1932

Abstract

More than 80 different adenovirus (AdV) types infect humans through the respiratory, ocular, or gastrointestinal tracts. They cause acute clinical mani-festations or persist under humoral and cell-based immunity. Immuno-suppressed individuals are at risk of death from an AdV infection. Concepts about cell entry of AdV build on strong foundations from molecular and cellular biology—and increasingly physical virology. Here, we discuss how virions enter and deliver their genome into the nucleus of epithelial cells. This process breaks open the virion at distinct sites because the particle has nonisometric mechanical strength and reacts to specific host factors along the entry pathway. We further describe how macrophages and dendritic cells resist AdV infection yet enhance productive entry into polarized epithelial cells. A deep understanding of the viral mechanisms and cell biological and biophysical principles will continue to unravel how epithelial and antigen-presenting cells respond to AdVs and control inflammation and persistence in pathology and therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015550
2019-09-29
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015550.html?itemId=/content/journals/10.1146/annurev-virology-092818-015550&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Huebner RJ, Rowe WP, Lane WT 1962. Oncogenic effects in hamsters of human adenovirus types 12 and 18. PNAS 48:2051–58
    [Google Scholar]
  2. 2. 
    Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG 1953. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med 84:570–73
    [Google Scholar]
  3. 3. 
    Berk AJ, Sharp PA. 1978. Structure of the adenovirus 2 early mRNAs. Cell 14:695–711
    [Google Scholar]
  4. 4. 
    Stillman BW. 1983. The replication of adenovirus DNA with purified proteins. Cell 35:7–9
    [Google Scholar]
  5. 5. 
    Cepko CL, Sharp PA. 1982. Assembly of adenovirus major capsid protein is mediated by a nonvirion protein. Cell 31:407–15
    [Google Scholar]
  6. 6. 
    Burgert HG, Kvist S. 1985. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41:987–97
    [Google Scholar]
  7. 7. 
    Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenthal ER et al. 1992. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 68:143–55
    [Google Scholar]
  8. 8. 
    Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ 1993. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75:207–16
    [Google Scholar]
  9. 9. 
    Verma IM. 2000. A tumultuous year for gene therapy. Mol. Ther. 2:415–16
    [Google Scholar]
  10. 10. 
    Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF 2014. Innate immunity to adenovirus. Hum. Gene Ther. 25:265–84
    [Google Scholar]
  11. 11. 
    Wold WS, Toth K. 2013. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 13:421–33
    [Google Scholar]
  12. 12. 
    Yla-Herttuala S, Baker AH. 2017. Cardiovascular gene therapy: past, present, and future. Mol. Ther. 25:1095–106
    [Google Scholar]
  13. 13. 
    Schmid M, Ernst P, Honegger A, Suomalainen M, Zimmermann M et al. 2018. Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control. Nat. Commun. 9:450
    [Google Scholar]
  14. 14. 
    Marsh M, Helenius A. 2006. Virus entry: open sesame. Cell 124:729–40
    [Google Scholar]
  15. 15. 
    Greber UF, Way M. 2006. A superhighway to virus infection. Cell 124:741–54
    [Google Scholar]
  16. 16. 
    Wang IH, Burckhardt CJ, Yakimovich A, Greber UF 2018. Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses 10:166
    [Google Scholar]
  17. 17. 
    Witte R, Andriasyan V, Georgi F, Yakimovich A, Greber UF 2018. Concepts in light microscopy of viruses. Viruses 10:202
    [Google Scholar]
  18. 18. 
    Ghebremedhin B. 2014. Human adenovirus: viral pathogen with increasing importance. Eur. J. Microbiol. Immunol. 4:26–33
    [Google Scholar]
  19. 19. 
    King CR, Zhang A, Mymryk JS 2016. The persistent mystery of adenovirus persistence. Trends Microbiol 24:323–24
    [Google Scholar]
  20. 20. 
    Lion T. 2014. Adenovirus infections in immunocompetent and immunocompromised patients. Clin. Microbiol. Rev. 27:441–62
    [Google Scholar]
  21. 21. 
    Nedelman M. 2018. 11th child dies in adenovirus outbreak in New Jersey. CNN Nov. 19. https://edition.cnn.com/2018/11/16/health/wanaque-adenovirus-deaths-new-jersey-bn/index.html
    [Google Scholar]
  22. 22. 
    Benson SD, Bamford JK, Bamford DH, Burnett RM 2004. Does common architecture reveal a viral lineage spanning all three domains of life?. Mol. Cell 16:673–85
    [Google Scholar]
  23. 23. 
    Reddy VS, Natchiar SK, Stewart PL, Nemerow GR 2010. Crystal structure of human adenovirus at 3.5 Å resolution. Science 329:1071–75
    [Google Scholar]
  24. 24. 
    Liu H, Jin L, Koh SB, Atanasov I, Schein S et al. 2010. Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 329:1038–43
    [Google Scholar]
  25. 25. 
    van Raaij MJ, Mitraki A, Lavigne G, Cusack S 1999. A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401:935–38
    [Google Scholar]
  26. 26. 
    Khare R, Chen CY, Weaver EA, Barry MA 2011. Advances and future challenges in adenoviral vector pharmacology and targeting. Curr. Gene Ther. 11:241–58
    [Google Scholar]
  27. 27. 
    Condezo GN, Marabini R, Ayora S, Carazo JM, Alba R et al. 2015. Structures of adenovirus incomplete particles clarify capsid architecture and show maturation changes of packaging protein L1 52/55k. J. Virol. 89:9653–64
    [Google Scholar]
  28. 28. 
    Yu X, Veesler D, Campbell MG, Barry ME, Asturias FJ et al. 2017. Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses. Sci. Adv. 3:e1602670
    [Google Scholar]
  29. 29. 
    Dai X, Wu L, Sun R, Zhou ZH 2017. Atomic structures of minor proteins VI and VII in the human adenovirus. J. Virol. 91:e00850–17
    [Google Scholar]
  30. 30. 
    Ostapchuk P, Suomalainen M, Zheng Y, Boucke K, Greber UF, Hearing P 2017. The adenovirus major core protein VII is dispensable for virion assembly but is essential for lytic infection. PLOS Pathog 13:e1006455
    [Google Scholar]
  31. 31. 
    Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K et al. 2017. Structure of histone-based chromatin in Archaea. Science 357:609–12
    [Google Scholar]
  32. 32. 
    Moreno-Madrid F, Martin-Gonzalez N, Llauro A, Ortega-Esteban A, Hernando-Perez M et al. 2017. Atomic force microscopy of virus shells. Biochem. Soc. Trans. 45:499–511
    [Google Scholar]
  33. 33. 
    Perez-Berna AJ, Marion S, Chichon FJ, Fernandez JJ, Winkler DC et al. 2015. Distribution of DNA-condensing protein complexes in the adenovirus core. Nucleic Acids Res 43:4274–83
    [Google Scholar]
  34. 34. 
    Mangel WF, San Martin C 2014. Structure, function and dynamics in adenovirus maturation. Viruses 6:4536–70
    [Google Scholar]
  35. 35. 
    Ortega-Esteban A, Condezo GN, Perez-Berna AJ, Chillon M, Flint SJ et al. 2015. Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9:10826–33
    [Google Scholar]
  36. 36. 
    Ortega-Esteban A, Bodensiek K, San Martin C, Suomalainen M, Greber UF et al. 2015. Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9:10571–79
    [Google Scholar]
  37. 37. 
    Greber UF. 2016. Virus and host mechanics support membrane penetration and cell entry. J. Virol. 90:3802–5
    [Google Scholar]
  38. 38. 
    Carrasco C, Carreira A, Schaap IA, Serena PA, Gomez-Herrero J et al. 2006. DNA-mediated anisotropic mechanical reinforcement of a virus. PNAS 103:13706–11
    [Google Scholar]
  39. 39. 
    Snijder J, Reddy VS, May ER, Roos WH, Nemerow GR, Wuite GJ 2013. Integrin and defensin modulate the mechanical properties of adenovirus. J. Virol. 87:2756–66
    [Google Scholar]
  40. 40. 
    Greber UF, Willetts M, Webster P, Helenius A 1993. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–86
    [Google Scholar]
  41. 41. 
    Greber UF, Singh I, Helenius A 1994. Mechanisms of virus uncoating. Trends Microbiol 2:52–56
    [Google Scholar]
  42. 42. 
    Hogle JM. 2002. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56:677–702
    [Google Scholar]
  43. 43. 
    Johnson JE. 2010. Virus particle maturation: insights into elegantly programmed nanomachines. Curr. Opin. Struct. Biol. 20:210–16
    [Google Scholar]
  44. 44. 
    Wolfrum N, Greber UF. 2013. Adenovirus signalling in entry. Cell Microbiol 15:53–62
    [Google Scholar]
  45. 45. 
    Lasswitz L, Chandra N, Arnberg N, Gerold G 2018. Glycomics and proteomics approaches to investigate early adenovirus-host cell interactions. J. Mol. Biol. 430:1863–82
    [Google Scholar]
  46. 46. 
    Yamauchi Y, Greber UF. 2016. Principles of virus uncoating: cues and the snooker ball. Traffic 17:569–92
    [Google Scholar]
  47. 47. 
    Sharma A, Li X, Bangari DS, Mittal SK 2009. Adenovirus receptors and their implications in gene delivery. Virus Res 143:184–94
    [Google Scholar]
  48. 48. 
    Greber UF, Gastaldelli M. 2007. Junctional gating: the Achilles’ heel of epithelial cells in pathogen infection. Cell Host Microbe 2:143–46
    [Google Scholar]
  49. 49. 
    Trinh HV, Lesage G, Chennamparampil V, Vollenweider B, Burckhardt CJ et al. 2012. Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection. J. Virol. 86:1623–37
    [Google Scholar]
  50. 50. 
    Kalin S, Amstutz B, Gastaldelli M, Wolfrum N, Boucke K et al. 2010. Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J. Virol. 84:5336–50
    [Google Scholar]
  51. 51. 
    Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K et al. 2008. Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 27:956–69
    [Google Scholar]
  52. 52. 
    Fleischli C, Sirena D, Lesage G, Havenga MJ, Cattaneo R et al. 2007. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor. J. Gen. Virol. 88:2925–34
    [Google Scholar]
  53. 53. 
    Fleischli C, Verhaagh S, Havenga M, Sirena D, Schaffner W et al. 2005. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35. J. Virol. 79:10013–22
    [Google Scholar]
  54. 54. 
    Sirena D, Lilienfeld B, Eisenhut M, Kalin S, Boucke K et al. 2004. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J. Virol. 78:4454–62
    [Google Scholar]
  55. 55. 
    Lecollinet S, Gavard F, Havenga MJ, Spiller OB, Lemckert A et al. 2006. Improved gene delivery to intestinal mucosa by adenoviral vectors bearing subgroup B and D fibers. J. Virol. 80:2747–59
    [Google Scholar]
  56. 56. 
    Wang H, Tuve S, Erdman DD, Lieber A 2009. Receptor usage of a newly emergent adenovirus type 14. Virology 387:436–41
    [Google Scholar]
  57. 57. 
    Lam E, Ramke M, Warnecke G, Schrepfer S, Kopfnagel V et al. 2015. Effective apical infection of differentiated human bronchial epithelial cells and induction of proinflammatory chemokines by the highly pneumotropic human adenovirus type 14p1. PLOS ONE 10:e0131201
    [Google Scholar]
  58. 58. 
    Chia SL, Lei J, Ferguson DJ, Dyer A, Fisher KD, Seymour LW 2017. Group B adenovirus enadenotucirev infects polarised colorectal cancer cells efficiently from the basolateral surface expected to be encountered during intravenous delivery to treat disseminated cancer. Virology 505:162–71
    [Google Scholar]
  59. 59. 
    Zsengeller Z, Otake K, Hossain SA, Berclaz PY, Trapnell BC 2000. Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J. Virol. 74:9655–67
    [Google Scholar]
  60. 60. 
    Di Paolo NC, Miao EA, Iwakura Y, Murali-Krishna K, Aderem A et al. 2009. Virus binding to a plasma membrane receptor triggers interleukin-1α-mediated proinflammatory macrophage response in vivo. Immunity 31:110–21
    [Google Scholar]
  61. 61. 
    Maler MD, Nielsen PJ, Stichling N, Cohen I, Ruzsics Z et al. 2017. Key role of the scavenger receptor MARCO in mediating adenovirus infection and subsequent innate responses of macrophages. mBio 8:e00670–17
    [Google Scholar]
  62. 62. 
    Lam E, Stein S, Falck-Pedersen E 2014. Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J. Virol. 88:974–81
    [Google Scholar]
  63. 63. 
    Cerullo V, Seiler MP, Mane V, Brunetti-Pierri N, Clarke C et al. 2007. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol. Ther. 15:378–85
    [Google Scholar]
  64. 64. 
    Lau L, Gray EE, Brunette RL, Stetson DB 2015. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350:568–71
    [Google Scholar]
  65. 65. 
    Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J 1999. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J. Biol. Chem. 274:10219–26
    [Google Scholar]
  66. 66. 
    Lutschg V, Boucke K, Hemmi S, Greber UF 2011. Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nat. Commun. 2:391
    [Google Scholar]
  67. 67. 
    Carvajal-Gonzalez JM, Gravotta D, Mattera R, Diaz F, Bay AP et al. 2012. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXΦ motif with the clathrin adaptors AP-1A and AP-1B. PNAS 109:3820–25
    [Google Scholar]
  68. 68. 
    Kotha PL, Sharma P, Kolawole AO, Yan R, Alghamri MS et al. 2015. Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response. PLOS Pathog 11:e1004696
    [Google Scholar]
  69. 69. 
    Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE et al. 2010. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation. Science 329:1205–10
    [Google Scholar]
  70. 70. 
    Griffith JW, Sokol CL, Luster AD 2014. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32:659–702
    [Google Scholar]
  71. 71. 
    Yakimovich A, Gumpert H, Burckhardt CJ, Lutschg VA, Jurgeit A et al. 2012. Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J. Virol. 86:10123–37
    [Google Scholar]
  72. 72. 
    Lieleg O, Lieleg C, Bloom J, Buck CB, Ribbeck K 2012. Mucin biopolymers as broad-spectrum antiviral agents. Biomacromolecules 13:1724–32
    [Google Scholar]
  73. 73. 
    Wiethoff CM, Wodrich H, Gerace L, Nemerow GR 2005. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J. Virol. 79:1992–2000
    [Google Scholar]
  74. 74. 
    Moyer CL, Wiethoff CM, Maier O, Smith JG, Nemerow GR 2011. Functional genetic and biophysical analyses of membrane disruption by human adenovirus. J. Virol. 85:2631–41
    [Google Scholar]
  75. 75. 
    Nakano MY, Greber UF. 2000. Quantitative microscopy of fluorescent adenovirus entry. J. Struct. Biol. 129:57–68
    [Google Scholar]
  76. 76. 
    Wodrich H, Henaff D, Jammart B, Segura-Morales C, Seelmeir S et al. 2010. A capsid-encoded PPxY-motif facilitates adenovirus entry. PLOS Pathog 6:e1000808
    [Google Scholar]
  77. 77. 
    Luisoni S, Suomalainen M, Boucke K, Tanner LB, Wenk MR et al. 2015. Co-option of membrane wounding enables virus penetration into cells. Cell Host Microbe 18:75–85
    [Google Scholar]
  78. 78. 
    Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S, Greber UF 2011. Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10:105–17
    [Google Scholar]
  79. 79. 
    Nemerow GR, Stewart PL. 2016. Insights into adenovirus uncoating from interactions with integrins and mediators of host immunity. Viruses 8:337
    [Google Scholar]
  80. 80. 
    Lindert S, Silvestry M, Mullen TM, Nemerow GR, Stewart PL 2009. Cryo-electron microscopy structure of an adenovirus-integrin complex indicates conformational changes in both penton base and integrin. J. Virol. 83:11491–501
    [Google Scholar]
  81. 81. 
    Imelli N, Ruzsics Z, Puntener D, Gastaldelli M, Greber UF 2009. Genetic reconstitution of the human adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape. Virol. J. 6:174
    [Google Scholar]
  82. 82. 
    Silvestry M, Lindert S, Smith JG, Maier O, Wiethoff CM et al. 2009. Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect. J. Virol. 83:7375–83
    [Google Scholar]
  83. 83. 
    Greber UF, Webster P, Weber J, Helenius A 1996. The role of the adenovirus protease on virus entry into cells. EMBO J 15:1766–77
    [Google Scholar]
  84. 84. 
    Weber J. 1976. Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J. Virol. 17:462–71
    [Google Scholar]
  85. 85. 
    Wang K, Huang S, Kapoor-Munshi A, Nemerow G 1998. Adenovirus internalization and infection require dynamin. J. Virol. 72:3455–58
    [Google Scholar]
  86. 86. 
    Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP et al. 2002. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158:1119–31
    [Google Scholar]
  87. 87. 
    Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF 2008. Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 9:2265–78
    [Google Scholar]
  88. 88. 
    Luisoni S, Bauer M, Prasad V, Boucke K, Papadopoulos C et al. 2016. Endosomophagy clears disrupted early endosomes but not virus particles during virus entry into cells. Matters 2:e201606000013
    [Google Scholar]
  89. 89. 
    Andrews NW, Almeida PE, Corrotte M 2014. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 24:734–42
    [Google Scholar]
  90. 90. 
    Hannich JT, Umebayashi K, Riezman H 2011. Distribution and functions of sterols and sphingolipids. Cold Spring Harb. Perspect. Biol. 3:a004762
    [Google Scholar]
  91. 91. 
    Suomalainen M, Luisoni S, Boucke K, Bianchi S, Engel DA, Greber UF 2013. A direct and versatile assay measuring membrane penetration of adenovirus in single cells. J. Virol. 87:12367–79
    [Google Scholar]
  92. 92. 
    Stauffer S, Feng Y, Nebioglu F, Heilig R, Picotti P, Helenius A 2014. Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J. Virol. 88:13029–46
    [Google Scholar]
  93. 93. 
    Seth P, Pastan I, Willingham MC 1987. Adenovirus-dependent changes in cell membrane permeability: role of Na+, K+-ATPase. J. Virol. 61:883–88
    [Google Scholar]
  94. 94. 
    Rauma T, Tuukkanen J, Bergelson JM, Denning G, Hautala T 1999. rab5 GTPase regulates adenovirus endocytosis. J. Virol. 73:9664–68
    [Google Scholar]
  95. 95. 
    Montespan C, Marvin SA, Austin S, Burrage AM, Roger B et al. 2017. Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLOS Pathog 13:e1006217
    [Google Scholar]
  96. 96. 
    Papadopoulos C, Meyer H. 2017. Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr. Biol. 27:R1330–41
    [Google Scholar]
  97. 97. 
    Warren JC, Rutkowski A, Cassimeris L 2006. Infection with replication-deficient adenovirus induces changes in the dynamic instability of host cell microtubules. Mol. Biol. Cell 17:3557–68
    [Google Scholar]
  98. 98. 
    Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF 1999. Microtubule-dependent plus- and minus end–directed motilities are competing processes for nuclear targeting of adenovirus. J. Cell Biol. 144:657–72
    [Google Scholar]
  99. 99. 
    Leopold PL, Kreitzer G, Miyazawa N, Rempel S, Pfister KK et al. 2000. Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum. Gene Ther. 11:151–65
    [Google Scholar]
  100. 100. 
    Kelkar SA, Pfister KK, Crystal RG, Leopold PL 2004. Cytoplasmic dynein mediates adenovirus binding to microtubules. J. Virol. 78:10122–32
    [Google Scholar]
  101. 101. 
    Kelkar S, De BP, Gao G, Wilson JM, Crystal RG, Leopold PL 2006. A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes. J. Virol. 80:7781–85
    [Google Scholar]
  102. 102. 
    Suomalainen M, Nakano MY, Boucke K, Keller S, Greber UF 2001. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J 20:1310–19
    [Google Scholar]
  103. 103. 
    Bremner KH, Scherer J, Yi J, Vershinin M, Gross SP, Vallee RB 2009. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 6:523–35
    [Google Scholar]
  104. 104. 
    Scherer J, Yi J, Vallee RB 2014. PKA-dependent dynein switching from lysosomes to adenovirus: a novel form of host–virus competition. J. Cell Biol. 205:163–77
    [Google Scholar]
  105. 105. 
    Scherer J, Vallee RB. 2015. Conformational changes in the adenovirus hexon subunit responsible for regulating cytoplasmic dynein recruitment. J. Virol. 89:1013–23
    [Google Scholar]
  106. 106. 
    Zhou J, Scherer J, Yi J, Vallee RB 2018. Role of kinesins in directed adenovirus transport and cytoplasmic exploration. PLOS Pathog 14:e1007055
    [Google Scholar]
  107. 107. 
    Engelke MF, Burckhardt CJ, Morf MK, Greber UF 2011. The dynactin complex enhances the speed of microtubule-dependent motions of adenovirus both towards and away from the nucleus. Viruses 3:233–53
    [Google Scholar]
  108. 108. 
    Gazzola M, Burckhardt CJ, Bayati B, Engelke M, Greber UF, Koumoutsakos P 2009. A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus. PLOS Comput. Biol 5:e1000623
    [Google Scholar]
  109. 109. 
    Strunze S, Trotman LC, Boucke K, Greber UF 2005. Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol. Biol. Cell 16:2999–3009
    [Google Scholar]
  110. 110. 
    Wang IH, Burckhardt CJ, Yakimovich A, Morf MK, Greber UF 2017. The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. J. Cell Sci. 130:2185–95
    [Google Scholar]
  111. 111. 
    Helmuth JA, Burckhardt CJ, Koumoutsakos P, Greber UF, Sbalzarini IF 2007. A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J. Struct. Biol. 159:347–58
    [Google Scholar]
  112. 112. 
    Dinh AT, Theofanous T, Mitragotri S 2005. A model for intracellular trafficking of adenoviral vectors. Biophys. J. 89:1574–88
    [Google Scholar]
  113. 113. 
    Sbalzarini IF, Greber UF. 2018. How computational models enable mechanistic insights into virus infection. Methods Mol. Biol. 1836:609–31
    [Google Scholar]
  114. 114. 
    Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR 2005. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement?. Science 308:1469–72
    [Google Scholar]
  115. 115. 
    Trotman LC, Mosberger N, Fornerod M, Stidwill RP, Greber UF 2001. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat. Cell Biol. 3:1092–100
    [Google Scholar]
  116. 116. 
    Cassany A, Ragues J, Guan T, Begu D, Wodrich H et al. 2014. Nuclear import of adenovirus DNA involves direct interaction of hexon with an N-terminal domain of the nucleoporin Nup214. J. Virol. 89:1719–30
    [Google Scholar]
  117. 117. 
    Schmidt HB, Gorlich D. 2016. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41:46–61
    [Google Scholar]
  118. 118. 
    Knockenhauer KE, Schwartz TU. 2016. The nuclear pore complex as a flexible and dynamic gate. Cell 164:1162–71
    [Google Scholar]
  119. 119. 
    Flatt JW, Greber UF. 2017. Viral mechanisms for docking and delivering at nuclear pore complexes. Semin. Cell Dev. Biol. 68:59–71
    [Google Scholar]
  120. 120. 
    Strunze S, Engelke MF, Wang IH, Puntener D, Boucke K et al. 2011. Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection. Cell Host Microbe 10:210–23
    [Google Scholar]
  121. 121. 
    Jahed Z, Soheilypour M, Peyro M, Mofrad MR 2016. The LINC and NPC relationship—it's complicated!. J. Cell Sci. 129:3219–29
    [Google Scholar]
  122. 122. 
    Karen KA, Hearing P. 2011. Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. J. Virol. 85:4135–42
    [Google Scholar]
  123. 123. 
    Wodrich H, Cassany A, D'Angelo MA, Guan T, Nemerow G, Gerace L 2006. Adenovirus core protein pVII is translocated into the nucleus by multiple import receptor pathways. J. Virol. 80:9608–18
    [Google Scholar]
  124. 124. 
    Hindley CE, Lawrence FJ, Matthews DA 2007. A role for transportin in the nuclear import of adenovirus core proteins and DNA. Traffic 8:1313–22
    [Google Scholar]
  125. 125. 
    Wang IH, Suomalainen M, Andriasyan V, Kilcher S, Mercer J et al. 2013. Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe 14:468–80
    [Google Scholar]
  126. 126. 
    Flatt JW, Greber UF. 2015. Misdelivery at the nuclear pore complex—stopping a virus dead in its tracks. Cells 4:277–96
    [Google Scholar]
  127. 127. 
    Kosulin K, Geiger E, Vecsei A, Huber WD, Rauch M et al. 2016. Persistence and reactivation of human adenoviruses in the gastrointestinal tract. Clin. Microbiol. Infect. 22:381.e1–8
    [Google Scholar]
  128. 128. 
    Smith JG, Nemerow GR. 2008. Mechanism of adenovirus neutralization by human α-defensins. Cell Host Microbe 3:11–19
    [Google Scholar]
  129. 129. 
    Smith JG, Silvestry M, Lindert S, Lu W, Nemerow GR, Stewart PL 2010. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLOS Pathog 6:e1000959
    [Google Scholar]
  130. 130. 
    Flatt JW, Kim R, Smith JG, Nemerow GR, Stewart PL 2013. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLOS ONE 8:e61571
    [Google Scholar]
  131. 131. 
    Carlisle RC, Di Y, Cerny AM, Sonnen AF, Sim RB et al. 2009. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood 113:1909–18
    [Google Scholar]
  132. 132. 
    Cotter MJ, Zaiss AK, Muruve DA 2005. Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J. Virol. 79:14622–31
    [Google Scholar]
  133. 133. 
    Tsai V, Varghese R, Ravindran S, Ralston R, Vellekamp G 2008. Complement component C1q and anti-hexon antibody mediate adenovirus infection of a CAR-negative cell line. Viral Immunol 21:469–76
    [Google Scholar]
  134. 134. 
    Xu Z, Tian J, Smith JS, Byrnes AP 2008. Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J. Virol. 82:11705–13
    [Google Scholar]
  135. 135. 
    Bottermann M, Foss S, Caddy SL, Clift D, van Tienen LM et al. 2019. Complement C4 prevents viral infection through capsid inactivation. Cell Host Microbe 25:617–29.e7
    [Google Scholar]
  136. 136. 
    Waddington SN, McVey JH, Bhella D, Parker AL, Barker K et al. 2008. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132:397–409
    [Google Scholar]
  137. 137. 
    Doronin K, Flatt JW, Di Paolo NC, Khare R, Kalyuzhniy O et al. 2012. Coagulation factor X activates innate immunity to human species C adenovirus. Science 338:795–98
    [Google Scholar]
  138. 138. 
    Tam JC, Bidgood SR, McEwan WA, James LC 2014. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 345:1256070
    [Google Scholar]
  139. 139. 
    Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC 2010. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). PNAS 107:19985–90
    [Google Scholar]
  140. 140. 
    Hauler F, Mallery DL, McEwan WA, Bidgood SR, James LC 2012. AAA ATPase p97/VCP is essential for TRIM21-mediated virus neutralization. PNAS 109:19733–38
    [Google Scholar]
  141. 141. 
    Fletcher AJ, Mallery DL, Watkinson RE, Dickson CF, James LC 2015. Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. PNAS 112:10014–19
    [Google Scholar]
  142. 142. 
    Watkinson RE, McEwan WA, Tam JC, Vaysburd M, James LC 2015. TRIM21 promotes cGAS and RIG-I sensing of viral genomes during infection by antibody-opsonized virus. PLOS Pathog 11:e1005253
    [Google Scholar]
  143. 143. 
    Muruve DA. 2004. The innate immune response to adenovirus vectors. Hum. Gene Ther. 15:1157–66
    [Google Scholar]
  144. 144. 
    Fejer G, Drechsel L, Liese J, Schleicher U, Ruzsics Z et al. 2008. Key role of splenic myeloid DCs in the IFN-αβ response to adenoviruses in vivo. PLOS Pathog 4:e1000208
    [Google Scholar]
  145. 145. 
    Iacobelli-Martinez M, Nemerow GR. 2007. Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. J. Virol. 81:1305–12
    [Google Scholar]
  146. 146. 
    Stichling N, Suomalainen M, Flatt JW, Schmid M, Pacesa M et al. 2018. Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor. PLOS Pathog 14:e1006914
    [Google Scholar]
  147. 147. 
    Barlan AU, Griffin TM, McGuire KA, Wiethoff CM 2011. Adenovirus membrane penetration activates the NLRP3 inflammasome. J. Virol. 85:146–55
    [Google Scholar]
  148. 148. 
    McGuire KA, Barlan AU, Griffin TM, Wiethoff CM 2011. Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. J. Virol. 85:10806–13
    [Google Scholar]
  149. 149. 
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–13
    [Google Scholar]
  150. 150. 
    Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F et al. 2017. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171:1110–24.e18
    [Google Scholar]
  151. 151. 
    Eichholz K, Bru T, Tran TT, Fernandes P, Welles H et al. 2016. Immune-complexed adenovirus induce AIM2-mediated pyroptosis in human dendritic cells. PLOS Pathog 12:e1005871
    [Google Scholar]
  152. 152. 
    Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J 2018. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174:917–25.e10
    [Google Scholar]
  153. 153. 
    Flatt JW, Butcher SJ. 2019. Adenovirus flow in host cell networks. Open Biol 9:190012
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015550
Loading
/content/journals/10.1146/annurev-virology-092818-015550
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error