1932

Abstract

In the absence of an intact interferon (IFN) response, mammals may be susceptible to lethal viral infection. IFNs are secreted cytokines that activate a signal transduction cascade leading to the induction of hundreds of interferon-stimulated genes (ISGs). Remarkably, approximately 10% of the genes in the human genome have the potential to be regulated by IFNs. What do all of these genes do? It is a complex question without a simple answer. From decades of research, we know that many of the protein products encoded by these ISGs work alone or in concert to achieve one or more cellular outcomes, including antiviral defense, antiproliferative activities, and stimulation of adaptive immunity. The focus of this review is the antiviral activities of the IFN/ISG system. This includes general paradigms of ISG function, supported by specific examples in the literature, as well as methodologies to identify and characterize ISG function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015756
2019-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015756.html?itemId=/content/journals/10.1146/annurev-virology-092818-015756&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Schoggins JW. 2018. Recent advances in antiviral interferon-stimulated gene biology. F1000Research 7:309
    [Google Scholar]
  2. 2. 
    Wells AI, Coyne CB. 2018. Type III interferons in antiviral defenses at barrier surfaces. Trends Immunol 39:848–58
    [Google Scholar]
  3. 3. 
    Zhou JH, Wang YN, Chang QY, Ma P, Hu Y, Cao X 2018. Type III interferons in viral infection and antiviral immunity. Cell Physiol. Biochem. 51:173–85
    [Google Scholar]
  4. 4. 
    Kang S, Brown HM, Hwang S 2018. Direct antiviral mechanisms of interferon-gamma. Immune Netw 18:e33
    [Google Scholar]
  5. 5. 
    Lazear HM, Schoggins JW, Diamond MS 2019. Shared and distinct functions of type I and type III interferons. Immunity 50:4907–23
    [Google Scholar]
  6. 6. 
    Mesev EV, LeDesma RA, Ploss A 2019. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol. 4:914–24
    [Google Scholar]
  7. 7. 
    Schreiber G. 2017. The molecular basis for differential type I interferon signaling. J. Biol. Chem. 292:7285–94
    [Google Scholar]
  8. 8. 
    Au-Yeung N, Horvath CM. 2018. Transcriptional and chromatin regulation in interferon and innate antiviral gene expression. Cytokine Growth Factor Rev 44:11–17
    [Google Scholar]
  9. 9. 
    Platanitis E, Decker T. 2018. Regulatory networks involving STATs, IRFs, and NFκβ in inflammation. Front. Immunol. 9:2542
    [Google Scholar]
  10. 10. 
    Orzalli MH, Smith A, Jurado KA, Iwasaki A, Garlick JA, Kagan JC 2018. An antiviral branch of the IL-1 signaling pathway restricts immune-evasive virus replication. Mol. Cell 71:825–40.e6
    [Google Scholar]
  11. 11. 
    Rubio D, Xu RH, Remakus S, Krouse TE, Truckenmiller ME et al. 2013. Crosstalk between the type 1 interferon and nuclear factor kappa B pathways confers resistance to a lethal virus infection. Cell Host Microbe 13:701–10
    [Google Scholar]
  12. 12. 
    Green R, Ireton RC, Gale M Jr. 2018. Interferon-stimulated genes: new platforms and computational approaches. Mamm. Genome 29:593–602
    [Google Scholar]
  13. 13. 
    Wang W, Xu L, Su J, Peppelenbosch MP, Pan Q 2017. Transcriptional regulation of antiviral interferon-stimulated genes. Trends Microbiol 25:573–84
    [Google Scholar]
  14. 14. 
    Fujita T, Reis LF, Watanabe N, Kimura Y, Taniguchi T, Vilcek J 1989. Induction of the transcription factor IRF-1 and interferon-beta mRNAs by cytokines and activators of second-messenger pathways. PNAS 86:9936–40
    [Google Scholar]
  15. 15. 
    Marie I, Durbin JE, Levy DE 1998. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J 17:6660–69
    [Google Scholar]
  16. 16. 
    Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N 1998. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 441:106–10
    [Google Scholar]
  17. 17. 
    Mostafavi S, Yoshida H, Moodley D, LeBoite H, Rothamel K et al. 2016. Parsing the interferon transcriptional network and its disease associations. Cell 164:564–78
    [Google Scholar]
  18. 18. 
    Josset L, Tchitchek N, Gralinski LE, Ferris MT, Eisfeld AJ et al. 2014. Annotation of long non-coding RNAs expressed in collaborative cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biol 11:875–90
    [Google Scholar]
  19. 19. 
    Peng X, Gralinski L, Armour CD, Ferris MT, Thomas MJ et al. 2010. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. mBio 1:e00206–10
    [Google Scholar]
  20. 20. 
    Forster SC, Tate MD, Hertzog PJ 2015. MicroRNA as type I interferon-regulated transcripts and modulators of the innate immune response. Front. Immunol. 6:334
    [Google Scholar]
  21. 21. 
    Rani MR, Shrock J, Appachi S, Rudick RA, Williams BR, Ransohoff RM 2007. Novel interferon-β-induced gene expression in peripheral blood cells. J. Leukoc. Biol. 82:1353–60
    [Google Scholar]
  22. 22. 
    Trilling M, Bellora N, Rutkowski AJ, de Graaf M, Dickinson P et al. 2013. Deciphering the modulation of gene expression by type I and II interferons combining 4sU-tagging, translational arrest and in silico promoter analysis. Nucleic Acids Res 41:8107–25
    [Google Scholar]
  23. 23. 
    Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB et al. 2017. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLOS Biol 15:e2004086
    [Google Scholar]
  24. 24. 
    Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ 2009. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 37:D852–57
    [Google Scholar]
  25. 25. 
    de Veer MJ, Holko M, Frevel M, Walker E, Der S et al. 2001. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69:912–20
    [Google Scholar]
  26. 26. 
    Der SD, Zhou A, Williams BR, Silverman RH 1998. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. PNAS 95:15623–28
    [Google Scholar]
  27. 27. 
    Wieland SF, Vega RG, Muller R, Evans CF, Hilbush B et al. 2003. Searching for interferon-induced genes that inhibit hepatitis B virus replication in transgenic mouse hepatocytes. J. Virol. 77:1227–36
    [Google Scholar]
  28. 28. 
    Lanford RE, Guerra B, Lee H, Chavez D, Brasky KM, Bigger CB 2006. Genomic response to interferon-α in chimpanzees: implications of rapid downregulation for hepatitis C kinetics. Hepatology 43:961–72
    [Google Scholar]
  29. 29. 
    Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT et al. 2011. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–85
    [Google Scholar]
  30. 30. 
    Haller O, Arnheiter H, Gresser I, Lindenmann J 1979. Genetically determined, interferon-dependent resistance to influenza virus in mice. J. Exp. Med. 149:601–12
    [Google Scholar]
  31. 31. 
    Horisberger MA, Staeheli P, Haller O 1983. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. PNAS 80:1910–14
    [Google Scholar]
  32. 32. 
    Staeheli P, Haller O, Boll W, Lindenmann J, Weissmann C 1986. Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44:147–58
    [Google Scholar]
  33. 33. 
    Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T et al. 2013. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–66
    [Google Scholar]
  34. 34. 
    Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC et al. 2013. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–62
    [Google Scholar]
  35. 35. 
    Zhang Y, Burke CW, Ryman KD, Klimstra WB 2007. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol. 81:11246–55
    [Google Scholar]
  36. 36. 
    Qi H, Chu V, Wu NC, Chen Z, Truong S et al. 2017. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. PNAS 114:2018–23
    [Google Scholar]
  37. 37. 
    Itsui Y, Sakamoto N, Kurosaki M, Kanazawa N, Tanabe Y et al. 2006. Expressional screening of interferon-stimulated genes for antiviral activity against hepatitis C virus replication. J. Viral Hepat. 13:690–700
    [Google Scholar]
  38. 38. 
    Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G 2012. Systematic identification of type I and type II interferon-induced antiviral factors. PNAS 109:4239–44
    [Google Scholar]
  39. 39. 
    Wilson SJ, Schoggins JW, Zang T, Kutluay SB, Jouvenet N et al. 2012. Inhibition of HIV-1 particle assembly by 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. Cell Host Microbe 12:585–97
    [Google Scholar]
  40. 40. 
    Feng J, Wickenhagen A, Turnbull ML, Rezelj VV, Kreher F et al. 2018. Interferon-stimulated gene (ISG)-expression screening reveals the specific antibunyaviral activity of ISG20. J. Virol. 92:e02140–17
    [Google Scholar]
  41. 41. 
    Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T et al. 2016. Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe 20:392–405
    [Google Scholar]
  42. 42. 
    Dang W, Xu L, Yin Y, Chen S, Wang W et al. 2018. IRF-1, RIG-I and MDA5 display potent antiviral activities against norovirus coordinately induced by different types of interferons. Antiviral Res 155:48–59
    [Google Scholar]
  43. 43. 
    Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L et al. 2012. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology 56:2082–93
    [Google Scholar]
  44. 44. 
    Li J, Ding SC, Cho H, Chung BC, Gale M Jr. et al. 2013. A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. mBio 4:e00385–13
    [Google Scholar]
  45. 45. 
    Subramanian G, Kuzmanovic T, Zhang Y, Peter CB, Veleeparambil M et al. 2018. A new mechanism of interferon's antiviral action: Induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7. PLOS Pathog 14:e1006877
    [Google Scholar]
  46. 46. 
    Fusco DN, Brisac C, John SP, Huang YW, Chin CR et al. 2013. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication. Gastroenterology 144:1438–49.e9
    [Google Scholar]
  47. 47. 
    Zhao H, Lin W, Kumthip K, Cheng D, Fusco DN et al. 2012. A functional genomic screen reveals novel host genes that mediate interferon-alpha's effects against hepatitis C virus. J. Hepatol. 56:326–33
    [Google Scholar]
  48. 48. 
    Barrows NJ, Le Sommer C, Garcia-Blanco MA, Pearson JL 2010. Factors affecting reproducibility between genome-scale siRNA-based screens. J. Biomol. Screen. 15:735–47
    [Google Scholar]
  49. 49. 
    Morgens DW, Deans RM, Li A, Bassik MC 2016. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34:634–36
    [Google Scholar]
  50. 50. 
    Evers B, Jastrzebski K, Heijmans JP, Grernrum W, Beijersbergen RL, Bernards R 2016. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34:631–33
    [Google Scholar]
  51. 51. 
    OhAinle M, Helms L, Vermeire J, Roesch F, Humes D et al. 2018. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. eLife 7:e39823
    [Google Scholar]
  52. 52. 
    Richardson RB, Ohlson MB, Eitson JL, Kumar A, McDougal MB et al. 2018. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat. Microbiol. 3:1214–23
    [Google Scholar]
  53. 53. 
    Chemudupati M, Kenney AD, Bonifati S, Zani A, McMichael TM et al. 2019. From APOBEC to ZAP: diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim. Biophys. Acta Mol. Cell Res. 1866:382–94
    [Google Scholar]
  54. 54. 
    Chesarino NM, Compton AA, McMichael TM, Kenney AD, Zhang L et al. 2017. IFITM3 requires an amphipathic helix for antiviral activity. EMBO Rep 18:1740–51
    [Google Scholar]
  55. 55. 
    Desai TM, Marin M, Chin CR, Savidis G, Brass AL, Melikyan GB 2014. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLOS Pathog 10:e1004048
    [Google Scholar]
  56. 56. 
    Yount JS, Moltedo B, Yang YY, Charron G, Moran TM et al. 2010. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 6:610–14
    [Google Scholar]
  57. 57. 
    Spence JS, He R, Hoffmann HH, Das T, Thinon E et al. 2019. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 15:259–68
    [Google Scholar]
  58. 58. 
    Schneider WM, Chevillotte MD, Rice CM 2014. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32:513–45
    [Google Scholar]
  59. 59. 
    Schoggins JW, Rice CM. 2011. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1:519–25
    [Google Scholar]
  60. 60. 
    Colomer-Lluch M, Gollahon LS, Serra-Moreno R 2016. Anti-HIV factors: targeting each step of HIV's replication cycle. Curr. HIV Res. 14:175–82
    [Google Scholar]
  61. 61. 
    Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B et al. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–95
    [Google Scholar]
  62. 62. 
    Masola V, Bellin G, Gambaro G, Onisto M 2018. Heparanase: a multitasking protein involved in extracellular matrix (ECM) remodeling and intracellular events. Cells 7:236
    [Google Scholar]
  63. 63. 
    Bailey CC, Zhong G, Huang IC, Farzan M 2014. IFITM-family proteins: the cell's first line of antiviral defense. Annu. Rev. Virol. 1:261–83
    [Google Scholar]
  64. 64. 
    Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T et al. 2013. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38:106–18
    [Google Scholar]
  65. 65. 
    Liu SY, Aliyari R, Chikere K, Li G, Marsden MD et al. 2013. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38:92–105
    [Google Scholar]
  66. 66. 
    Doyle T, Moncorge O, Bonaventure B, Pollpeter D, Lussignol M et al. 2018. The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry. Nat. Microbiol. 3:1369–76
    [Google Scholar]
  67. 67. 
    Kutluay SB, Perez-Caballero D, Bieniasz PD 2013. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLOS Pathog 9:e1003214
    [Google Scholar]
  68. 68. 
    Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M 2011. Hexagonal assembly of a restricting TRIM5α protein. PNAS 108:534–39
    [Google Scholar]
  69. 69. 
    Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ 2006. Proteasome inhibitors uncouple rhesus TRIM5α restriction of HIV-1 reverse transcription and infection. PNAS 103:7465–70
    [Google Scholar]
  70. 70. 
    Malim MH, Bieniasz PD. 2012. HIV restriction factors and mechanisms of evasion. Cold Spring Harb. Perspect. Med. 2:a006940
    [Google Scholar]
  71. 71. 
    Pertel T, Hausmann S, Morger D, Zuger S, Guerra J et al. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–65
    [Google Scholar]
  72. 72. 
    Haller O, Staeheli P, Schwemmle M, Kochs G 2015. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol 23:154–63
    [Google Scholar]
  73. 73. 
    Oberman F, Panet A. 1988. Inhibition of transcription of herpes simplex virus immediate early genes in interferon-treated human cells. J. Gen. Virol. 69:61167–77
    [Google Scholar]
  74. 74. 
    Gariano GR, Dell'Oste V, Bronzini M, Gatti D, Luganini A et al. 2012. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLOS Pathog 8:e1002498
    [Google Scholar]
  75. 75. 
    Batra J, Hultquist JF, Liu D, Shtanko O, Von Dollen J et al. 2018. Protein interaction mapping identifies RBBP6 as a negative regulator of Ebola virus replication. Cell 175:1917–30.e13
    [Google Scholar]
  76. 76. 
    Pindel A, Sadler A. 2011. The role of protein kinase R in the interferon response. J. Interferon Cytokine Res. 31:59–70
    [Google Scholar]
  77. 77. 
    Vladimer GI, Gorna MW, Superti-Furga G 2014. IFITs: emerging roles as key anti-viral proteins. Front. Immunol. 5:94
    [Google Scholar]
  78. 78. 
    Diamond MS, Farzan M. 2013. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13:46–57
    [Google Scholar]
  79. 79. 
    Atasheva S, Akhrymuk M, Frolova EI, Frolov I 2012. New PARP gene with an anti-alphavirus function. J. Virol. 86:8147–60
    [Google Scholar]
  80. 80. 
    Atasheva S, Frolova EI, Frolov I 2014. Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J. Virol. 88:2116–30
    [Google Scholar]
  81. 81. 
    Li M, Kao E, Gao X, Sandig H, Limmer K et al. 2012. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 491:125–28
    [Google Scholar]
  82. 82. 
    Mounce BC, Poirier EZ, Passoni G, Simon-Loriere E, Cesaro T et al. 2016. Interferon-induced spermidine-spermine acetyltransferase and polyamine depletion restrict Zika and Chikungunya viruses. Cell Host Microbe 20:167–77
    [Google Scholar]
  83. 83. 
    Wang X, Xuan Y, Han Y, Ding X, Ye K et al. 2019. Regulation of HIV-1 Gag-Pol expression by Shiftless, an inhibitor of programmed −1 ribosomal frameshifting. Cell 176:3625–35.e14
    [Google Scholar]
  84. 84. 
    Balinsky CA, Schmeisser H, Wells AI, Ganesan S, Jin T et al. 2017. IRAV (FLJ11286), an interferon-stimulated gene with antiviral activity against Dengue virus, interacts with MOV10. J. Virol. 91:5e01606–16
    [Google Scholar]
  85. 85. 
    Suzuki Y, Chin WX, Han Q, Ichiyama K, Lee CH et al. 2016. Characterization of RyDEN (C19orf66) as an interferon-stimulated cellular inhibitor against Dengue virus replication. PLOS Pathog 12:1e1005357
    [Google Scholar]
  86. 86. 
    Gizzi AS, Grove TL, Arnold JJ, Jose J, Jangra RK et al. 2018. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558:610–14
    [Google Scholar]
  87. 87. 
    Wei C, Zheng C, Sun J, Luo D, Tang Y et al. 2018. Viperin inhibits enterovirus A71 replication by interacting with viral 2C protein. Viruses 11:13
    [Google Scholar]
  88. 88. 
    Seo JY, Yaneva R, Cresswell P 2011. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 10:534–39
    [Google Scholar]
  89. 89. 
    Paul P, Munz C. 2016. Autophagy and mammalian viruses: roles in immune response, viral replication, and beyond. Adv. Virus Res. 95:149–95
    [Google Scholar]
  90. 90. 
    Zhang Y, Li Z, Ge X, Guo X, Yang H 2011. Autophagy promotes the replication of encephalomyocarditis virus in host cells. Autophagy 7:613–28
    [Google Scholar]
  91. 91. 
    Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L 2003. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98
    [Google Scholar]
  92. 92. 
    Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W et al. 2007. Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35:7096–108
    [Google Scholar]
  93. 93. 
    Chaurasiya KR, McCauley MJ, Wang W, Qualley DF, Wu T et al. 2014. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nat. Chem. 6:28–33
    [Google Scholar]
  94. 94. 
    Chakrabarti A, Jha BK, Silverman RH 2011. New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 31:49–57
    [Google Scholar]
  95. 95. 
    Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R 2011. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J. Interferon Cytokine Res. 31:41–47
    [Google Scholar]
  96. 96. 
    Guo X, Ma J, Sun J, Gao G 2007. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. PNAS 104:151–56
    [Google Scholar]
  97. 97. 
    Espert L, Degols G, Gongora C, Blondel D, Williams BR et al. 2003. ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J. Biol. Chem. 278:16151–58
    [Google Scholar]
  98. 98. 
    Weiss CM, Trobaugh DW, Sun C, Lucas TM, Diamond MS et al. 2018. The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins. mSphere 3:e00209–18
    [Google Scholar]
  99. 99. 
    Neil SJ, Zang T, Bieniasz PD 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–30
    [Google Scholar]
  100. 100. 
    Krapp C, Hotter D, Gawanbacht A, McLaren PJ, Kluge SF et al. 2016. Guanylate binding protein (GBP) 5 is an interferon-inducible inhibitor of HIV-1 infectivity. Cell Host Microbe 19:504–14
    [Google Scholar]
  101. 101. 
    Chen J, Yang YF, Yang Y, Zou P, Chen J et al. 2018. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat. Microbiol. 3:302–9
    [Google Scholar]
  102. 102. 
    Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G 2007. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131:1124–36
    [Google Scholar]
  103. 103. 
    Arimoto KI, Miyauchi S, Stoner SA, Fan JB, Zhang DE 2018. Negative regulation of type I IFN signaling. J. Leukoc. Biol. 103:1099–116
    [Google Scholar]
  104. 104. 
    Pfaller CK, Donohue RC, Nersisyan S, Brodsky L, Cattaneo R 2018. Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLOS Biol 16:e2006577
    [Google Scholar]
  105. 105. 
    Chung H, Calis JJA, Wu X, Sun T, Yu Y et al. 2018. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172:811–24.e14
    [Google Scholar]
  106. 106. 
    Chikuma S, Kanamori M, Mise-Omata S, Yoshimura A 2017. Suppressors of cytokine signaling: potential immune checkpoint molecules for cancer immunotherapy. Cancer Sci 108:574–80
    [Google Scholar]
  107. 107. 
    Basters A, Knobeloch KP, Fritz G 2018. USP18—a multifunctional component in the interferon response. Biosci. Rep. 38:BSR20180250
    [Google Scholar]
  108. 108. 
    Rinkenberger N, Schoggins JW. 2018. Mucolipin-2 cation channel increases trafficking efficiency of endocytosed viruses. mBio 9:e02314–17
    [Google Scholar]
  109. 109. 
    Hackett BA, Cherry S. 2018. Flavivirus internalization is regulated by a size-dependent endocytic pathway. PNAS 115:4246–51
    [Google Scholar]
  110. 110. 
    Mar KB, Rinkenberger NR, Boys IN, Eitson JL, McDougal MB et al. 2018. LY6E mediates an evolutionarily conserved enhancement of virus infection by targeting a late entry step. Nat. Commun. 9:3603
    [Google Scholar]
  111. 111. 
    Yu J, Liang C, Liu SL 2017. Interferon-inducible LY6E protein promotes HIV-1 infection. J. Biol. Chem. 292:4674–85
    [Google Scholar]
  112. 112. 
    Zhao X, Sehgal M, Hou Z, Cheng J, Shu S et al. 2018. Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses. J. Virol. 92:e01535–17
    [Google Scholar]
  113. 113. 
    Zhao X, Guo F, Liu F, Cuconati A, Chang J et al. 2014. Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. PNAS 111:6756–61
    [Google Scholar]
  114. 114. 
    Yu J, Liang C, Liu SL 2019. CD4-dependent modulation of HIV-1 entry by LY6E. J. Virol. 93:7e01866–18
    [Google Scholar]
  115. 115. 
    Ma F, Li B, Liu SY, Iyer SS, Yu Y et al. 2015. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol. 194:1545–54
    [Google Scholar]
  116. 116. 
    Daugherty MD, Malik HS. 2012. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46:677–700.
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015756
Loading
/content/journals/10.1146/annurev-virology-092818-015756
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error