar]
  90. Stewardson AJ, Huttner B, Harbarth S. 90.  2011. At least it won't hurt: the personal risks of antibiotic exposure. Curr. Opin. Pharmacol. 11:446–52 [Google Scholar]
/content/journals/10.1146/annurev-virology-031413-085550
Loading
/content/journals/10.1146/annurev-virology-031413-085550
Loading

Data & Media loading...

Supplemental Material

An introduction to the topic from author Julie K. Pfeiffer.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error