1932

Abstract

Baculoviruses are large DNA viruses of insects that are highly pathogenic in many hosts. In the infection cycle, baculoviruses produce two types of virions. These virion phenotypes are physically and functionally distinct, and each serves a critical role in the biology of the virus. One phenotype, the occlusion-derived virus (ODV), is occluded within a crystallized protein that facilitates oral infection of the host. A large complex of at least nine ODV envelope proteins called infectivity factors are critically important for ODV infection of insect midgut epithelial cells. Viral egress from midgut cells is by budding to produce a second virus phenotype, the budded virus (BV). BV binds, enters, and replicates in most other tissues of the host insect. Cell recognition and entry by BV are mediated by a single major envelope glycoprotein: GP64 in some baculoviruses and F in others. Entry and egress by the two virion phenotypes occur by dramatically different mechanisms and reflect a life cycle in which ODV is specifically adapted for oral infection while BV mediates dissemination of the infection within the animal.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043356
2018-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043356.html?itemId=/content/journals/10.1146/annurev-virology-092917-043356&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Smith GE, Summers MD, Fraser MJ 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3:2156–65
    [Google Scholar]
  2. 2.  Pennock GD, Shoemaker C, Miller LK 1984. Strong and regulated expression of Escherichia coli β-galactosidase in insect cells with a baculovirus vector. Mol. Cell. Biol. 4:399–406
    [Google Scholar]
  3. 3.  O'Reilly DR, Miller LK, Luckow VA 1992. Baculovirus Expression Vectors: A Laboratory Manual New York: W.H. Freeman and Co.
  4. 4.  Cox MM 2012. Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–66
    [Google Scholar]
  5. 5.  Felberbaum RS 2015. The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol. J. 10:702–14
    [Google Scholar]
  6. 6.  Herniou EA, Jehle JA 2007. Baculovirus phylogeny and evolution. Curr. Drug Targets 8:1043–50
    [Google Scholar]
  7. 7.  Williams T, Bergoin M, van Oers MM 2017. Diversity of large DNA viruses of invertebrates. J. Invertebr. Pathol. 147:4–22
    [Google Scholar]
  8. 8. Int. Comm. Taxon. Viruses (ICTV). 2016. Virus taxonomy: 2016 release EC 48, Bp., Hung., Aug., Email Ratif. 2017 (MSL #31)
  9. 9.  Rohrmann GF 2013. Baculovirus Molecular Biology Bethesda, MD: Natl. Cent. Biotechnol. Inf. , 3rd ed..
  10. 10.  Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA et al. 2006. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol. 151:1257–66
    [Google Scholar]
  11. 11.  Hu ZH, Arif BM, Jin F, Martens JW, Chen XW et al. 1998. Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J. Gen. Virol. 79:2841–51
    [Google Scholar]
  12. 12.  Drezen JM, Gauthier J, Josse T, Bezier A, Herniou E, Huguet E 2017. Foreign DNA acquisition by invertebrate genomes. J. Invertebr. Pathol. 147:157–68
    [Google Scholar]
  13. 13.  Theze J, Takatsuka J, Nakai M, Arif B, Herniou EA 2015. Gene acquisition convergence between entomopoxviruses and baculoviruses. Viruses 7:1960–74
    [Google Scholar]
  14. 14.  Milks ML, Washburn JO, Willis LG, Volkman LE, Theilmann DA 2003. Deletion of pe38 attenuates AcMNPV genome replication, budded virus production, and virulence in Heliothis virescens. . Virology 310:224–34
    [Google Scholar]
  15. 15.  Braunagel SC, Summers MD 2007. Molecular biology of the baculovirus occlusion-derived virus envelope. Curr. Drug Targets 8:1084–95
    [Google Scholar]
  16. 16.  Yu IL, Bray D, Lin YC, Lung O 2009. Autographa californica multiple nucleopolyhedrovirus ORF 23 null mutant produces occlusion-derived virions with fewer nucleocapsids. J. Gen. Virol. 90:1499–504
    [Google Scholar]
  17. 17.  Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW et al. 1997. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238:243–53
    [Google Scholar]
  18. 18.  Lynn DE 2003. Comparative susceptibilities of twelve insect cell lines to infection by three baculoviruses. J. Invertebr. Pathol. 82:129–31
    [Google Scholar]
  19. 19.  Ji X, Sutton G, Evans G, Axford D, Owen R, Stuart DI 2010. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J 29:505–14
    [Google Scholar]
  20. 20.  Wang P, Granados RR 2000. Calcofluor disrupts the midgut defense system in insects. Insect Biochem. Mol. Biol. 30:135–43
    [Google Scholar]
  21. 21.  Toprak U, Harris S, Baldwin D, Theilmann DA, Gillott C et al. 2012. The role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic matrix proteins. J. Gen. Virol. 93:744–53
    [Google Scholar]
  22. 22.  Ohba M, Tanada Y 1983. A synergistic factor enhances the in vitro infection of an insect baculovirus. Naturwissenschaften 70:613–14
    [Google Scholar]
  23. 23.  Wang P, Granados RR 1997. An intestinal mucin is the target substrate for a baculovirus enhancin. PNAS 94:6977–82
    [Google Scholar]
  24. 24.  Granados RR, Lawler KA 1981. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108:297–308
    [Google Scholar]
  25. 25.  Kawanishi CY, Summers MD, Stoltz DB, Arnott HJ 1972. Entry of an insect virus in vivo by fusion of viral envelope and microvillus membrane. J. Invertebr. Pathol. 20:104–8
    [Google Scholar]
  26. 26.  Horton HM, Burand JP 1993. Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J. Virol. 67:1860–68
    [Google Scholar]
  27. 27.  Haas-Stapleton EJ, Washburn JO, Volkman LE 2004. P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae. J. Virol. 78:6786–91
    [Google Scholar]
  28. 28.  Faulkner P, Kuzio J, Williams GV, Wilson JA 1997. Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J. Gen. Virol. 78:Pt. 123091–100
    [Google Scholar]
  29. 29.  Kuzio J, Jaques R, Faulkner P 1989. Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173:759–63
    [Google Scholar]
  30. 30.  Williams GV, Rohel DZ, Kuzio J, Faulkner P 1989. A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion-deletion mutants. J. Gen. Virol. 70:187–202
    [Google Scholar]
  31. 31.  Ohkawa T, Washburn JO, Sitapara R, Sid E, Volkman LE 2005. Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115. J. Virol. 79:15258–64
    [Google Scholar]
  32. 32.  Fang M, Nie Y, Harris S, Erlandson MA, Theilmann DA 2009. Autographa californica multiple nucleopolyhedrovirus core gene ac96 encodes a per os infectivity factor (PIF-4). J. Virol. 83:12569–78
    [Google Scholar]
  33. 33.  Sparks WO, Rohlfing A, Bonning BC 2011. A peptide with similarity to baculovirus ODV-E66 binds the gut epithelium of Heliothis virescens and impedes infection with Autographa californica multiple nucleopolyhedrovirus. J. Gen. Virol. 92:1051–60
    [Google Scholar]
  34. 34.  Nie Y, Fang M, Erlandson MA, Theilmann DA 2012. Analysis of the Autographa californica multiple nucleopolyhedrovirus overlapping gene pair lef3 and ac68 reveals that AC68 is a per os infectivity factor and that LEF3 is critical, but not essential, for virus replication. J. Virol. 86:3985–99
    [Google Scholar]
  35. 35.  Jiantao L, Zhu L, Zhang S, Deng Z, Huang Z et al. 2016. The Autographa californica multiple nucleopolyhedrovirus ac110 gene encodes a new per os infectivity factor. Virus Res 221:30–37
    [Google Scholar]
  36. 36.  Javed MA, Biswas S, Willis LG, Harris S, Pritchard C et al. 2017. Autographa californica multiple nucleopolyhedrovirus AC83 is a per os infectivity factor (PIF) protein required for occlusion-derived virus (ODV) and budded virus nucleocapsid assembly as well as assembly of the PIF complex in ODV envelopes. J. Virol. 91:e02115–16
    [Google Scholar]
  37. 37.  Wang X, Liu X, Makalliwa GA, Li J, Wang H et al. 2017. Per os infectivity factors: a complicated and evolutionarily conserved entry machinery of baculovirus. Sci. China Life Sci. 60:806–15
    [Google Scholar]
  38. 38.  Huang Z, Pan M, Zhu S, Zhang H, Wu W et al. 2017. The Autographa californica nucleopolyhedrovirus ac83 gene contains a cis-acting element that is essential for nucleocapsid assembly. J. Virol. 91:e02110–16
    [Google Scholar]
  39. 39.  Peng K, van Oers MM, Hu Z, van Lent JWM, Vlak JM 2010. Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus. J. Virol. 84:9497–504
    [Google Scholar]
  40. 40.  Peng K, van Lent JW, Boeren S, Fang M, Theilmann DA et al. 2012. Characterization of novel components of the baculovirus per os infectivity factor (PIF) complex. J. Virol. 86:4981–88
    [Google Scholar]
  41. 41.  Boogaard B, van Lent JWM, Theilmann DA, Erlandson MA, van Oers MM 2017. Baculoviruses require an intact ODV entry-complex to resist proteolytic degradation of per os infectivity factors by co-occluded proteases from the larval host. J. Gen. Virol. 98:3101–10
    [Google Scholar]
  42. 42.  Chen YR, Zhong S, Fei Z, Hashimoto Y, Xiang JZ et al. 2013. The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Trichoplusia ni cells. J. Virol. 87:6391–405
    [Google Scholar]
  43. 43.  Zheng Q, Shen Y, Kon X, Zhang J, Feng M, Wu X 2017. Protein-protein interactions of the baculovirus per os infectivity factors in the PIF complex. J. Gen. Virol. 98:853–61
    [Google Scholar]
  44. 44.  Granados RR 1978. Early events in the infection of Heliothis zea midgut cells by a baculovirus. Virology 90:170–74
    [Google Scholar]
  45. 45.  Goley ED, Ohkawa T, Mancuso J, Woodruff JB, D'Alessio JA et al. 2006. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314:464–67
    [Google Scholar]
  46. 46.  Goley ED, Rammohan A, Znameroski EA, Firat-Karalar EN, Sept D, Welch MD 2010. An actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability. PNAS 107:8159–64
    [Google Scholar]
  47. 47.  Ohkawa T, Volkman LE, Welch MD 2010. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J. Cell Biol. 190:187–95
    [Google Scholar]
  48. 48.  Au S, Panté N 2012. Nuclear transport of baculovirus: revealing the nuclear pore complex passage. J. Struct. Biol. 177:90–98
    [Google Scholar]
  49. 49.  Au S, Wu W, Pante N 2013. Baculovirus nuclear import: open, nuclear pore complex (NPC) sesame. Viruses 5:1885–900
    [Google Scholar]
  50. 50.  Au S, Wu W, Zhou L, Theilmann DA, Pante N 2016. A new mechanism for nuclear import by actin-based propulsion used by a baculovirus nucleocapsid. J. Cell Sci. 129:2905–11
    [Google Scholar]
  51. 51.  Washburn JO, Chan EY, Volkman LE, Aumiller JJ, Jarvis DL 2003. Early synthesis of budded virus envelope fusion protein GP64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens. J. Virol. 77:280–90
    [Google Scholar]
  52. 52.  Guan Z, Zhong L, Li C, Wu W, Yuan M, Yang K 2016. The Autographa californica multiple nucleopolyhedrovirus ac54 gene is crucial for the localization of the major capsid protein VP39 at the site of nucleocapsid assembly. J. Virol. 90:4115–26
    [Google Scholar]
  53. 53.  Marek M, Merten OW, Galibert L, Vlak JM, van Oers MM 2011. Baculovirus VP80 protein and the F-actin cytoskeleton interact connecting the viral replication factory with the nuclear periphery. J. Virol. 85:5350–62
    [Google Scholar]
  54. 54.  Rosinski M, Reid S, Nielsen LK 2002. Kinetics of baculovirus replication and release using real-time quantitative polymerase chain reaction. Biotechnol. Bioeng. 77:476–80
    [Google Scholar]
  55. 55.  Braunagel SC, Russell WK, Rosas-Acosta G, Russell DH, Summers MD 2003. Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. PNAS 100:9797–802
    [Google Scholar]
  56. 56.  Hou D, Zhang L, Deng F, Fang W, Wang R et al. 2013. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J. Virol. 87:829–39
    [Google Scholar]
  57. 57.  Wang R, Deng F, Hou D, Zhao Y, Guo L et al. 2010. Proteomics of the Autographa californica nucleopolyhedrovirus budded virions. J. Virol. 84:7233–42
    [Google Scholar]
  58. 58.  Shi Y, Li K, Tang P, Li Y, Zhou Q et al. 2015. Three-dimensional visualization of the Autographa californica multiple nucleopolyhedrovirus occlusion-derived virion envelopment process gives new clues as to its mechanism. Virology 476:298–303
    [Google Scholar]
  59. 59.  Tanada Y, Hess RT 1976. Development of a nuclear polyhedrosis virus in midgut cells and penetration of the virus into the hemocoel of the armyworm, Pseudaletia unipuncta. J. Invertebr. Pathol. 28:67–76
    [Google Scholar]
  60. 60.  Braunagel SC, Burks JK, Rosas-Acosta G, Harrison RL, Ma H, Summers MD 1999. Mutations within the Autographa californica nucleopolyhedrovirus FP25K gene decrease the accumulation of ODV-E66 and alter its intranuclear transport. J. Virol. 73:8559–70
    [Google Scholar]
  61. 61.  Braunagel SC, Cox V, Summers MD 2009. Baculovirus data suggest a common but multifaceted pathway for sorting proteins to the inner nuclear membrane. J. Virol. 83:1280–88
    [Google Scholar]
  62. 62.  Braunagel SC, He H, Ramamurthy P, Summers MD 1996. Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222:100–14
    [Google Scholar]
  63. 63.  Braunagel SC, Elton DM, Ma H, Summers MD 1996. Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope: ODV-E56. Virology 217:97–110
    [Google Scholar]
  64. 64.  Braunagel SC, Summers MD 1994. Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids: structural proteins, antigens, lipid and fatty acid profiles. Virology 202:315–28
    [Google Scholar]
  65. 65.  Braunagel SC, Williamson ST, Ding Q, Wu X, Summers MD 2007. Early sorting of inner nuclear membrane proteins is conserved. PNAS 104:9307–12
    [Google Scholar]
  66. 66.  Burks JK, Summers MD, Braunagel SC 2007. BV/ODV-E26: a palmitoylated, multifunctional structural protein of Autographa californica nucleopolyhedrovirus. Virology 361:194–203
    [Google Scholar]
  67. 67.  Braunagel SC, Williamson ST, Saksena S, Zhong Z, Russell WK et al. 2004. Trafficking of ODV-E66 is mediated via a sorting motif and other viral proteins: facilitated trafficking to the inner nuclear membrane. PNAS 101:8372–77
    [Google Scholar]
  68. 68.  Hu Z, Yuan M, Wu W, Liu C, Yang K, Pang Y 2010. Autographa californica multiple nucleopolyhedrovirus ac76 is involved in intranuclear microvesicle formation. J. Virol. 84:7437–47
    [Google Scholar]
  69. 69.  Wei D, Wang Y, Zhang X, Hu Z, Yuan M, Yang K 2014. Autographa californica nucleopolyhedrovirus Ac76: a dimeric type II integral membrane protein that contains an inner nuclear membrane-sorting motif. J. Virol. 88:1090–103
    [Google Scholar]
  70. 70.  Yuan M, Huang Z, Wei D, Hu Z, Yang K, Pang Y 2011. Identification of Autographa californica nucleopolyhedrovirus ac93 as a core gene and its requirement for intranuclear microvesicle formation and nuclear egress of nucleocapsids. J. Virol. 85:11664–74
    [Google Scholar]
  71. 71.  Fraser MJ 1986. Ultrastructural observations of virion maturation in Autographa californica nuclear polyhedrosis virus infected Spodoptera frugiperda cell cultures. J. Ultrastruct. Mol. Struct. Res. 95:189–95
    [Google Scholar]
  72. 72.  Yuan M, Wu W, Liu C, Wang Y, Hu Z et al. 2008. A highly conserved baculovirus gene p48 (ac103) is essential for BV production and ODV envelopment. Virology 379:87–96
    [Google Scholar]
  73. 73.  McCarthy CB, Theilmann DA 2008. AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene. Virology 375:277–91
    [Google Scholar]
  74. 74.  McCarthy CB, Dai X, Donly C, Theilmann DA 2008. Autographa californica multiple nucleopolyhedrovirus ac142, a core gene that is essential for BV production and ODV envelopment. Virology 372:325–39
    [Google Scholar]
  75. 75.  Song J, Wang R, Deng F, Wang H, Hu Z 2008. Functional studies of per os infectivity factors of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. J. Gen. Virol. 89:2331–38
    [Google Scholar]
  76. 76.  Harrison RL, Sparks WO, Bonning BC 2010. Autographa californica multiple nucleopolyhedrovirus ODV-E56 envelope protein is required for oral infectivity and can be substituted functionally by Rachiplusia ou multiple nucleopolyhedrovirus ODV-E56. J. Gen. Virol. 91:1173–82
    [Google Scholar]
  77. 77.  Volkman LE, Talhouk SN, Oppenheimer DI, Charlton CA 1992. Nuclear F-actin: a functional component of baculovirus-infected lepidopteran cells?. J. Cell Sci. 103:15–22
    [Google Scholar]
  78. 78.  Ke J, Wang J, Deng R, Wang X 2008. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation. Virology 374:421–31
    [Google Scholar]
  79. 79.  Wu W, Passarelli AL 2010. Autographa californica M nucleopolyhedrovirus Ac92 (ORF92, P33) is required for budded virus production and multiply-enveloped occlusion-derived virus formation. J. Virol. 84:12351–61
    [Google Scholar]
  80. 80.  Feng G, Thumbi DK, de Jong J, Hodgson JJ, Arif BM et al. 2012. Selection and characterization of Autographa californica multiple nucleopolyhedrovirus DNA polymerase mutations. J. Virol. 86:13576–88
    [Google Scholar]
  81. 81.  Xu YP, Gu LZ, Lou YH, Cheng RL, Xu HJ et al. 2012. A baculovirus isolated from the wild silkworm encompasses the host ranges of Bombyx mori nucleopolyhedrosis virus and Autographa californica multiple nucleopolyhedrovirus in cultured cells. J. Gen. Virol. 93:Pt. 112480–89
    [Google Scholar]
  82. 82.  Washburn JO, Trudeau D, Wong JF, Volkman LE 2003. Early pathogenesis of Autographa californica multiple nucleopolyhedrovirus and Helicoverpa zea single nucleopolyhedrovirus in Heliothis virescens: a comparison of the ‘M’ and ‘S’ strategies for establishing fatal infection. J. Gen. Virol. 84:343–51
    [Google Scholar]
  83. 83.  Lopez-Ferber M, Simon O, Williams T, Caballero P 2003. Defective or effective? Mutualistic interactions between virus genotypes. Proc. Biol. Sci. 270:2249–55
    [Google Scholar]
  84. 84.  Minion FC, Coons LB, Broome JR 1979. Characterization of the polyhedral envelope of the nuclear polyhedrosis virus of Heliothis virescens. J. Invertebr. . Pathol 34:303–7
    [Google Scholar]
  85. 85.  Lee SY, Poloumienko A, Belfry S, Qu X, Chen W et al. 1996. A common pathway for p10 and calyx proteins in progressive stages of polyhedron envelope assembly in AcMNPV-infected Spodoptera frugiperda larvae. Arch. Virol. 141:1247–58
    [Google Scholar]
  86. 86.  Gombart AF, Pearson MN, Rohrmann GF, Beaudreau GS 1989. A baculovirus polyhedral envelope-associated protein: genetic location, nucleotide sequence, and immunocytochemical characterization. Virology 169:182–93
    [Google Scholar]
  87. 87.  Whitt MA, Manning JS 1988. A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. Virology 163:33–42
    [Google Scholar]
  88. 88.  Vlak JM, Klinkenberg FA, Zaal K, Usmany M, Klinge-Roode EC, Geervliet J 1988. Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-β-galactosidase fusion gene. J. Gen. Virol. 69:765–76
    [Google Scholar]
  89. 89.  Ros VI, van Houte S, Hemerik L, van Oers MM 2015. Baculovirus-induced tree-top disease: how extended is the role of egt as a gene for the extended phenotype?. Mol. Ecol. 24:249–58
    [Google Scholar]
  90. 90.  Hoover K, Grove M, Gardner M, Hughes DP, McNeil J, Slavicek J 2011. A gene for an extended phenotype. Science 333:1401
    [Google Scholar]
  91. 91.  Kamita SG, Nagasaka K, Chua JW, Shimada T, Mita K et al. 2005. A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. PNAS 102:2584–89
    [Google Scholar]
  92. 92.  Hu Y 2006. Baculovirus vectors for gene therapy. Adv. Virus Res. 68:287–320
    [Google Scholar]
  93. 93.  Hu YC 2008. Baculoviral vectors for gene delivery: a review. Curr. Gene Ther. 8:56–65
    [Google Scholar]
  94. 94.  Boyce FM, Bucher NLR 1996. Baculovirus-mediated gene transfer into mammalian cells. PNAS 93:2348–52
    [Google Scholar]
  95. 95.  Deng F, Wang R, Fang M, Jiang Y, Xu X et al. 2007. Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100. J. Virol. 81:9377–85
    [Google Scholar]
  96. 96.  Volkman LE, Goldsmith PA, Hess RT, Faulkner P 1984. Neutralization of budded Autographa californica NPV by a monoclonal antibody: identification of the target antigen. Virology 133:354–62
    [Google Scholar]
  97. 97.  Guarino LA, Smith G, Dong W 1995. Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Cell 80:301–9
    [Google Scholar]
  98. 98.  Haas AL, Katzung DL, Reback PM, Guarino LA 1996. Functional characterization of the ubiquitin variant encoded by the baculovirus Autographa californica. . Biochemistry 35:5385–94
    [Google Scholar]
  99. 99.  Reilly LM, Guarino LA 1996. The viral ubiquitin gene of Autographa californica nuclear polyhedrosis virus is not essential for viral replication. Virology 218:243–47
    [Google Scholar]
  100. 100.  Biswas S, Willis LG, Fang M, Nie Y, Theilmann DA 2018. Autographa californica nucleopolyhedrovirus AC141 (Exon0), a potential E3 ubiquitin ligase, interacts with viral ubiquitin and AC66 to facilitate nucleocapsid egress. J. Virol. 92:e01713–17
    [Google Scholar]
  101. 101.  Katsuma S, Tsuchida A, Matsuda-Imai N, Kang W, Shimada T 2011. Role of the ubiquitin-proteasome system in Bombyx mori nucleopolyhedrovirus infection. J. Gen. Virol. 92:699–705
    [Google Scholar]
  102. 102.  Backovic M, Jardetzky TS 2009. Class III viral membrane fusion proteins. Curr. Opin. Struct. Biol. 19:189–96
    [Google Scholar]
  103. 103.  Garry CE, Garry RF 2008. Proteomics computational analyses suggest that baculovirus GP64 superfamily proteins are class III penetrenes. Virol. J. 5:28
    [Google Scholar]
  104. 104.  Kadlec J, Loureiro S, Abrescia NG, Stuart DI, Jones IM 2008. The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat. Struct. Mol. Biol. 15:1024–30
    [Google Scholar]
  105. 105.  Wang M, Wang J, Yin F, Tan Y, Deng F et al. 2014. Unraveling the entry mechanism of baculoviruses and evolutionary implications. J. Virol. 88:2301–11
    [Google Scholar]
  106. 106.  Pearson MN, Rohrmann GF 2002. Transfer, incorporation, and substitution of envelope fusion proteins among members of the Baculoviridae, Orthomyxoviridae, and Metaviridae (insect retrovirus) families. J. Virol. 76:5301–4
    [Google Scholar]
  107. 107.  Garry CE, Garry RF 2009. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (gamma penetrene). Virol. J. 6:145
    [Google Scholar]
  108. 108.  Backovic M, Jardetzky TS 2011. Class III viral membrane fusion proteins. Adv. Exp. Med. Biol. 714:91–101
    [Google Scholar]
  109. 109.  Sun X, Belouzard S, Whittaker GR 2008. Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein. J. Biol. Chem. 283:6418–27
    [Google Scholar]
  110. 110.  Dong S, Blissard GW 2012. Functional analysis of the Autographa californica multiple nucleopolyhedrovirus GP64 terminal fusion loops and interactions with membranes. J. Virol. 86:9617–28
    [Google Scholar]
  111. 111.  Falanga A, Tarallo R, Vitiello G, Vitiello M, Perillo E et al. 2012. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus. PLOS ONE 7:e32186
    [Google Scholar]
  112. 112.  Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC 2006. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–20
    [Google Scholar]
  113. 113.  Li Z, Blissard GW 2010. Baculovirus GP64 disulfide bonds: the intermolecular disulfide bond of AcMNPV GP64 is not essential for membrane fusion and virion budding. J. Virol. 84:8584–89
    [Google Scholar]
  114. 114.  Zanotto PM, Kessing BD, Maruniak JE 1993. Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J. Invertebr. Pathol. 62:147–64
    [Google Scholar]
  115. 115.  Wang Q 2015. Structural and functional analysis of the baculovirus envelope fusion protein F PhD Thesis, Wageningen University
  116. 116.  Lung OY, Cruz-Alvarez M, Blissard GW 2003. Ac23, an envelope fusion protein homolog in the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, is a viral pathogenicity factor. J. Virol. 77:328–39
    [Google Scholar]
  117. 117.  Lung O, Westenberg M, Vlak JM, Zuidema D, Blissard GW 2002. Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from Group II NPVs are functionally analogous to AcMNPV GP64. J. Virol. 76:5729–36
    [Google Scholar]
  118. 118.  Pearson MN, Groten C, Rohrmann GF 2000. Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. J. . Virol 74:6126–31
    [Google Scholar]
  119. 119.  Rohrmann GF, Karplus PA 2001. Relatedness of baculovirus and gypsy retrotransposon envelope proteins. BMC Evol. Biol. 1:1
    [Google Scholar]
  120. 120.  Malik HS, Henikoff S, Eickbush TH 2000. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–18
    [Google Scholar]
  121. 121.  Pearson MN, Rohrmann GF 2006. Envelope gene capture and insect retrovirus evolution: the relationship between errantivirus and baculovirus envelope proteins. Virus Res 118:7–15
    [Google Scholar]
  122. 122.  Lung O, Blissard GW 2005. A cellular Drosophila melanogaster protein with similarity to baculovirus F envelope fusion proteins. J. Virol. 79:7979–89
    [Google Scholar]
  123. 123.  Malik HS, Henikoff S 2005. Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. . PLOS Genet 1:e44
    [Google Scholar]
  124. 124.  Westenberg M, Vlak JM 2008. GP64 of group I nucleopolyhedroviruses cannot readily rescue infectivity of group II F-null nucleopolyhedroviruses. J. Gen. Virol. 89:424–31
    [Google Scholar]
  125. 125.  Wang M, Tan Y, Yin F, Deng F, Vlak JM et al. 2008. The F protein of Helicoverpa armigera single nucleopolyhedrovirus can be substituted functionally with its homologue from Spodoptera exigua multiple nucleopolyhedrovirus. J. Gen. Virol. 89:791–98
    [Google Scholar]
  126. 126.  O'Flynn NM, Patel A, Kadlec J, Jones IM 2013. Improving promiscuous mammalian cell entry by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. Biosci. Rep. 33:e00003
    [Google Scholar]
  127. 127.  Marheineke K, Grunewald S, Christie W, Reilander H 1998. Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett 441:49–52
    [Google Scholar]
  128. 128.  Wickham T, Granados RR, Wood HA, Hammer DA, Shuler ML 1990. General analysis of receptor-mediated viral attachment to cell surfaces. Biophys. J. 58:1501–16
    [Google Scholar]
  129. 129.  Wang P, Hammer DA, Granados RR 1997. Binding and fusion of Autographa californica nucleopolyhedrovirus to cultured insect cells. J. Gen. Virol. 78:3081–89
    [Google Scholar]
  130. 130.  Wickham TJ, Shuler ML, Hammer DA, Granados RR, Wood HA 1992. Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus attachment to different insect cell lines. J. Gen. Virol. 73:3185–94
    [Google Scholar]
  131. 131.  Kamiya K, Kobayashi J, Yoshimura T, Tsumoto K 2010. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. Biochim. Biophys. Acta 1798:1625–31
    [Google Scholar]
  132. 132.  Schlegel R, Tralka TS, Willingham MC, Pastan I 1983. Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV-binding site?. Cell 32:639–46
    [Google Scholar]
  133. 133.  Coil DA, Miller AD 2004. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J. Virol. 78:10920–26
    [Google Scholar]
  134. 134.  Kim IS, Jenni S, Stanifer ML, Roth E, Whelan SP et al. 2017. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein. PNAS 114:E28–36
    [Google Scholar]
  135. 135.  Albertini AA, Baquero E, Ferlin A, Gaudin Y 2012. Molecular and cellular aspects of rhabdovirus entry. Viruses 4:117–39
    [Google Scholar]
  136. 136.  Tani H, Nishijima M, Ushijima H, Miyamura T, Matsuura Y 2001. Characterization of cell-surface determinants important for baculovirus infection. Virology 279:343–53
    [Google Scholar]
  137. 137.  Zhou J, Blissard GW 2008. Identification of a GP64 subdomain involved in receptor binding by budded virions of the baculovirus AcMNPV. J. Virol. 82:4449–60
    [Google Scholar]
  138. 138.  Nishigami M, Mori T, Tomita M, Takiguchi K, Tsumoto K 2017. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins. Colloids Surf. B Biointerfaces 155:248–56
    [Google Scholar]
  139. 139.  Kamiya K, Tsumoto K, Arakawa S, Shimizu S, Morita I et al. 2010. Preparation of connexin43-integrated giant liposomes by a baculovirus expression-liposome fusion. Biotechnol. Bioeng. 107:836–43
    [Google Scholar]
  140. 140.  Hefferon K, Oomens A, Monsma S, Finnerty C, Blissard GW 1999. Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258:455–68
    [Google Scholar]
  141. 141.  Volkman LE, Goldsmith PA 1985. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: inhibition of entry by adsorptive endocytosis. Virology 143:185–95
    [Google Scholar]
  142. 142.  Long G, Pan X, Kormelink R, Vlak JM 2006. Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J. Virol. 80:8830–33
    [Google Scholar]
  143. 143.  Kataoka C, Kaname Y, Taguwa S, Abe T, Fukuhara T et al. 2012. Baculovirus GP64-mediated entry into mammalian cells. J. Virol. 86:2610–20
    [Google Scholar]
  144. 144.  Yue Q, Yu Q, Yang Q, Xu Y, Guo Y et al. 2018. Distinct roles of cellular ESCRT-I and ESCRT-III proteins in efficient entry and egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. J. Virol. 92:e01636–17
    [Google Scholar]
  145. 145.  Guo Y, Yue Q, Gao J, Wang Z, Chen YR et al. 2017. Roles of cellular NSF protein in entry and nuclear egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. J. Virol. 91:e01111–17
    [Google Scholar]
  146. 146.  Li Z, Blissard G 2015. The vacuolar protein sorting genes in insects: a comparative genome view. Insect Biochem. Mol. Biol. 62:211–25
    [Google Scholar]
  147. 147.  Li Z, Blissard GW 2012. Cellular VPS4 is required for efficient entry and egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. J. Virol. 86:459–72
    [Google Scholar]
  148. 148.  Henne WM, Buchkovich NJ, Emr SD 2011. The ESCRT pathway. Dev. Cell 21:77–91
    [Google Scholar]
  149. 149.  Hurley JH 2015. ESCRTs are everywhere. EMBO J 34:2398–407
    [Google Scholar]
  150. 150.  Chen BJ, Lamb RA 2008. Mechanisms for enveloped virus budding: Can some viruses do without an ESCRT?. Virology 372:221–32
    [Google Scholar]
  151. 151.  Votteler J, Sundquist WI 2013. Virus budding and the ESCRT pathway. Cell Host Microbe 14:232–41
    [Google Scholar]
  152. 152.  Shtanko O, Nikitina RA, Altuntas CZ, Chepurnov AA, Davey RA 2014. Crimean-Congo hemorrhagic fever virus entry into host cells occurs through the multivesicular body and requires ESCRT regulators. PLOS Pathog 10:e1004390
    [Google Scholar]
  153. 153.  Veettil MV, Kumar B, Ansari MA, Dutta D, Iqbal J et al. 2016. ESCRT-0 component Hrs promotes macropinocytosis of Kaposi's sarcoma-associated herpesvirus in human dermal microvascular endothelial cells. J. Virol. 90:3860–72
    [Google Scholar]
  154. 154.  Pasqual G, Rojek JM, Masin M, Chatton JY, Kunz S 2011. Old World arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLOS Pathog 7:e1002232
    [Google Scholar]
  155. 155.  Luyet PP, Falguieres T, Pons V, Pattnaik AK, Gruenberg J 2008. The ESCRT-I subunit TSG101 controls endosome-to-cytosol release of viral RNA. Traffic 9:2279–90
    [Google Scholar]
  156. 156.  Silva-Ayala D, Lopez T, Gutierrez M, Perrimon N, Lopez S, Arias CF 2013. Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. PNAS 110:10270–75
    [Google Scholar]
  157. 157.  Blissard GW, Wenz JR 1992. Baculovirus GP64 envelope glycoprotein is sufficient to mediate pH dependent membrane fusion. J. Virol. 66:6829–35
    [Google Scholar]
  158. 158.  Harrison SC 2015. Viral membrane fusion. Virology 479–80:498–507
    [Google Scholar]
  159. 159.  Zhou J, Blissard GW 2006. Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein. Virology 352:427–37
    [Google Scholar]
  160. 160.  Li Z, Blissard GW 2011. The AcMNPV GP64 protein: roles of histidine residues in triggering membrane fusion and fusion pore expansion. J. Virol. 85:12492–504
    [Google Scholar]
  161. 161.  White JM, Delos SE, Brecher M, Schornberg K 2008. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 43:189–219
    [Google Scholar]
  162. 162.  Li Z, Blissard GW 2009. The pre-transmembrane domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein is critical for membrane fusion and virus infectivity. J. Virol. 83:10993–1004
    [Google Scholar]
  163. 163.  Li Z, Blissard GW 2009. The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) GP64 protein: analysis of transmembrane (TM) domain length and sequence requirements J. Virol 83:4447–61
    [Google Scholar]
  164. 164.  Li Z, Blissard GW 2008. Functional analysis of the transmembrane (TM) domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein: substitution of heterologous TM domains. J. Virol. 82:3329–41
    [Google Scholar]
  165. 165.  Yu Q, Blissard GW, Liu TX, Li Z 2015. Autographa californica multiple nucleopolyhedrovirus GP64 protein: analysis of domain I and V amino acid interactions and membrane fusion activity. Virology 488:259–70
    [Google Scholar]
  166. 166.  Plonsky I, Cho MS, Oomens AGP, Blissard GW, Zimmerberg J 1999. An analysis of the role of the target membrane on the gp64-induced fusion pore. Virology 253:65–76
    [Google Scholar]
  167. 167.  Plonsky I, Kingsley DH, Rashtian A, Blank PS, Zimmerberg J 2008. Initial size and dynamics of viral fusion pores are a function of the fusion protein mediating membrane fusion. Biol. Cell 100:377–86
    [Google Scholar]
  168. 168.  Plonsky I, Zimmerberg J 1996. The initial fusion pore induced by baculovirus GP64 is large and forms quickly. J. Cell Biol. 135:1831–39
    [Google Scholar]
  169. 169.  Markovic I, Pulyaeva H, Sokoloff A, Chernomordik LV 1998. Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates. J. Cell Biol. 143:1155–66
    [Google Scholar]
  170. 170.  Charlton CA, Volkman LE 1991. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. J. Virol. 65:1219–27
    [Google Scholar]
  171. 171.  Roncarati R, Knebel-Moersdorf D 1997. Identification of the early actin-rearrangement-inducing factor gene, arif-1, from Autographa californica multicapsid nuclear polyhedrosis virus. J. Virol. 71:7933–41 Erratum. 1998 J. Virol. 72:888–89
    [Google Scholar]
  172. 172.  Dreschers S, Roncarati R, Knebel-Moersdorf D 2001. Actin rearrangement-inducing factor of baculoviruses is tyrosine phosphorylated and colocalizes to F-actin at the plasma membrane. J. Virol. 75:3771–78
    [Google Scholar]
  173. 173.  Braunagel SC, Guidry PA, Rosas-Acosta G, Engelking L, Summers MD 2001. Identification of BV/ODV-C42, an Autographa californica nucleopolyhedrovirus orf101-encoded structural protein detected in infected-cell complexes with ODV-EC27 and p78/83. J. Virol. 75:12331–38
    [Google Scholar]
  174. 174.  Li K, Wang Y, Bai H, Wang Q, Song J et al. 2010. The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization. J. Virol. 84:7857–68
    [Google Scholar]
  175. 175.  Wang Y, Zhang Y, Han S, Hu X, Zhou Y et al. 2015. Identification of a novel regulatory sequence of actin nucleation promoting factor encoded by Autographa californica multiple nucleopolyhedrovirus. J. Biol. Chem. 290:9533–41
    [Google Scholar]
  176. 176.  Mueller J, Pfanzelter J, Winkler C, Narita A, Le Clainche C et al. 2014. Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion. PLOS Biol 12:e1001765
    [Google Scholar]
  177. 177.  Fang Z, Li C, Wu W, Yuan M, Yang K 2016. The Autographa californica multiple nucleopolyhedrovirus Ac132 plays a role in nuclear entry. J. Gen. Virol. 97:3030–38
    [Google Scholar]
  178. 178.  Summers MD, Arnott HJ 1969. Ultrastructural studies on inclusion formation and virus occlusion in nuclear polyhedrosis and granulosis virus-infected cells of Trichoplusia ni (Hubner). J. Ultrastruct. Res. 28:462–80
    [Google Scholar]
  179. 179.  Summers MD 1971. Electron microscopic observations on granulosis virus entry, uncoating and replication processes during infection of the midgut cells of Trichoplusia ni. J. Ultrastruct. . Res 35:606–25
    [Google Scholar]
  180. 180.  Fang M, Dai X, Theilmann DA 2007. Autographa californica multiple nucleopolyhedrovirus EXON0 (ORF141) is required for efficient egress of nucleocapsids from the nucleus. J. Virol. 81:9859–69
    [Google Scholar]
  181. 181.  Williams GV, Faulkner P 1997. Cytological changes and viral morphogenesis during baculovirus infection. The Baculoviruses LK Miller 61–108 New York: Plenum Press
    [Google Scholar]
  182. 182.  Biswas S, Blissard GW, Theilmann DA 2016. Trichoplusia ni Kinesin-1 associates with Autographa californica multiple nucleopolyhedrovirus nucleocapsid proteins and is required for production of budded virus. J. Virol. 90:3480–95
    [Google Scholar]
  183. 183.  Danquah JO, Botchway S, Jeshtadi A, King LA 2011. Direct interaction of baculovirus capsid proteins VP39 and EXON0 with Kinesin-1 in insect cells determined by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy. J. Virol. 86:844–53
    [Google Scholar]
  184. 184.  Oomens AGP, Blissard GW 1999. Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254:297–314
    [Google Scholar]
  185. 185.  de Jong J, Theilmann DA, Arif BM, Krell PJ 2011. Immediate-early protein ME53 forms foci and colocalizes with GP64 and the major capsid protein VP39 at the cell membranes of Autographa californica multiple nucleopolyhedrovirus-infected cells. J. Virol. 85:9696–707
    [Google Scholar]
  186. 186.  de Jong J, Arif BM, Theilmann DA, Krell PJ 2009. Autographa californica multiple nucleopolyhedrovirus me53 (ac140) is a non-essential gene required for efficient budded virus production. J. Virol. 83:7440–48
    [Google Scholar]
  187. 187.  Adams JR, Bonami JR, eds. 1991. Atlas of Invertebrate Viruses Boca Raton, FL: CRC Press
  188. 188.  Wang Q, Bosch BJ, Vlak JM, van Oers MM, Rottier PJ, van Lent JW 2016. Budded baculovirus particle structure revisited. J. Invertebr. Pathol. 134:15–22
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043356
Loading
/content/journals/10.1146/annurev-virology-092917-043356
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error