1932

Abstract

Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses’ potential to emerge in crops.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015536
2019-09-29
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015536.html?itemId=/content/journals/10.1146/annurev-virology-092818-015536&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Roossinck MJ. 2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:99–108
    [Google Scholar]
  2. 2. 
    Fraile A, Garcia-Arenal F. 2016. Environment and evolution modulate plant virus pathogenesis. Curr. Opin. Virol. 17:50–56
    [Google Scholar]
  3. 3. 
    Nicaise V. 2014. Crop immunity against viruses: outcomes and future challenges. Front. Plant Sci. 5:660
    [Google Scholar]
  4. 4. 
    Sastry SK, Zitter TA. 2014. Management of virus and viroid diseases of crops in the tropics. Plant Virus and Viroid Diseases in the Tropics SK Sastry, TA Zitter 149–480 Dordrecht, Neth: Springer
    [Google Scholar]
  5. 5. 
    Woolhouse ME. 2002. Population biology of emerging and re-emerging pathogens. Trends Microbiol 10:S3–7
    [Google Scholar]
  6. 6. 
    Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44
    [Google Scholar]
  7. 7. 
    Dobson A, Foufopoulos J. 2001. Emerging infectious pathogens of wildlife. Philos. Trans. R. Soc. B Biol. Sci. 356:1001–12
    [Google Scholar]
  8. 8. 
    Taylor LH, Latham SM, Woolhouse ME 2001. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356:983–89
    [Google Scholar]
  9. 9. 
    Elena SF, Fraile A, Garcia-Arenal F 2014. Evolution and emergence of plant viruses. Adv. Virus Res. 88:161–91
    [Google Scholar]
  10. 10. 
    Bernardo P, Charles-Dominique T, Barakat M, Ortet P, Fernandez E et al. 2018. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J 12:173–84
    [Google Scholar]
  11. 11. 
    Thapa V, McGlinn DJ, Melcher U, Palmer MW, Roossinck MJ 2015. Determinants of taxonomic composition of plant viruses at the Nature Conservancy's Tallgrass Prairie Preserve, Oklahoma. Virus Evol 1:vev007
    [Google Scholar]
  12. 12. 
    Roossinck MJ. 2012. Plant virus metagenomics: biodiversity and ecology. Annu. Rev. Gen. 46:359–69
    [Google Scholar]
  13. 13. 
    Roossinck MJ. 2003. Plant RNA virus evolution. Curr. Opin. Microbiol. 6:406–9
    [Google Scholar]
  14. 14. 
    Alexander HM, Mauck KE, Whitfield AE, Garrett KA, Malmstrom CM 2014. Plant-virus interactions and the agro-ecological interface. Eur. J. Plant Pathol. 138:529–47
    [Google Scholar]
  15. 15. 
    Sattar MN, Kvarnheden A, Saeed M, Briddon RW 2013. Cotton leaf curl disease—an emerging threat to cotton production worldwide. J. Gen. Virol. 94:695–710
    [Google Scholar]
  16. 16. 
    Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S 2011. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49:219–48
    [Google Scholar]
  17. 17. 
    Moriones E, Praveen S, Chakraborty S 2017. Tomato leaf curl New Delhi virus: an emerging virus complex threatening vegetable and fiber crops. Viruses 9:264
    [Google Scholar]
  18. 18. 
    Gilbertson RL, Batuman O, Webster CG, Adkins S 2015. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2:67–93
    [Google Scholar]
  19. 19. 
    Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO et al. 2018. World management of geminiviruses. Annu. Rev. Phytopathol. 56:637–77
    [Google Scholar]
  20. 20. 
    Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E et al. 2017. ICTV virus taxonomy profile: Geminiviridae. J. Gen. Virol. 98:131–33
    [Google Scholar]
  21. 21. 
    Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S 2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 11:777–88
    [Google Scholar]
  22. 22. 
    Lefeuvre P, Moriones E. 2015. Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr. Opin. Virol. 10:14–19
    [Google Scholar]
  23. 23. 
    Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R 2010. Viral mutation rates. J. Virol. 84:9733–48
    [Google Scholar]
  24. 24. 
    Sanz AI, Fraile A, Gallego JM, Malpica JM, García-Arenal F 1999. Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. J. Mol. Evol. 49:672–81
    [Google Scholar]
  25. 25. 
    Harkins GW, Delport W, Duffy S, Wood N, Monjane AL et al. 2009. Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol. J. 6:104
    [Google Scholar]
  26. 26. 
    Duffy S, Shackelton LA, Holmes EC 2008. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9:267–76
    [Google Scholar]
  27. 27. 
    Ooi K, Ohshita S, Ishii I, Yahara T 1997. Molecular phylogeny of geminivirus infecting wild plants in Japan. J. Plant Res. 110:247–57
    [Google Scholar]
  28. 28. 
    Duffy S, Holmes EC. 2008. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J. Virol. 82:957–65
    [Google Scholar]
  29. 29. 
    Duffy S, Holmes EC. 2009. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90:1539–47
    [Google Scholar]
  30. 30. 
    Lefeuvre P, Harkins GW, Lett JM, Briddon RW, Chase MW et al. 2011. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLOS ONE 6:e19193
    [Google Scholar]
  31. 31. 
    Rodelo-Urrego M, Pagán I, González-Jara P, Betancourt M, Moreno-Letelier A et al. 2013. Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Mol. Ecol. 22:2325–40
    [Google Scholar]
  32. 32. 
    Xu C, Sun X, Taylor A, Jiao C, Xu Y et al. 2017. Diversity, distribution, and evolution of tomato viruses in China uncovered by small RNA sequencing. J. Virol. 91:e00173–17
    [Google Scholar]
  33. 33. 
    Sanjuán R. 2012. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses. PLOS Path 8:e1002685
    [Google Scholar]
  34. 34. 
    Padidam M, Sawyer S, Fauquet CM 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–24
    [Google Scholar]
  35. 35. 
    Briddon RW, Patil BL, Bagewadi B, Nawaz-ul-Rehman MS, Fauquet CM 2010. Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol. Biol. 10:97
    [Google Scholar]
  36. 36. 
    Jeske H, Lutgemeier M, Preiss W 2001. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20:6158–67
    [Google Scholar]
  37. 37. 
    Martin DP, Lefeuvre P, Varsani A, Hoareau M, Semegni JY et al. 2011. Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. PLOS Path 7:e1002203
    [Google Scholar]
  38. 38. 
    Lefeuvre P, Lett JM, Reynaud B, Martin DP 2007. Avoidance of protein fold disruption in natural virus recombinants. PLOS Path 3:e181
    [Google Scholar]
  39. 39. 
    Martin DP, van der Walt E, Posada D, Rybicki EP 2005. The evolutionary value of recombination is constrained by genome modularity. PLOS Genet 1:e51
    [Google Scholar]
  40. 40. 
    Monjane AL, Martin DP, Lakay F, Muhire BM, Pande D et al. 2014. Extensive recombination-induced disruption of genetic interactions is highly deleterious but can be partially reversed by small numbers of secondary recombination events. J. Virol. 88:7843–51
    [Google Scholar]
  41. 41. 
    Sanz AI, Fraile A, García-Arenal F, Zhou X, Robinson DJ et al. 2000. Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. J. Gen. Virol. 81:1839–49
    [Google Scholar]
  42. 42. 
    Zhou X, Liu Y, Calvert L, Munoz C, Otim-Nape GW et al. 1997. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78:2101–11
    [Google Scholar]
  43. 43. 
    Zhou X, Liu Y, Robinson DJ, Harrison BD 1998. Four DNA-A variants among Pakistani isolates of cotton leaf curl virus and their affinities to DNA-A of geminivirus isolates from okra. J. Gen. Virol. 79:915–23
    [Google Scholar]
  44. 44. 
    Lima ATM, Sobrinho RR, Gonzalez-Aguilera J, Rocha CS, Silva SJC et al. 2013. Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J. Gen. Virol. 94:418–31
    [Google Scholar]
  45. 45. 
    Silva SJC, Castillo-Urquiza GP, Hora-Júnior BT, Assunção IP, Lima GSA et al. 2011. High genetic variability and recombination in a begomovirus population infecting the ubiquitous weed Cleome affinis in northeastern Brazil. Arch. Virol. 156:2205–13
    [Google Scholar]
  46. 46. 
    Silva SJC, Castillo-Urquiza GP, Hora-Junior BT, Assunção IP, Lima GSA et al. 2012. Species diversity, phylogeny and genetic variability of begomovirus populations infecting leguminous weeds in northeastern Brazil. Plant Pathol 61:457–67
    [Google Scholar]
  47. 47. 
    Rodelo-Urrego M, García-Arenal F, Pagán I 2015. The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: a study of chiltepin-infecting begomoviruses in Mexico. Virus Evol 1:vev004
    [Google Scholar]
  48. 48. 
    García-Andrés S, Monci F, Navas-Castillo J, Moriones E 2006. Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology 350:433–42
    [Google Scholar]
  49. 49. 
    Mar TB, Xavier CAD, Lima ATM, Nogueira AM, Silva JCF et al. 2017. Genetic variability and population structure of the New World begomovirus Euphorbia yellow mosaic virus. J. Gen. Virol. 98:1537–51
    [Google Scholar]
  50. 50. 
    Varsani A, Lefeuvre P, Roumagnac P, Martin D 2018. Notes on recombination and reassortment in multipartite/segmented viruses. Curr. Opin. Virol. 33:156–66
    [Google Scholar]
  51. 51. 
    Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwal S, Fauquet CM 2001. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82:655–65
    [Google Scholar]
  52. 52. 
    Silva FN, Lima ATM, Rocha CS, Castillo-Urquiza GP, Alves-Júnior M, Zerbini FM 2014. Recombination and pseudorecombination driving the evolution of the begomoviruses tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV): two recombinant DNA-A components sharing the same DNA-B. Virol. J. 11:66
    [Google Scholar]
  53. 53. 
    Monci F, Sanchez-Campos S, Navas-Castillo J, Moriones E 2002. A natural recombinant between the geminiviruses tomato yellow leaf curl Sardinia virus and tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303:317–26
    [Google Scholar]
  54. 54. 
    Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF et al. 2017. The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol 3:vex005
    [Google Scholar]
  55. 55. 
    Sánchez-Campos S, Diaz JA, Monci F, Bejarano ER, Reina J et al. 2002. High genetic stability of the begomovirus tomato yellow leaf curl Sardinia virus in southern Spain over an 8-year period. Phytopathology 92:842–49
    [Google Scholar]
  56. 56. 
    Rocha CS, Castillo-Urquiza GP, Lima ATM, Silva FN, Xavier CAD et al. 2013. Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J. Virol. 87:5784–99
    [Google Scholar]
  57. 57. 
    Jones RAC. 2009. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–30
    [Google Scholar]
  58. 58. 
    Jones RAC. 2018. Plant and insect viruses in managed and natural environments: novel and neglected transmission pathways. Adv. Virus Res. 101:149–87
    [Google Scholar]
  59. 59. 
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D et al. 2008. Global trends in emerging infectious diseases. Nature 451:990–93
    [Google Scholar]
  60. 60. 
    Woolhouse MEJ, Gowtage-Sequeria S. 2005. Host range and emerging and reemerging pathogens. Emerg. Inf. Dis. 11:1843–47
    [Google Scholar]
  61. 61. 
    Burdon JJ, Chilvers GA. 1982. Host density as a factor in plant-disease ecology. Annu. Rev. Phytopathol. 20:143–66
    [Google Scholar]
  62. 62. 
    Stukenbrock EH, McDonald BA. 2008. The origin of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46:75–100
    [Google Scholar]
  63. 63. 
    Keesing F, Holt RD, Ostfeld RS 2006. Effects of species diversity on disease risk. Ecol. Lett. 9:485–98
    [Google Scholar]
  64. 64. 
    McLeish MJ, Fraile A, García-Arenal F 2019. Evolution of plant-virus interactions: host range and virus emergence. Curr. Opin. Virol. 34:50–55
    [Google Scholar]
  65. 65. 
    Mideo N, Alizon S, Day T 2008. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23:511–17
    [Google Scholar]
  66. 66. 
    Roossinck MJ, Saha P, Wiley GB, Quan J, White JD et al. 2010. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol. Ecol. 19:81–88
    [Google Scholar]
  67. 67. 
    Muthukumar V, Melcher U, Pierce M, Wiley GB, Roe BA et al. 2009. Non-cultivated plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate fractions. Virus Res 141:169–73
    [Google Scholar]
  68. 68. 
    Claverie S, Bernardo P, Kraberger S, Hartnady P, Lefeuvre P et al. 2018. From spatial metagenomics to molecular characterization of plant viruses: a geminivirus case study. Adv. Virus Res. 101:55–83
    [Google Scholar]
  69. 69. 
    Pagán I, González-Jara P, Moreno-Letelier A, Rodelo-Urrego M, Fraile A et al. 2012. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system. PLOS Path 8:e1002796
    [Google Scholar]
  70. 70. 
    Fraile A, McLeish MJ, Pagán I, Gonzalez-Jara P, Piñero D, García-Arenal F 2017. Environmental heterogeneity and the evolution of plant-virus interactions: viruses in wild pepper populations. Virus Res 241:68–76
    [Google Scholar]
  71. 71. 
    Morales FJ, Jones PG. 2004. The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res 100:57–65
    [Google Scholar]
  72. 72. 
    Polston JE, Anderson PK. 1997. The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis 81:1358–69
    [Google Scholar]
  73. 73. 
    Ribeiro SG, Ambrozevicius LP, Ávila AC, Bezerra IC, Calegario RF et al. 2003. Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Arch. Virol. 148:281–95
    [Google Scholar]
  74. 74. 
    Jacobson AL, Duffy S, Sseruwagi P 2018. Whitefly-transmitted viruses threatening cassava production in Africa. Curr. Opin. Virol. 33:167–76
    [Google Scholar]
  75. 75. 
    Carter SE, Fresco LO, Jones PG, Fairbairn JN 1993. Introduction and Diffusion of Cassava in Africa. Niger: Int. Inst. Trop. Agric.
  76. 76. 
    Legg JP, Lava Kumar P, Makeshkumar T, Tripathi L, Ferguson M et al. 2015. Cassava virus diseases: biology, epidemiology, and management. Adv. Virus Res. 91:85–142
    [Google Scholar]
  77. 77. 
    Fondong VN, Pita JS, Rey MEC, Kochko A, Beachy RN, Fauquet CM 2000. Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J. Gen. Virol. 81:287–97
    [Google Scholar]
  78. 78. 
    Vanitharani R, Chellappan P, Pita JS, Fauquet CM 2004. Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J. Virol. 78:9487–98
    [Google Scholar]
  79. 79. 
    Ndunguru J, Legg J, Aveling T, Thompson G, Fauquet C 2005. Molecular biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virol. J. 2:21
    [Google Scholar]
  80. 80. 
    Sserubombwe WS, Briddon RW, Baguma YK, Ssemakula GN, Bull SE et al. 2008. Diversity of begomoviruses associated with mosaic disease of cultivated cassava (Manihot esculenta Crantz) and its wild relative (Manihot glaziovii Müll. Arg.) in Uganda. J. Gen. Virol. 89:1759–69
    [Google Scholar]
  81. 81. 
    Bull SE, Briddon RW, Sserubombwe WS, Ngugi K, Markham PG, Stanley J 2006. Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. J. Gen. Virol. 87:3053–65
    [Google Scholar]
  82. 82. 
    Fauquet C, Fargette D. 1990. African cassava mosaic virus: etiology, epidemiology and control. Plant Dis 74:404–11
    [Google Scholar]
  83. 83. 
    Legg JP, French R, Rogan D, Okao-Okuja G, Brown JK 2002. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol. 11:1219–29
    [Google Scholar]
  84. 84. 
    Fondong VN, Chen KG. 2011. Genetic variability of East African cassava mosaic Cameroon virus under field and controlled environment conditions. Virology 413:275–82
    [Google Scholar]
  85. 85. 
    De Bruyn A, Harimalala M, Zinga I, Mabvakure BM, Hoareau M et al. 2016. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. 16:182
    [Google Scholar]
  86. 86. 
    Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJA et al. 2010. The spread of tomato yellow leaf curl virus from the Middle East to the world. PLOS Path 6:e1001164
    [Google Scholar]
  87. 87. 
    Mabvakure B, Martin DP, Kraberger S, Cloete L, van Brunschot S et al. 2016. Ongoing geographical spread of tomato yellow leaf curl virus. Virology 498:257–64
    [Google Scholar]
  88. 88. 
    Papayiannis LC, Katis NI, Idris AM, Brown JK 2011. Identification of weed hosts of tomato yellow leaf curl virus in Cyprus. Plant Dis 95:120–25
    [Google Scholar]
  89. 89. 
    Polston JE, Cohen L, Sherwood TA, Ben-Joseph R, Lapidot M 2006. Capsicum species: symptomless hosts and reservoirs of tomato yellow leaf curl virus. Phytopathology 96:447–52
    [Google Scholar]
  90. 90. 
    Salati R, Nahkla MK, Rojas MR, Guzman P, Jaquez J et al. 2002. Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92:487–96
    [Google Scholar]
  91. 91. 
    Davino S, Napoli C, Davino M, Accotto GP 2006. Spread of tomato yellow leaf curl virus in Sicily: partial displacement of another geminivirus originally present. Eur. J. Plant Pathol. 114:293–99
    [Google Scholar]
  92. 92. 
    Sánchez-Campos S, Navas-Castillo J, Camero R, Soria C, Díaz JA, Moriones E 1999. Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89:1038–43
    [Google Scholar]
  93. 93. 
    Moriones E, Navas-Castillo J. 2008. Rapid evolution of the population of begomoviruses associated with the tomato yellow leaf curl disease after invasion of a new ecological niche. Span. J. Agric. Res. 6:147–59
    [Google Scholar]
  94. 94. 
    García-Andrés S, Tomas DM, Navas-Castillo J, Moriones E 2009. Resistance-driven selection of begomoviruses associated with the tomato yellow leaf curl disease. Virus Res 146:66–72
    [Google Scholar]
  95. 95. 
    Ge LM, Zhang JT, Zhou XP, Li HY 2007. Genetic structure and population variability of tomato yellow leaf curl China virus. J. Virol. 81:5902–7
    [Google Scholar]
  96. 96. 
    Yang XL, Zhou MN, Qian YJ, Xie Y, Zhou XP 2014. Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China. J. Zhejiang Univ. Sci. B 15:133–42
    [Google Scholar]
  97. 97. 
    Belabess Z, Urbino C, Granier M, Tahiri A, Blenzar A, Peterschmitt M 2018. The typical RB76 recombination breakpoint of the invasive recombinant tomato yellow leaf curl virus of Morocco can be generated experimentally but is not positively selected in tomato. Virus Res 243:44–51
    [Google Scholar]
  98. 98. 
    Belabess Z, Dallot S, El-Montaser S, Granier M, Majde M et al. 2015. Monitoring the dynamics of emergence of a non-canonical recombinant of tomato yellow leaf curl virus and displacement of its parental viruses in tomato. Virology 486:291–306
    [Google Scholar]
  99. 99. 
    García-Andrés S, Tomas DM, Sanchez-Campos S, Navas-Castillo J, Moriones E 2007. Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology 365:210–19
    [Google Scholar]
  100. 100. 
    Davino S, Napoli C, Dellacroce C, Miozzi L, Noris E et al. 2009. Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. Virus Res 143:15–23
    [Google Scholar]
  101. 101. 
    García-Andrés S, Accotto GP, Navas-Castillo J, Moriones E 2007. Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology 359:302–12
    [Google Scholar]
  102. 102. 
    Sánchez-Campos S, Domínguez-Huerta G, Díaz-Martínez L, Tomás DM, Navas-Castillo J et al. 2018. Differential shape of geminivirus mutant spectra across cultivated and wild hosts with invariant viral consensus sequences. Front. Plant Sci. 9:932
    [Google Scholar]
  103. 103. 
    Belabess Z, Peterschmitt M, Granier M, Tahiri A, Blenzar A, Urbino C 2016. The non-canonical tomato yellow leaf curl virus recombinant that displaced its parental viruses in southern Morocco exhibits a high selective advantage in experimental conditions. J. Gen. Virol. 97:3433–45
    [Google Scholar]
  104. 104. 
    Albuquerque LC, Varsani A, Fernandes FR, Pinheiro B, Martin DP et al. 2012. Further characterization of tomato-infecting begomoviruses in Brazil. Arch. Virol. 157:747–52
    [Google Scholar]
  105. 105. 
    Ribeiro SG, Martin DP, Lacorte C, Simões IC, Orlandini DRS, Inoue-Nagata AK 2007. Molecular and biological characterization of tomato chlorotic mottle virus suggests that recombination underlies the evolution and diversity of Brazilian tomato begomoviruses. Phytopathology 97:702–11
    [Google Scholar]
  106. 106. 
    Castillo-Urquiza GP, Beserra JEA Jr, Bruckner FP, Lima ATM, Varsani A et al. 2008. Six novel begomoviruses infecting tomato and associated weeds in Southeastern Brazil. Arch. Virol. 153:1985–89
    [Google Scholar]
  107. 107. 
    Paplomatas EJ, Patel VP, Hou YM, Noueiry AO, Gilbertson RL 1994. Molecular characterization of a new sap-transmissible bipartite genome geminivirus infecting tomatoes in Mexico. Phytopathology 84:1215–24
    [Google Scholar]
  108. 108. 
    Nahkla MK, Maxwell MD, Hidayat SH, Lange DR, Loniello AO et al. 1994. Two geminiviruses associated with tomatoes in Central America. Phytopathology 84:467
    [Google Scholar]
  109. 109. 
    Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL 2013. Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J. Virol. 87:5397–413
    [Google Scholar]
  110. 110. 
    Ramos PL, Guerra O, Peral R, Oramas P, Guevara RG, Rivera-Bustamante R 1997. Taino tomato mottle virus, a new bipartite Geminivirus from Cuba. Plant Dis 81:1095
    [Google Scholar]
  111. 111. 
    Rojas A, Kvarnheden A, Valkonen JPT 2000. Geminiviruses infecting tomato crops in Nicaragua. Plant Dis 84:843–46
    [Google Scholar]
  112. 112. 
    Nakhla MK, Maxwell DP, Martinez RT, Carvalho MG, Gilbertson RL 1994. Widespread occurrence of eastern Mediterranean “strain” of tomato yellow leaf curl geminivirus in tomatoes in the Dominican Republic. Plant Dis 78:926
    [Google Scholar]
  113. 113. 
    Duffy S, Holmes EC. 2007. Multiple introductions of the old world begomovirus tomato yellow leaf curl virus into the new world. Appl. Environ. Microb. 73:7114–17
    [Google Scholar]
  114. 114. 
    Barreto SS, Hallwass M, Aquino OM, Inoue-Nagata AK 2013. A study of weeds as potential inoculum sources for a tomato-infecting begomovirus in central Brazil. Phytopathology 103:436–44
    [Google Scholar]
  115. 115. 
    Fernandes NAN, Boiteux LS, Fonseca MEN, Gonzales-Segnana L, Kitajima EW 2014. Report of tomato yellow spot virus infecting Leonurus sibiricus in Paraguay and within tomato fields in Brazil. Plant Dis 98:1445
    [Google Scholar]
  116. 116. 
    Rodríguez-Pardina PE, Hanada K, Laguna IG, Zerbini FM, Ducasse DA 2011. Molecular characterisation and relative incidence of bean- and soybean-infecting begomoviruses in northwestern Argentina. Ann. Appl. Biol. 158:69–78
    [Google Scholar]
  117. 117. 
    Andrade EC, Manhani GG, Alfenas PF, Calegario RF, Fontes EPB, Zerbini FM 2006. Tomato yellow spot virus, a tomato-infecting begomovirus from Brazil with a closer relationship to viruses from Sida sp., forms pseudorecombinants with begomoviruses from tomato but not from Sida. J. Gen. Virol 87:3687–96
    [Google Scholar]
  118. 118. 
    Inoue-Nagata AK, Lima MF, Gilbertson RL 2016. A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic. Bras. 34:8–18
    [Google Scholar]
  119. 119. 
    Barbosa JC, Rezende JA, Amorim L, Filho AB 2016. Temporal dynamics of tomato severe rugose virus and Bemisia tabaci in tomato fields in São Paulo, Brazil. J. Phytopathol. 164:1–10
    [Google Scholar]
  120. 120. 
    Macedo MA, Costa TM, Barbosa JC, Pereira JL, Michereff-Filho M et al. 2017. Temporal and spatial dynamics of begomovirus disease in tomatoes in central Brazil. Plant Pathol 66:529–38
    [Google Scholar]
  121. 121. 
    Gibbs A, Trueman J, Gibbs M 2008. The bean common mosaic virus lineage of potyviruses: Where did it arise and when?. Arch. Virol. 153:2177–87
    [Google Scholar]
  122. 122. 
    Nguyen HD, Tomitaka Y, Ho SY, Duchene S, Vetten HJ et al. 2013. Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLOS ONE 8:e55336
    [Google Scholar]
  123. 123. 
    Jones RAC, Coutts BA. 2015. Spread of introduced viruses to new plants in natural ecosystems and the threat this poses to plant biodiversity. Mol. Plant Pathol. 16:541–45
    [Google Scholar]
  124. 124. 
    Costa AS, Bennett CW. 1950. Whitefly transmitted mosaic of Euphorbia prunifolia. Phytopathology 40:266–83
    [Google Scholar]
  125. 125. 
    Orlando A, Silberschmidt K. 1946. Studies on the natural dissemination of the virus of “infectious chlorosis” of the Malvaceae and its relation with the insect vector Bemisia tabaci Genn. Arq. Inst. Biol. 17:1–36
    [Google Scholar]
  126. 126. 
    Costa AS, Carvalho AMB. 1960. Comparative studies between Abutilon and Euphorbia mosaic viruses. J. Phytopathol. 38:129–52
    [Google Scholar]
  127. 127. 
    Jovel J, Reski G, Rothenstein D, Ringel M, Frischmuth T, Jeske H 2004. Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus. Arch. Virol. 149:829–41
    [Google Scholar]
  128. 128. 
    Fiallo-Olivé E, Zerbini FM, Navas-Castillo J 2015. Complete nucleotide sequences of two new begomoviruses infecting the wild malvaceous plant Melochia sp. in Brazil. Arch. Virol. 160:3161–64
    [Google Scholar]
  129. 129. 
    Wyant PS, Gotthardt D, Schafer B, Krenz B, Jeske H 2011. The genomes of four novel begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds. Arch. Virol. 156:347–52
    [Google Scholar]
  130. 130. 
    Frischmuth T, Engel M, Lauster S, Jeske H 1997. Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted, Sida-infecting bipartite geminiviruses in Central America. J. Gen. Virol. 78:2675–82
    [Google Scholar]
  131. 131. 
    Roye ME, McLaughlin WA, Nakhla MK, Maxwell DP 1997. Genetic diversity among geminiviruses associated with the weed species Sida spp., Macroptilium lathyroides, and Wissadula amplissima from Jamaica. Plant Dis 81:1251–58
    [Google Scholar]
  132. 132. 
    Ferro CG, Silva JP, Xavier CAD, Godinho MT, Lima ATM et al. 2017. The ever increasing diversity of begomoviruses infecting non-cultivated hosts: new species from Sida spp. and Leonurus sibiricus, plus two New World alphasatellites. Ann. Appl. Biol. 170:204–18
    [Google Scholar]
  133. 133. 
    Fiallo-Olivé E, Navas-Castillo J, Moriones E, Martinez-Zubiaur Y 2012. Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia. Arch. Virol 157:141–46
    [Google Scholar]
  134. 134. 
    Fiallo-Olivé E, Martinez-Zubiaur Y, Moriones E, Navas-Castillo J 2010. Complete nucleotide sequence of Sida golden mosaic Florida virus and phylogenetic relationships with other begomoviruses infecting malvaceous weeds in the Caribbean. Arch. Virol. 155:1535–37
    [Google Scholar]
  135. 135. 
    Collins A, Rehman MM, Chowda-Reddy RV, Wang AM, Fondong V et al. 2010. Molecular characterization and experimental host range of an isolate of Macroptilium golden mosaic virus that infects Wissadula amplissima in Jamaica. Virus Res 150:148–52
    [Google Scholar]
  136. 136. 
    Ramos PL, Fernandez A, Castrillo G, Diaz L, Echemendia AL et al. 2002. Macroptilium yellow mosaic virus, a new begomovirus infecting Macroptilium lathyroides in Cuba. Plant Dis 86:1049
    [Google Scholar]
  137. 137. 
    Ramos-Sobrinho R, Xavier CAD, Pereira HMB, Lima GSA, Assunção IP et al. 2014. Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. J. Gen. Virol. 95:2540–52
    [Google Scholar]
  138. 138. 
    Costa AS. 1965. Three whitefly-transmitted virus diseases of beans in São Paulo, Brazil. FAO Plant Prot. Bull. 13:2–12
    [Google Scholar]
  139. 139. 
    Faria JC, Maxwell DP. 1999. Variability in geminivirus isolates associated with Phaseolus spp. in Brazil. Phytopathology 89:262–68
    [Google Scholar]
  140. 140. 
    Chagas CM, Barradas MM, Vicente M 1981. Espécies hospedeiras do vírus do mosaico dourado do feijoeiro. Arq. Inst. Biol. 48:123–27
    [Google Scholar]
  141. 141. 
    Wyant PS, Strohmeier S, Schafer B, Krenz B, Assunção IP et al. 2012. Circular DNA genomics (circomics) exemplified for geminiviruses in bean crops and weeds of northeastern Brazil. Virology 427:151–57
    [Google Scholar]
  142. 142. 
    Garzón-Tiznado JA, Torres-Pacheco I, Ascencio-Ibañez JT, Herrera-Estrella L, Rivera-Bustamante RF 1993. Inoculation of peppers with infectious clones of a new geminivirus by a biolistic procedure. Phytopathology 83:514–21
    [Google Scholar]
  143. 143. 
    Torres-Pacheco I, Garzón-Tiznado JA, Brown JK, Becerra-Flora A, Rivera-Bustamante R 1996. Detection and distribution of geminiviruses in Mexico and the southern United States. Phytopathology 86:1186–92
    [Google Scholar]
  144. 144. 
    Shepherd DN, Martin DP, van der Walt E, Dent K, Varsani A, Rybicki EP 2010. Maize streak virus: an old and complex ‘emerging’ pathogen. Mol. Plant Pathol. 11:1–12
    [Google Scholar]
  145. 145. 
    Bock KR, Guthrie EJ, Woods RD 1974. Purification of maize streak virus and its relationship to viruses associated with streak diseases of sugarcane and Panicum maximum. . Ann. Appl. Biol 77:289–96
    [Google Scholar]
  146. 146. 
    Konate G, Traore O. 1992. Les hôtes réservoirs du virus de la striure du maïs (MSV) en zone Soudano-Sahélienne: identification et distribution spatio-temporelle. Phytoprotection 73:111–17
    [Google Scholar]
  147. 147. 
    Varsani A, Shepherd DN, Monjane AL, Owor BE, Erdmann JB et al. 2008. Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J. Gen. Virol. 89:2063–74
    [Google Scholar]
  148. 148. 
    Monjane AL, Harkins GW, Martin DP, Lemey P, Lefeuvre P et al. 2011. Reconstructing the history of maize streak virus strain A dispersal to reveal diversification hot spots and its origin in southern Africa. J. Virol. 85:9623–36
    [Google Scholar]
  149. 149. 
    Kraberger S, Saumtally S, Pande D, Khoodoo MHR, Dhayan S et al. 2017. Molecular diversity, geographic distribution and host range of monocot-infecting mastreviruses in Africa and surrounding islands. Virus Res 238:171–78
    [Google Scholar]
  150. 150. 
    Bahlo M, Griffiths RC. 2000. Inference from gene trees in a subdivided population. Theor. Popul. Biol. 57:79–95
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015536
Loading
/content/journals/10.1146/annurev-virology-092818-015536
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error