1932

Abstract

New hepatitis B virions released from infected hepatocytes are the result of an intricate maturation process that starts with the formation of the nucleocapsid providing a confined space where the viral DNA genome is synthesized via reverse transcription. Virion assembly is finalized by the enclosure of the icosahedral nucleocapsid within a heterogeneous envelope. The latter contains integral membrane proteins of three sizes, collectively known as hepatitis B surface antigen, and adopts multiple conformations in the course of the viral life cycle. The nucleocapsid conformation depends on the reverse transcription status of the genome, which in turn controls nucleocapsid interaction with the envelope proteins for virus exit. In addition, after secretion the virions undergo a distinct maturation step during which a topological switch of the large envelope protein confers infectivity. Here we review molecular determinants for envelopment and models that postulate molecular signals encoded in the capsid scaffold conducive or adverse to the recruitment of envelope proteins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015508
2020-09-29
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-092818-015508.html?itemId=/content/journals/10.1146/annurev-virology-092818-015508&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bartenschlager R, Urban S, Protzer U 2019. Towards curative therapy of chronic viral hepatitis. Z. Gastroenterol. 57:161–73
    [Google Scholar]
  2. 2. 
    WHO (World Health Organ.) 2019. Hepatitis B: key facts. World Health Organization http://www.who.int/mediacentre/factsheets/fs204/en/
    [Google Scholar]
  3. 3. 
    Lauber C, Seitz S, Mattei S, Suh A, Beck J et al. 2017. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe 22:3387–99
    [Google Scholar]
  4. 4. 
    Gilbert C, Feschotte C. 2010. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLOS Biol 8:9e1000495
    [Google Scholar]
  5. 5. 
    Suh A, Weber CC, Kehlmaier C, Braun EL, Green RE et al. 2014. Early Mesozoic coexistence of amniotes and Hepadnaviridae. PLOS Genet 10:12e1004559
    [Google Scholar]
  6. 6. 
    Dane DS, Cameron CH, Briggs M 1970. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 295:764969498
    [Google Scholar]
  7. 7. 
    Seeger C, Mason WS. 2000. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 64:151–68
    [Google Scholar]
  8. 8. 
    Nassal M. 2008. Hepatitis B viruses: reverse transcription a different way. Virus Res 134:1–2235–49
    [Google Scholar]
  9. 9. 
    Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P 2007. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. PNAS 104:2410205–10
    [Google Scholar]
  10. 10. 
    Wynne SA, Crowther RA, Leslie AG 1999. The crystal structure of the human hepatitis B virus capsid. Mol. Cell 3:6771–80
    [Google Scholar]
  11. 11. 
    Böttcher B, Wynne SA, Crowther RA 1997. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:662088–91
    [Google Scholar]
  12. 12. 
    Conway JF, Cheng N, Zlotnick A, Wingfield PT, Stahl SJ, Steven AC 1997. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386:662091–94
    [Google Scholar]
  13. 13. 
    Yu X, Jin L, Jih J, Shih C, Zhou ZH 2013. 3.5A cryoEM structure of hepatitis B virus core assembled from full-length core protein. PLOS ONE 8:9e69729
    [Google Scholar]
  14. 14. 
    Patel N, White SJ, Thompson RF, Bingham R, Weiss EU et al. 2017. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat. Microbiol. 2:17098
    [Google Scholar]
  15. 15. 
    Caspar DL, Klug A. 1962. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27:1–24
    [Google Scholar]
  16. 16. 
    Ceres P, Zlotnick A. 2002. Weak protein–protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41:3911525–31
    [Google Scholar]
  17. 17. 
    Wang JC, Nickens DG, Lentz TB, Loeb DD, Zlotnick A 2014. Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. PNAS 111:3111329–34
    [Google Scholar]
  18. 18. 
    Dhason MS, Wang JC, Hagan MF, Zlotnick A 2012. Differential assembly of hepatitis B virus core protein on single- and double-stranded nucleic acid suggest the dsDNA-filled core is spring-loaded. Virology 430:120–29
    [Google Scholar]
  19. 19. 
    Hadden JA, Perilla JR, Schlicksup CJ, Venkatakrishnan B, Zlotnick A, Schulten K 2018. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. eLife 7:e32478
    [Google Scholar]
  20. 20. 
    Machida A, Kishimoto S, Ohnuma H, Baba K, Ito Y et al. 1984. A polypeptide containing 55 amino acid residues coded by the pre-S region of hepatitis B virus deoxyribonucleic acid bears the receptor for polymerized human as well as chimpanzee albumins. Gastroenterology 86:5 Part 1910–18
    [Google Scholar]
  21. 21. 
    Stibbe W, Gerlich WH. 1983. Structural relationships between minor and major proteins of hepatitis B surface antigen. J. Virol. 46:2626–28
    [Google Scholar]
  22. 22. 
    Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH 1984. Large surface proteins of hepatitis B virus containing the pre-s sequence. J. Virol. 52:2396–402
    [Google Scholar]
  23. 23. 
    Pasek M, Goto T, Gilbert W, Zink B, Schaller H et al. 1979. Hepatitis B virus genes and their expression in E. coli. . Nature 282:5739575–79
    [Google Scholar]
  24. 24. 
    Galibert F, Mandart E, Fitoussi F, Tiollais P, Charnay P 1979. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. . Nature 281:5733646–50
    [Google Scholar]
  25. 25. 
    Mandart E, Kay A, Galibert F 1984. Nucleotide sequence of a cloned duck hepatitis B virus genome: comparison with woodchuck and human hepatitis B virus sequences. J. Virol. 49:3782–92
    [Google Scholar]
  26. 26. 
    Hahn CM, Iwanowicz LR, Cornman RS, Conway CM, Winton JR, Blazer VS 2015. Characterization of a novel hepadnavirus in the white sucker (Catostomus commersonii) from the Great Lakes region of the United States. J. Virol. 89:2311801–11
    [Google Scholar]
  27. 27. 
    Lee MK, Kim KL, Hahm KS, Yang KH 1994. Structure-antigenicity relationship of peptides from the pre-S2 region of the hepatitis B virus surface antigen. Biochem. Mol. Biol. Int. 34:1159–68
    [Google Scholar]
  28. 28. 
    Maeng CY, Oh MS, Park IH, Hong HJ 2001. Purification and structural analysis of the hepatitis B virus preS1 expressed from Escherichia coli. Biochem. Biophys. Res. Commun 282:3787–92
    [Google Scholar]
  29. 29. 
    Huovila AP, Eder AM, Fuller SD 1992. Hepatitis B surface antigen assembles in a post-ER, pre-Golgi compartment. J. Cell Biol. 118:61305–20
    [Google Scholar]
  30. 30. 
    Mangold CM, Streeck RE. 1993. Mutational analysis of the cysteine residues in the hepatitis B virus small envelope protein. J. Virol. 67:84588–97
    [Google Scholar]
  31. 31. 
    Wunderlich G, Bruss V. 1996. Characterization of early hepatitis B virus surface protein oligomers. Arch. Virol. 141:71191–205
    [Google Scholar]
  32. 32. 
    Suffner S, Gerstenberg N, Patra M, Ruibal P, Orabi A et al. 2018. Domains of the hepatitis B virus small surface protein S mediating oligomerization. J. Virol. 92:11e02232-17
    [Google Scholar]
  33. 33. 
    Peterson DL. 1981. Isolation and characterization of the major protein and glycoprotein of hepatitis B surface antigen. J. Biol. Chem. 256:136975–83
    [Google Scholar]
  34. 34. 
    Peterson DL, Nath N, Gavilanes F 1982. Structure of hepatitis B surface antigen. Correlation of subtype with amino acid sequence and location of the carbohydrate moiety. J. Biol. Chem. 257:1710414–20
    [Google Scholar]
  35. 35. 
    Peterson DL, Roberts IM, Vyas GN 1977. Partial amino acid sequence of two major component polypeptides of hepatitis B surface antigen. PNAS 74:41530–34
    [Google Scholar]
  36. 36. 
    Stibbe W, Gerlich WH. 1983. Characterization of pre-s gene products in hepatitis B surface antigen. Dev. Biol. Stand. 54:33–43
    [Google Scholar]
  37. 37. 
    Persing DH, Varmus HE, Ganem D 1987. The preS1 protein of hepatitis B virus is acylated at its amino terminus with myristic acid. J. Virol. 61:51672–77
    [Google Scholar]
  38. 38. 
    Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C 1995. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 213:2292–99
    [Google Scholar]
  39. 39. 
    Bruss V, Hagelstein J, Gerhardt E, Galle PR 1996. Myristylation of the large surface protein is required for hepatitis B virus in vitro infectivity. Virology 218:2396–99
    [Google Scholar]
  40. 40. 
    Bruss V, Ganem D. 1991. The role of envelope proteins in hepatitis B virus assembly. PNAS 88:31059–63
    [Google Scholar]
  41. 41. 
    Wang Q, Qin Y, Zhang J, Jia L, Fu S et al. 2020. Tracing the evolutionary history of hepadnaviruses in terms of e antigen and middle envelope protein expression or processing. Virus Res 276:197825
    [Google Scholar]
  42. 42. 
    Williamson MP. 1994. The structure and function of proline-rich regions in proteins. Biochem. J. 297:2249–60
    [Google Scholar]
  43. 43. 
    Tompa P. 2003. Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25:9847–55
    [Google Scholar]
  44. 44. 
    Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P et al. 2013. The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins 1:1e24360
    [Google Scholar]
  45. 45. 
    Gitlin L, Hagai T, LaBarbera A, Solovey M, Andino R 2014. Rapid evolution of virus sequences in intrinsically disordered protein regions. PLOS Pathog 10:12e1004529
    [Google Scholar]
  46. 46. 
    Pavesi A, Magiorkinis G, Karlin DG 2013. Viral proteins originated de novo by overprinting can be identified by codon usage: application to the “gene nursery” of Deltaretroviruses. PLOS Comput. Biol. 9:8e1003162
    [Google Scholar]
  47. 47. 
    Rancurel C, Khosravi M, Dunker AK, Romero PR, Karlin D 2009. Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. J. Virol. 83:2010719–36
    [Google Scholar]
  48. 48. 
    Sabath N, Wagner A, Karlin D 2012. Evolution of viral proteins originated de novo by overprinting. Mol. Biol. Evol. 29:123767–80
    [Google Scholar]
  49. 49. 
    Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L et al. 2014. Structural disorder in viral proteins. Chem. Rev. 114:136880–911
    [Google Scholar]
  50. 50. 
    Chi SW, Kim DH, Lee SH, Chang I, Han KH 2007. Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci 16:102108–17
    [Google Scholar]
  51. 51. 
    Lee SH, Kim DH, Han JJ, Cha EJ, Lim JE et al. 2012. Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins. Curr. Protein Pept. Sci. 13:134–54
    [Google Scholar]
  52. 52. 
    Neurath AR, Kent SB, Strick N, Parker K 1986. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 46:3429–36
    [Google Scholar]
  53. 53. 
    Neurath AR, Seto B, Strick N 1989. Antibodies to synthetic peptides from the preS1 region of the hepatitis B virus (HBV) envelope (env) protein are virus-neutralizing and protective. Vaccine 7:3234–36
    [Google Scholar]
  54. 54. 
    Pontisso P, Ruvoletto MG, Gerlich WH, Heermann KH, Bardini R, Alberti A 1989. Identification of an attachment site for human liver plasma membranes on hepatitis B virus particles. Virology 173:2522–30
    [Google Scholar]
  55. 55. 
    Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P 1999. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J. Virol. 73:32052–57
    [Google Scholar]
  56. 56. 
    Urban S, Bartenschlager R, Kubitz R, Zoulim F 2014. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 147:148–64
    [Google Scholar]
  57. 57. 
    Tu T, Urban S. 2018. Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr. Opin. Virol. 30:68–79
    [Google Scholar]
  58. 58. 
    Yan H, Zhong G, Xu G, He W, Jing Z et al. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 3:e00049
    [Google Scholar]
  59. 59. 
    Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C et al. 2014. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146:41070–83
    [Google Scholar]
  60. 60. 
    Li W, Urban S. 2016. Entry of hepatitis B and hepatitis D virus into hepatocytes: basic insights and clinical implications. J. Hepatol. 64:1 Suppl.S32–32
    [Google Scholar]
  61. 61. 
    Gripon P, Cannie I, Urban S 2005. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J. Virol. 79:31613–22
    [Google Scholar]
  62. 62. 
    Petersen J, Dandri M, Mier W, Lutgehetmann M, Volz T et al. 2008. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 26:3335–41
    [Google Scholar]
  63. 63. 
    Schulze A, Schieck A, Ni Y, Mier W, Urban S 2010. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J. Virol. 84:41989–2000
    [Google Scholar]
  64. 64. 
    Bogomolov P, Alexandrov A, Voronkova N, Macievich M, Kokina K et al. 2016. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: first results of a phase Ib/IIa study. J. Hepatol. 65:3490–98
    [Google Scholar]
  65. 65. 
    Löffler-Mary H, Werr M, Prange R 1997. Sequence-specific repression of cotranslational translocation of the hepatitis B virus envelope proteins coincides with binding of heat shock protein Hsc70. Virology 235:1144–52
    [Google Scholar]
  66. 66. 
    Prange R, Werr M, Löffler-Mary H 1999. Chaperones involved in hepatitis B virus morphogenesis. Biol. Chem. 380:3305–14
    [Google Scholar]
  67. 67. 
    Lambert C, Prange R. 2003. Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. PNAS 100:95199–204
    [Google Scholar]
  68. 68. 
    Bruss V. 1997. A short linear sequence in the pre-S domain of the large hepatitis B virus envelope protein required for virion formation. J. Virol. 71:129350–57
    [Google Scholar]
  69. 69. 
    Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P 1998. Role of the pre-S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J. Virol. 72:75573–78
    [Google Scholar]
  70. 70. 
    Lepere C, Regeard M, Le Seyec J, Gripon P 2007. The translocation motif of hepatitis B virus envelope proteins is dispensable for infectivity. J. Virol. 81:147816–18
    [Google Scholar]
  71. 71. 
    Kluge B, Schlager M, Pairan A, Bruss V 2005. Determination of the minimal distance between the matrix and transmembrane domains of the large hepatitis B virus envelope protein. J. Virol. 79:127918–21
    [Google Scholar]
  72. 72. 
    Ni Y, Sonnabend J, Seitz S, Urban S 2010. The pre-s2 domain of the hepatitis B virus is dispensable for infectivity but serves a spacer function for L-protein-connected virus assembly. J. Virol. 84:83879–88
    [Google Scholar]
  73. 73. 
    Fernholz D, Stemler M, Brunetto M, Bonino F, Will H 1991. Replicating and virion secreting hepatitis B mutant virus unable to produce preS2 protein. J. Hepatol. 13:Suppl. 4S102–S104
    [Google Scholar]
  74. 74. 
    Santantonio T, Jung MC, Schneider R, Fernholz D, Milella M et al. 1992. Hepatitis B virus genomes that cannot synthesize pre-S2 proteins occur frequently and as dominant virus populations in chronic carriers in Italy. Virology 188:2948–52
    [Google Scholar]
  75. 75. 
    Fernholz D, Galle PR, Stemler M, Brunetto M, Bonino F, Will H 1993. Infectious hepatitis B virus variant defective in pre-S2 protein expression in a chronic carrier. Virology 194:1137–48
    [Google Scholar]
  76. 76. 
    Gavilanes F, Gonzalez-Ros JM, Peterson DL 1982. Structure of hepatitis B surface antigen. Characterization of the lipid components and their association with the viral proteins. J. Biol. Chem. 257:137770–77
    [Google Scholar]
  77. 77. 
    Liu CC, Yansura D, Levinson AD 1982. Direct expression of hepatitis B surface antigen in monkey cells from an SV40 vector. DNA 1:3213–21
    [Google Scholar]
  78. 78. 
    Peterson DL. 1987. The structure of hepatitis B surface antigen and its antigenic sites. Bioessays 6:6258–62
    [Google Scholar]
  79. 79. 
    Simon K, Lingappa VR, Ganem D 1988. Secreted hepatitis B surface antigen polypeptides are derived from a transmembrane precursor. J. Cell Biol. 107:6 Part 12163–68
    [Google Scholar]
  80. 80. 
    Huzair F, Sturdy S. 2017. Biotechnology and the transformation of vaccine innovation: the case of the hepatitis B vaccines 1968–2000. Stud. Hist. Philos. Biol. Biomed. Sci. 64:11–21
    [Google Scholar]
  81. 81. 
    Cheng KC, Smith GL, Moss B 1986. Hepatitis B virus large surface protein is not secreted but is immunogenic when selectively expressed by recombinant vaccinia virus. J. Virol. 60:2337–44
    [Google Scholar]
  82. 82. 
    Chisari FV, Filippi P, McLachlan A, Milich DR, Riggs M et al. 1986. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J. Virol. 60:3880–87
    [Google Scholar]
  83. 83. 
    Persing DH, Varmus HE, Ganem D 1986. Inhibition of secretion of hepatitis B surface antigen by a related presurface polypeptide. Science 234:47821388–91
    [Google Scholar]
  84. 84. 
    Standring DN, Ou JH, Rutter WJ 1986. Assembly of viral particles in Xenopus oocytes: pre-surface-antigens regulate secretion of the hepatitis B viral surface envelope particle. PNAS 83:249338–42
    [Google Scholar]
  85. 85. 
    Ou JH, Rutter WJ. 1987. Regulation of secretion of the hepatitis B virus major surface antigen by the preS-1 protein. J. Virol. 61:3782–86
    [Google Scholar]
  86. 86. 
    Kuroki K, Russnak R, Ganem D 1989. Novel N-terminal amino acid sequence required for retention of a hepatitis B virus glycoprotein in the endoplasmic reticulum. Mol. Cell Biol. 9:104459–66
    [Google Scholar]
  87. 87. 
    Ueda K, Tsurimoto T, Matsubara K 1991. Three envelope proteins of hepatitis B virus: large S, middle S, and major S proteins needed for the formation of Dane particles. J. Virol. 65:73521–29
    [Google Scholar]
  88. 88. 
    Seitz S, Iancu C, Volz T, Mier W, Dandri M et al. 2016. A slow maturation process renders hepatitis B virus infectious. Cell Host Microbe 20:125–35
    [Google Scholar]
  89. 89. 
    Eble BE, Lingappa VR, Ganem D 1986. Hepatitis B surface antigen: an unusual secreted protein initially synthesized as a transmembrane polypeptide. Mol. Cell Biol. 6:51454–63
    [Google Scholar]
  90. 90. 
    Eble BE, Macrae DR, Lingappa VR, Ganem D 1987. Multiple topogenic sequences determine the transmembrane orientation of the hepatitis B surface antigen. Mol. Cell Biol. 7:103591–601
    [Google Scholar]
  91. 91. 
    Eble BE, Lingappa VR, Ganem D 1990. The N-terminal (pre-S2) domain of a hepatitis B virus surface glycoprotein is translocated across membranes by downstream signal sequences. J. Virol. 64:31414–19
    [Google Scholar]
  92. 92. 
    Jones DT. 2007. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:5538–44
    [Google Scholar]
  93. 93. 
    Reddy A, Cho J, Ling S, Reddy V, Shlykov M, Saier MH 2014. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins. J. Mol. Microbiol. Biotechnol. 24:3161–90
    [Google Scholar]
  94. 94. 
    Reeb J, Kloppmann E, Bernhofer M, Rost B 2015. Evaluation of transmembrane helix predictions in 2014. Proteins 83:3473–84
    [Google Scholar]
  95. 95. 
    Prange R, Streeck RE. 1995. Novel transmembrane topology of the hepatitis B virus envelope proteins. EMBO J 14:2247–56
    [Google Scholar]
  96. 96. 
    Kuroki K, Floreani M, Mimms LT, Ganem D 1990. Epitope mapping of the PreS1 domain of the hepatitis B virus large surface protein. Virology 176:2620–24
    [Google Scholar]
  97. 97. 
    Mimms LT, Floreani M, Tyner J, Whitters E, Rosenlof R et al. 1990. Discrimination of hepatitis B virus (HBV) subtypes using monoclonal antibodies to the PreS1 and PreS2 domains of the viral envelope. Virology 176:2604–19
    [Google Scholar]
  98. 98. 
    Sominskaya I, Pushko P, Dreilina D, Kozlovskaya T, Pumpen P 1992. Determination of the minimal length of preS1 epitope recognized by a monoclonal antibody which inhibits attachment of hepatitis B virus to hepatocytes. Med. Microbiol. Immunol. 181:4215–26
    [Google Scholar]
  99. 99. 
    Budkowska A, Dubreuil P, Capel F, Pillot J 1986. Hepatitis B virus pre-S gene-encoded antigenic specificity and anti-pre-S antibody: relationship between anti-pre-S response and recovery. Hepatology 6:3360–68
    [Google Scholar]
  100. 100. 
    Budkowska A, Dubreuil P, Maillard P, Poynard T, Pillot J 1990. A biphasic pattern of anti-pre-S responses in acute hepatitis B virus infection. Hepatology 12:61271–77
    [Google Scholar]
  101. 101. 
    Budkowska A, Dubreuil P, Poynard T, Marcellin P, Loriot MA et al. 1992. Anti-pre-S responses and viral clearance in chronic hepatitis B virus infection. Hepatology 15:126–31
    [Google Scholar]
  102. 102. 
    Deepen R, Heermann KH, Uy A, Thomssen R, Gerlich WH 1990. Assay of preS epitopes and preS1 antibody in hepatitis B virus carriers and immune persons. Med. Microbiol. Immunol. 179:149–60
    [Google Scholar]
  103. 103. 
    Bruss V, Ganem D. 1991. Mutational analysis of hepatitis B surface antigen particle assembly and secretion. J. Virol. 65:73813–20
    [Google Scholar]
  104. 104. 
    Bruss V, Thomssen R. 1994. Mapping a region of the large envelope protein required for hepatitis B virion maturation. J. Virol. 68:31643–50
    [Google Scholar]
  105. 105. 
    Ostapchuk P, Hearing P, Ganem D 1994. A dramatic shift in the transmembrane topology of a viral envelope glycoprotein accompanies hepatitis B viral morphogenesis. EMBO J 13:51048–57
    [Google Scholar]
  106. 106. 
    Bruss V, Lu X, Thomssen R, Gerlich WH 1994. Post-translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J 13:102273–79
    [Google Scholar]
  107. 107. 
    Prange R. 2012. Host factors involved in hepatitis B virus maturation, assembly, and egress. Med. Microbiol. Immunol. 201:4449–61
    [Google Scholar]
  108. 108. 
    Lambert C, Prange R. 2001. Dual topology of the hepatitis B virus large envelope protein: determinants influencing post-translational pre-S translocation. J. Biol. Chem. 276:2522265–72
    [Google Scholar]
  109. 109. 
    Lambert C, Mann S, Prange R 2004. Assessment of determinants affecting the dual topology of hepadnaviral large envelope proteins. J. Gen. Virol. 85:Part 51221–25
    [Google Scholar]
  110. 110. 
    Schultz U, Grgacic E, Nassal M 2004. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv. Virus Res. 63:1–70
    [Google Scholar]
  111. 111. 
    Klingmuller U, Schaller H. 1993. Hepadnavirus infection requires interaction between the viral pre-S domain and a specific hepatocellular receptor. J. Virol. 67:127414–22
    [Google Scholar]
  112. 112. 
    Yuasa S, Cheung RC, Pham Q, Robinson WS, Marion PL 1991. Peptide mapping of neutralizing and nonneutralizing epitopes of duck hepatitis B virus pre-S polypeptide. Virology 181:114–21
    [Google Scholar]
  113. 113. 
    Urban S, Breiner KM, Fehler F, Klingmuller U, Schaller H 1998. Avian hepatitis B virus infection is initiated by the interaction of a distinct pre-S subdomain with the cellular receptor gp180. J. Virol. 72:108089–97
    [Google Scholar]
  114. 114. 
    Glebe D, Urban S. 2007. Viral and cellular determinants involved in hepadnaviral entry. World J. Gastroenterol. 13:122–38
    [Google Scholar]
  115. 115. 
    Guo JT, Pugh JC. 1997. Topology of the large envelope protein of duck hepatitis B virus suggests a mechanism for membrane translocation during particle morphogenesis. J. Virol. 71:21107–14
    [Google Scholar]
  116. 116. 
    Swameye I, Schaller H. 1997. Dual topology of the large envelope protein of duck hepatitis B virus: determinants preventing pre-S translocation and glycosylation. J. Virol. 71:129434–41
    [Google Scholar]
  117. 117. 
    Grgacic EV, Kuhn C, Schaller H 2000. Hepadnavirus envelope topology: insertion of a loop region in the membrane and role of S in L protein translocation. J. Virol. 74:52455–58
    [Google Scholar]
  118. 118. 
    Grgacic EV, Anderson DA. 2005. St, a truncated envelope protein derived from the S protein of duck hepatitis B virus, acts as a chaperone for the folding of the large envelope protein. J. Virol. 79:95346–52
    [Google Scholar]
  119. 119. 
    Grgacic EV, Schaller H. 2000. A metastable form of the large envelope protein of duck hepatitis B virus: low-pH release results in a transition to a hydrophobic, potentially fusogenic conformation. J. Virol. 74:115116–22
    [Google Scholar]
  120. 120. 
    Breiner KM, Urban S, Schaller H 1998. Carboxypeptidase D (gp180), a Golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses. J. Virol. 72:108098–104
    [Google Scholar]
  121. 121. 
    Breiner KM, Schaller H. 2000. Cellular receptor traffic is essential for productive duck hepatitis B virus infection. J. Virol. 74:52203–9
    [Google Scholar]
  122. 122. 
    Chojnacki J, Anderson DA, Grgacic EV 2005. A hydrophobic domain in the large envelope protein is essential for fusion of duck hepatitis B virus at the late endosome. J. Virol. 79:2314945–55
    [Google Scholar]
  123. 123. 
    Lepere-Douard C, Trotard M, Le Seyec J, Gripon P 2009. The first transmembrane domain of the hepatitis B virus large envelope protein is crucial for infectivity. J. Virol. 83:2211819–29
    [Google Scholar]
  124. 124. 
    Lu X, Block TM, Gerlich WH 1996. Protease-induced infectivity of hepatitis B virus for a human hepatoblastoma cell line. J. Virol. 70:42277–85
    [Google Scholar]
  125. 125. 
    Rodriguez-Crespo I, Nunez E, Gomez-Gutierrez J, Yelamos B, Albar JP et al. 1995. Phospholipid interactions of the putative fusion peptide of hepatitis B virus surface antigen S protein. J. Gen. Virol. 76:2301–8
    [Google Scholar]
  126. 126. 
    Rodriguez-Crespo I, Nunez E, Yelamos B, Gomez-Gutierrez J, Albar JP et al. 1999. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site. Virology 261:1133–42
    [Google Scholar]
  127. 127. 
    Poisson F, Severac A, Hourioux C, Goudeau A, Roingeard P 1997. Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle. Virology 228:1115–20
    [Google Scholar]
  128. 128. 
    Löffler-Mary H, Dumortier J, Klentsch-Zimmer C, Prange R 2000. Hepatitis B virus assembly is sensitive to changes in the cytosolic S loop of the envelope proteins. Virology 270:2358–67
    [Google Scholar]
  129. 129. 
    Bruss V, Vieluf K. 1995. Functions of the internal pre-S domain of the large surface protein in hepatitis B virus particle morphogenesis. J. Virol. 69:116652–57
    [Google Scholar]
  130. 130. 
    Schittl B, Bruss V. 2014. Mutational profiling of the variability of individual amino acid positions in the hepatitis B virus matrix domain. Virology 458:183–89
    [Google Scholar]
  131. 131. 
    Koschel M, Oed D, Gerelsaikhan T, Thomssen R, Bruss V 2000. Hepatitis B virus core gene mutations which block nucleocapsid envelopment. J. Virol. 74:11–7
    [Google Scholar]
  132. 132. 
    Ponsel D, Bruss V. 2003. Mapping of amino acid side chains on the surface of hepatitis B virus capsids required for envelopment and virion formation. J. Virol. 77:1416–22
    [Google Scholar]
  133. 133. 
    Pairan A, Bruss V. 2009. Functional surfaces of the hepatitis B virus capsid. J. Virol. 83:2211616–23
    [Google Scholar]
  134. 134. 
    Dyson MR, Murray K. 1995. Selection of peptide inhibitors of interactions involved in complex protein assemblies: association of the core and surface antigens of hepatitis B virus. PNAS 92:62194–98
    [Google Scholar]
  135. 135. 
    Böttcher B, Tsuji N, Takahashi H, Dyson MR, Zhao S et al. 1998. Peptides that block hepatitis B virus assembly: analysis by cryomicroscopy, mutagenesis and transfection. EMBO J 17:236839–45
    [Google Scholar]
  136. 136. 
    Tan WS, Dyson MR, Murray K 1999. Two distinct segments of the hepatitis B virus surface antigen contribute synergistically to its association with the viral core particles. J. Mol. Biol. 286:3797–808
    [Google Scholar]
  137. 137. 
    Tan WS. 2002. Inhibition of hepatitis B virus assembly with synthetic peptides derived from the viral surface and core antigens. J. Gen. Appl. Microbiol. 48:2103–7
    [Google Scholar]
  138. 138. 
    Pastor F, Herrscher C, Patient R, Eymieux S, Moreau A et al. 2019. Direct interaction between the hepatitis B virus core and envelope proteins analyzed in a cellular context. Sci. Rep. 9:116178
    [Google Scholar]
  139. 139. 
    Summers J, Mason WS. 1982. Replication of the genome of a hepatitis B–like virus by reverse transcription of an RNA intermediate. Cell 29:2403–15
    [Google Scholar]
  140. 140. 
    Scotto J, Hadchouel M, Wain-Hobson S, Sonigo P, Courouce AM et al. 1985. Hepatitis B virus DNA in Dane particles: evidence for the presence of replicative intermediates. J. Infect. Dis. 151:4610–17
    [Google Scholar]
  141. 141. 
    Gerelsaikhan T, Tavis JE, Bruss V 1996. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J. Virol. 70:74269–74
    [Google Scholar]
  142. 142. 
    Yuan TT, Sahu GK, Whitehead WE, Greenberg R, Shih C 1999. The mechanism of an immature secretion phenotype of a highly frequent naturally occurring missense mutation at codon 97 of human hepatitis B virus core antigen. J. Virol. 73:75731–40
    [Google Scholar]
  143. 143. 
    Yuan TT, Tai PC, Shih C 1999. Subtype-independent immature secretion and subtype-dependent replication deficiency of a highly frequent, naturally occurring mutation of human hepatitis B virus core antigen. J. Virol. 73:1210122–28
    [Google Scholar]
  144. 144. 
    Yuan TT, Shih C. 2000. A frequent, naturally occurring mutation (P130T) of human hepatitis B virus core antigen is compensatory for immature secretion phenotype of another frequent variant (I97L). J. Virol. 74:104929–32
    [Google Scholar]
  145. 145. 
    Le Pogam S, Shih C 2002. Influence of a putative intermolecular interaction between core and the pre-S1 domain of the large envelope protein on hepatitis B virus secretion. J. Virol. 76:136510–17
    [Google Scholar]
  146. 146. 
    Wu SY, Chang YS, Chu TH, Shih C 2019. Persistence of hepatitis B virus DNA and the tempos between virion secretion and genome maturation in a mouse model. J. Virol. 93:22e01001-19
    [Google Scholar]
  147. 147. 
    Böttcher B, Nassal M. 2018. Structure of mutant hepatitis B core protein capsids with premature secretion phenotype. J. Mol. Biol. 430:244941–54
    [Google Scholar]
  148. 148. 
    Nassal M. 1992. The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J. Virol. 66:74107–16
    [Google Scholar]
  149. 149. 
    Schormann W, Kraft A, Ponsel D, Bruss V 2006. Hepatitis B virus particle formation in the absence of pregenomic RNA and reverse transcriptase. J. Virol. 80:84187–90
    [Google Scholar]
  150. 150. 
    Ning X, Nguyen D, Mentzer L, Adams C, Lee H et al. 2011. Secretion of genome-free hepatitis B virus—single strand blocking model for virion morphogenesis of para-retrovirus. PLOS Pathog 7:9e1002255
    [Google Scholar]
  151. 151. 
    Luckenbaugh L, Kitrinos KM, Delaney WE, Hu J 2015. Genome-free hepatitis B virion levels in patient sera as a potential marker to monitor response to antiviral therapy. J. Viral Hepat. 22:6561–70
    [Google Scholar]
  152. 152. 
    Ning X, Basagoudanavar SH, Liu K, Luckenbaugh L, Wei D et al. 2017. Capsid phosphorylation state and hepadnavirus virion secretion. J. Virol. 91:9e00092-17
    [Google Scholar]
  153. 153. 
    Hu J, Liu K. 2017. Complete and incomplete hepatitis B virus particles: formation, function, and application. Viruses 9:356
    [Google Scholar]
  154. 154. 
    Ning X, Luckenbaugh L, Liu K, Bruss V, Sureau C, Hu J 2018. Common and distinct capsid and surface protein requirements for secretion of complete and genome-free hepatitis B virions. J. Virol. 92:14e00272-18
    [Google Scholar]
  155. 155. 
    Gerin JL, Ford EC, Purcell RH 1975. Biochemical characterization of Australia antigen. Evidence for defective particles of hepatitis B virus. Am. J. Pathol. 81:3651–68
    [Google Scholar]
  156. 156. 
    Kaplan PM, Ford EC, Purcell RH, Gerin JL 1976. Demonstration of subpopulations of Dane particles. J. Virol. 17:3885–93
    [Google Scholar]
  157. 157. 
    Alberti A, Diana S, Scullard GH, Eddleston WF, Williams R 1978. Full and empty Dane particles in chronic hepatitis B virus infection: relation to hepatitis B e antigen and presence of liver damage. Gastroenterology 75:5869–74
    [Google Scholar]
  158. 158. 
    Sakamoto Y, Yamada G, Mizuno M, Nishihara T, Kinoyama S et al. 1983. Full and empty particles of hepatitis B virus in hepatocytes from patients with HBsAg-positive chronic active hepatitis. Lab. Invest. 48:6678–82
    [Google Scholar]
  159. 159. 
    Takahashi T, Kaga K, Akahane Y, Yamashita T, Miyakawa Y, Mayumi M 1980. Isolation of Dane particles containing a DNA strand by metrizamide density gradient. J. Med. Microbiol. 13:1163–66
    [Google Scholar]
  160. 160. 
    Kimura T, Ohno N, Terada N, Rokuhara A, Matsumoto A et al. 2005. Hepatitis B virus DNA-negative Dane particles lack core protein but contain a 22-kDa precore protein without C-terminal arginine-rich domain. J. Biol. Chem. 280:2321713–19
    [Google Scholar]
  161. 161. 
    Garcia PD, Ou JH, Rutter WJ, Walter P 1988. Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: After signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. J. Cell Biol. 106:41093–104
    [Google Scholar]
  162. 162. 
    Ou JH, Yeh CT, Yen TS 1989. Transport of hepatitis B virus precore protein into the nucleus after cleavage of its signal peptide. J. Virol. 63:125238–43
    [Google Scholar]
  163. 163. 
    Guidotti LG, Matzke B, Pasquinelli C, Shoenberger JM, Rogler CE, Chisari FV 1996. The hepatitis B virus (HBV) precore protein inhibits HBV replication in transgenic mice. J. Virol. 70:107056–61
    [Google Scholar]
  164. 164. 
    Scaglioni PP, Melegari M, Wands JR 1997. Posttranscriptional regulation of hepatitis B virus replication by the precore protein. J. Virol. 71:1345–53
    [Google Scholar]
  165. 165. 
    Duriez M, Rossignol JM, Sitterlin D 2008. The hepatitis B virus precore protein is retrotransported from endoplasmic reticulum (ER) to cytosol through the ER-associated degradation pathway. J. Biol. Chem. 283:4732352–60
    [Google Scholar]
  166. 166. 
    DiMattia MA, Watts NR, Stahl SJ, Grimes JM, Steven AC et al. 2013. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure 21:1133–42
    [Google Scholar]
  167. 167. 
    Duriez M, Thouard A, Bressanelli S, Rossignol JM, Sitterlin D 2014. Conserved aromatic residues of the hepatitis B virus Precore propeptide are involved in a switch between distinct dimeric conformations and essential in the formation of heterocapsids. Virology 462:273–82
    [Google Scholar]
  168. 168. 
    Eren E, Watts NR, Dearborn AD, Palmer IW, Kaufman JD et al. 2018. Structures of hepatitis B virus core- and e-antigen immune complexes suggest multi-point inhibition. Structure 26:101314–26
    [Google Scholar]
  169. 169. 
    Watts NR, Palmer IW, Eren E, Steven AC, Wingfield PT 2020. Capsids of hepatitis B virus e antigen with authentic C termini are stabilized by electrostatic interactions. FEBS Lett 594:1052–61
    [Google Scholar]
  170. 170. 
    Tu T, Budzinska MA, Vondran FWR, Shackel NA, Urban S 2018. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via sodium taurocholate cotransporting polypeptide-dependent uptake of enveloped virus particles. J. Virol. 92:11e02007-17
    [Google Scholar]
  171. 171. 
    Budzinska MA, Shackel NA, Urban S, Tu T 2018. Cellular genomic sites of hepatitis B virus DNA integration. Genes 9:7E365
    [Google Scholar]
  172. 172. 
    Hallez C, Li X, Suspene R, Thiers V, Bouzidi MS et al. 2019. Hypoxia-induced human deoxyribonuclease I is a cellular restriction factor of hepatitis B virus. Nat. Microbiol. 4:71196–207
    [Google Scholar]
  173. 173. 
    Gilbert RJ, Beales L, Blond D, Simon MN, Lin BY et al. 2005. Hepatitis B small surface antigen particles are octahedral. PNAS 102:4114783–88
    [Google Scholar]
  174. 174. 
    Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M 2006. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell 22:6843–50
    [Google Scholar]
  175. 175. 
    Seitz S, Urban S, Antoni C, Bottcher B 2007. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J 26:184160–67
    [Google Scholar]
  176. 176. 
    Short JM, Chen S, Roseman AM, Butler PJ, Crowther RA 2009. Structure of hepatitis B surface antigen from subviral tubes determined by electron cryomicroscopy. J. Mol. Biol. 390:1135–41
    [Google Scholar]
  177. 177. 
    Cao J, Zhang J, Lu Y, Luo S, Zhang J, Zhu P 2019. Cryo-EM structure of native spherical subviral particles isolated from HBV carriers. Virus Res 259:90–96
    [Google Scholar]
  178. 178. 
    Satoh O, Imai H, Yoneyama T, Miyamura T, Utsumi H et al. 2000. Membrane structure of the hepatitis B virus surface antigen particle. J. Biochem. 127:4543–50
    [Google Scholar]
  179. 179. 
    Crowther RA. 2008. The Leeuwenhoek lecture 2006. Microscopy goes cold: Frozen viruses reveal their structural secrets. Philos. Trans. R. Soc. B 363:15022441–51
    [Google Scholar]
  180. 180. 
    Leistner CM, Gruen-Bernhard S, Glebe D 2008. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 10:1122–33
    [Google Scholar]
  181. 181. 
    Schulze A, Gripon P, Urban S 2007. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46:61759–68
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015508
Loading
/content/journals/10.1146/annurev-virology-092818-015508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error