1932

Abstract

Viruses have evolved intricate mechanisms to gain entry into the host cell. Identification of host proteins that serve as viral receptors has enabled insights into virus particle internalization, host and tissue tropism, and viral pathogenesis. In this review we discuss the most commonly employed methods for virus receptor discovery, specifically highlighting the use of forward genetic screens in human haploid cells. The ability to generate true knockout alleles at high saturation provides a sensitive means to study virus-host interactions. To illustrate the power of such haploid genetic screens, we highlight the discovery of the lysosomal proteins NPC1 and LAMP1 as intracellular receptors for Ebola virus and Lassa virus, respectively. From these studies emerges the notion that receptor usage by these viruses is highly dynamic, involving a programmed switch from cell surface receptor to intracellular receptor. Broad application of genetic knockout approaches will chart functional landscapes of receptors and endocytic pathways hijacked by viruses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100114-055119
2015-11-09
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/virology/2/1/annurev-virology-100114-055119.html?itemId=/content/journals/10.1146/annurev-virology-100114-055119&mimeType=html&fmt=ahah

Literature Cited

  1. Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. 1.  2013. Dual host-virus arms races shape an essential housekeeping protein. PLOS Biol. 11:e1001571 [Google Scholar]
  2. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E. 2.  et al. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–18 [Google Scholar]
  3. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR. 3.  et al. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–77 [Google Scholar]
  4. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C. 4.  et al. 1996. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–25 [Google Scholar]
  5. Ren RB, Costantini F, Gorgacz EJ, Lee JJ, Racaniello VR. 5.  1990. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353–62 [Google Scholar]
  6. Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC. 6.  et al. 2013. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501:237–41 [Google Scholar]
  7. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK. 7.  et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–54 [Google Scholar]
  8. Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA. 8.  et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–54 [Google Scholar]
  9. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D. 9.  et al. 2007. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446:92–96 [Google Scholar]
  10. Li F. 10.  2013. Receptor recognition and cross-species infections of SARS coronavirus. Antivir. Res. 100:246–54 [Google Scholar]
  11. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 11.  2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367:1814–20 [Google Scholar]
  12. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. 12.  1984. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–67 [Google Scholar]
  13. Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D. 13.  et al. 1984. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–68 [Google Scholar]
  14. Colonno RJ, Callahan PL, Long WJ. 14.  1986. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J. Virol. 57:7–12 [Google Scholar]
  15. Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A. 15.  et al. 2009. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59 [Google Scholar]
  16. Greve JM, Davis G, Meyer AM, Forte CP, Yost SC. 16.  et al. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56:839–47 [Google Scholar]
  17. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA. 17.  1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–53 [Google Scholar]
  18. Haywood AM. 18.  1994. Virus receptors: binding, adhesion strengthening, and changes in viral structure. J. Virol. 68:1–5 [Google Scholar]
  19. Cao W, Henry MD, Borrow P, Yamada H, Elder JH. 19.  et al. 1998. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–81 [Google Scholar]
  20. Tayyari F, Marchant D, Moraes TJ, Duan W, Mastrangelo P, Hegele RG. 20.  2011. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat. Med. 17:1132–35 [Google Scholar]
  21. Mendelsohn CL, Wimmer E, Racaniello VR. 21.  1989. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–65 [Google Scholar]
  22. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F. 22.  et al. 1998. Binding of hepatitis C virus to CD81. Science 282:938–41 [Google Scholar]
  23. Petracca R, Falugi F, Galli G, Norais N, Rosa D. 23.  et al. 2000. Structure-function analysis of hepatitis C virus envelope-CD81 binding. J. Virol. 74:4824–30 [Google Scholar]
  24. Allander T, Forns X, Emerson SU, Purcell RH, Bukh J. 24.  2000. Hepatitis C virus envelope protein E2 binds to CD81 of tamarins. Virology 277:358–67 [Google Scholar]
  25. Meola A, Sbardellati A, Bruni Ercole B, Cerretani M, Pezzanera M. 25.  et al. 2000. Binding of hepatitis C virus E2 glycoprotein to CD81 does not correlate with species permissiveness to infection. J. Virol. 74:5933–38 [Google Scholar]
  26. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S. 26.  et al. 2002. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21:5017–25 [Google Scholar]
  27. Dao Thi VL, Granier C, Zeisel MB, Guerin M, Mancip J. 27.  et al. 2012. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J. Biol. Chem. 287:31242–57 [Google Scholar]
  28. Sharma NR, Mateu G, Dreux M, Grakoui A, Cosset FL, Melikyan GB. 28.  2011. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. J. Biol. Chem. 286:30361–76 [Google Scholar]
  29. Brazzoli M, Bianchi A, Filippini S, Weiner A, Zhu Q. 29.  et al. 2008. CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J. Virol. 82:8316–29 [Google Scholar]
  30. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M. 30.  et al. 2007. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–5 [Google Scholar]
  31. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H. 31.  et al. 2009. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–86 [Google Scholar]
  32. Martin DN, Uprichard SL. 32.  2013. Identification of transferrin receptor 1 as a hepatitis C virus entry factor. PNAS 110:10777–82 [Google Scholar]
  33. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I. 33.  et al. 2011. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med. 17:589–95 [Google Scholar]
  34. Lindenbach BD, Rice CM. 34.  2013. The ins and outs of hepatitis C virus entry and assembly. Nat. Rev. Microbiol. 11:688–700 [Google Scholar]
  35. Ploss A, Evans MJ. 35.  2012. Hepatitis C virus host cell entry. Curr. Opin. Virol. 2:14–19 [Google Scholar]
  36. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y. 36.  et al. 2001. Junction adhesion molecule is a receptor for reovirus. Cell 104:441–51 [Google Scholar]
  37. Tatsuo H, Ono N, Tanaka K, Yanagi Y. 37.  2000. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–97 [Google Scholar]
  38. Muhlebach MD, Mateo M, Sinn PL, Prufer S, Uhlig KM. 38.  et al. 2011. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480:530–33 [Google Scholar]
  39. Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G. 39.  et al. 2011. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLOS Pathog. 7:e1002240 [Google Scholar]
  40. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL. 40.  et al. 2011. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. PNAS 108:8426–31 [Google Scholar]
  41. Goff SP. 41.  2008. Knockdown screens to knockout HIV-1. Cell 135:417–20 [Google Scholar]
  42. Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP. 42.  et al. 2011. Natural resistance-associated macrophage protein is a cellular receptor for Sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10:97–104 [Google Scholar]
  43. Cherry S. 43.  2009. What have RNAi screens taught us about viral-host interactions?. Curr. Opin. Microbiol. 12:446–52 [Google Scholar]
  44. Kaelin WG Jr. 44.  2012. Use and abuse of RNAi to study mammalian gene function. Science 337:421–22 [Google Scholar]
  45. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. 45.  2003. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5:834–39 [Google Scholar]
  46. Nagy PD, Pogany J, Lin JY. 46.  2014. How yeast can be used as a genetic platform to explore virus-host interactions: from ‘omics’ to functional studies. Trends Microbiol. 22:309–16 [Google Scholar]
  47. Janda M, Ahlquist P. 47.  1993. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell 72:961–70 [Google Scholar]
  48. Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, Ahlquist P. 48.  2003. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. PNAS 100:15764–69 [Google Scholar]
  49. Diez J, Ishikawa M, Kaido M, Ahlquist P. 49.  2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. PNAS 97:3913–18 [Google Scholar]
  50. Noueiry AO, Diez J, Falk SP, Chen J, Ahlquist P. 50.  2003. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation. Mol. Cell. Biol. 23:4094–106 [Google Scholar]
  51. Lee WM, Ishikawa M, Ahlquist P. 51.  2001. Mutation of host Δ9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis. J. Virol. 75:2097–106 [Google Scholar]
  52. Panavas T, Serviene E, Brasher J, Nagy PD. 52.  2005. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. PNAS 102:7326–31 [Google Scholar]
  53. Hao L, Lindenbach B, Wang X, Dye B, Kushner D. 53.  et al. 2014. Genome-wide analysis of host factors in nodavirus RNA replication. PLOS ONE 9:e95799 [Google Scholar]
  54. Guo G, Wang W, Bradley A. 54.  2004. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429:891–95 [Google Scholar]
  55. Andersson BS, Collins VP, Kurzrock R, Larkin DW, Childs C. 55.  et al. 1995. KBM-7, a human myeloid leukemia cell line with double Philadelphia chromosomes lacking normal c-ABL and BCR transcripts. Leukemia 9:2100–8 [Google Scholar]
  56. Kotecki M, Reddy PS, Cochran BH. 56.  1999. Isolation and characterization of a near-haploid human cell line. Exp. Cell Res. 252:273–80 [Google Scholar]
  57. Takahashi K, Yamanaka S. 57.  2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76 [Google Scholar]
  58. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G. 58.  et al. 2011. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340–43 [Google Scholar]
  59. Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS. 59.  et al. 2014. Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506–10 [Google Scholar]
  60. Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp BV. 60.  et al. 2014. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 24:2059–65 [Google Scholar]
  61. Cong L, Ran FA, Cox D, Lin S, Barretto R. 61.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  62. Mali P, Yang L, Esvelt KM, Aach J, Guell M. 62.  et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26 [Google Scholar]
  63. Elling U, Taubenschmid J, Wirnsberger G, O'Malley R, Demers SP. 63.  et al. 2011. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9:563–74 [Google Scholar]
  64. Leeb M, Wutz A. 64.  2011. Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–34 [Google Scholar]
  65. Leeb M, Walker R, Mansfield B, Nichols J, Smith A, Wutz A. 65.  2012. Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development 139:3301–5 [Google Scholar]
  66. Li W, Shuai L, Wan H, Dong M, Wang M. 66.  et al. 2012. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490:407–11 [Google Scholar]
  67. Yang H, Shi L, Wang BA, Liang D, Zhong C. 67.  et al. 2012. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149:605–17 [Google Scholar]
  68. Li W, Li X, Li T, Jiang MG, Wan H. 68.  et al. 2014. Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14:404–14 [Google Scholar]
  69. Yang H, Liu Z, Ma Y, Zhong C, Yin Q. 69.  et al. 2013. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res. 23:1187–200 [Google Scholar]
  70. Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE. 70.  et al. 2013. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45:104–8 [Google Scholar]
  71. Pettitt SJ, Rehman FL, Bajrami I, Brough R, Wallberg F. 71.  et al. 2013. A genetic screen using the piggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLOS ONE 8:e61520 [Google Scholar]
  72. Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I. 72.  et al. 2009. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–35 [Google Scholar]
  73. Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M. 73.  et al. 2011. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29:542–46 [Google Scholar]
  74. LaFave MC, Varshney GK, Gildea DE, Wolfsberg TG, Baxevanis AD, Burgess SM. 74.  2014. MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res. 42:4257–69 [Google Scholar]
  75. Pettitt SJ, Tan EP, Yusa K. 75.  2015. piggyBac transposon-based insertional mutagenesis in mouse haploid embryonic stem cells. Methods Mol. Biol. 1239:15–28 [Google Scholar]
  76. Tokunaga M, Kokubu C, Maeda Y, Sese J, Horie K. 76.  et al. 2014. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. BMC Genomics 15:1016 [Google Scholar]
  77. Duncan LM, Timms RT, Zavodszky E, Cano F, Dougan G. 77.  et al. 2012. Fluorescence-based phenotypic selection allows forward genetic screens in haploid human cells. PLOS ONE 7:e39651 [Google Scholar]
  78. Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH. 78.  2004. Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol. Cell. Biol. 24:9487–97 [Google Scholar]
  79. Lin Z, Su X, Chen W, Ci B, Zhang S, Lin H. 79.  2014. Dph7 catalyzes a previously unknown demethylation step in diphthamide biosynthesis. J. Am. Chem. Soc. 136:6179–82 [Google Scholar]
  80. Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJ. 80.  2014. The diphthamide modification pathway from Saccharomyces cerevisiae—revisited. Mol. Microbiol. 94:1213–26 [Google Scholar]
  81. Uthman S, Bar C, Scheidt V, Liu S, ten Have S. 81.  et al. 2013. The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network. PLOS Genet. 9:e1003334 [Google Scholar]
  82. Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G. 82.  et al. 2011. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). PNAS 108:16422–27 [Google Scholar]
  83. Papatheodorou P, Wilczek C, Nolke T, Guttenberg G, Hornuss D. 83.  et al. 2012. Identification of the cellular receptor of Clostridium spiroforme toxin. Infect. Immun. 80:1418–23 [Google Scholar]
  84. Schorch B, Song S, van Diemen FR, Bock HH, May P. 84.  et al. 2014. LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. PNAS 111:6431–36 [Google Scholar]
  85. Garbutt M, Liebscher R, Wahl-Jensen V, Jones S, Moller P. 85.  et al. 2004. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J. Virol. 78:5458–65 [Google Scholar]
  86. Lawson ND, Stillman EA, Whitt MA, Rose JK. 86.  1995. Recombinant vesicular stomatitis viruses from DNA. PNAS 92:4477–81 [Google Scholar]
  87. Schnell MJ, Buonocore L, Whitt MA, Rose JK. 87.  1996. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J. Virol. 70:2318–23 [Google Scholar]
  88. Whelan SP, Ball LA, Barr JN, Wertz GT. 88.  1995. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. PNAS 92:8388–92 [Google Scholar]
  89. Geisbert TW, Feldmann H. 89.  2011. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J. Infect. Dis. 204:Suppl. 3S1075–81 [Google Scholar]
  90. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. 90.  2010. Identification of the switch in early-to-late endosome transition. Cell 141:497–508 [Google Scholar]
  91. Mingo RM, Simmons JA, Shoemaker CJ, Nelson EA, Schornberg KL. 91.  et al. 2015. Ebola and SARS display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J. Virol. 89:2931–43 [Google Scholar]
  92. Cote M, Misasi J, Ren T, Bruchez A, Lee K. 92.  et al. 2011. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477:344–48 [Google Scholar]
  93. Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS. 93.  et al. 2012. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31:1947–60 [Google Scholar]
  94. Ng M, Ndungo E, Jangra RK, Cai Y, Postnikova E. 94.  et al. 2014. Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1. Virology 468–70:637–46 [Google Scholar]
  95. Lukashevich IS, Maryankova RF, Fidarov FM. 95.  1983. Reproduction of Lassa virus in different cell cultures. Acta Virol. 27:282–85 [Google Scholar]
  96. Rohrer J, Schweizer A, Russell D, Kornfeld S. 96.  1996. The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J. Cell Biol. 132:565–76 [Google Scholar]
  97. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA. 97.  et al. 2013. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340:479–83 [Google Scholar]
  98. Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T. 98.  et al. 2013. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341:896–99 [Google Scholar]
  99. Petersen J, Drake MJ, Bruce EA, Riblett AM, Didigu CA. 99.  et al. 2014. The major cellular sterol regulatory pathway is required for Andes virus infection. PLOS Pathog. 10:e1003911 [Google Scholar]
  100. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. 100.  2008. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–82 [Google Scholar]
  101. Reynard O, Borowiak M, Volchkova VA, Delpeut S, Mateo M, Volchkov VE. 101.  2009. Ebolavirus glycoprotein GP masks both its own epitopes and the presence of cellular surface proteins. J. Virol. 83:9596–601 [Google Scholar]
  102. Francica JR, Varela-Rohena A, Medvec A, Plesa G, Riley JL, Bates P. 102.  2010. Steric shielding of surface epitopes and impaired immune recognition induced by the Ebola virus glycoprotein. PLOS Pathog. 6e1001098
  103. Misasi J, Sullivan NJ. 103.  2014. Camouflage and misdirection: the full-on assault of Ebola virus disease. Cell 159:477–86 [Google Scholar]
  104. Sandvig K, van Deurs B. 104.  2000. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J. 19:5943–50 [Google Scholar]
  105. Mukhopadhyay S, Linstedt AD. 105.  2012. Manganese blocks intracellular trafficking of Shiga toxin and protects against Shiga toxicosis. Science 335:332–35 [Google Scholar]
  106. 106. WHO (World Health Organ.) 2015. Ebola situation report May 6. http://apps.who.int/iris/bitstream/10665/164523/1/roadmapsitrep_6May15_eng.pdf
  107. Bishop BM. 107.  2015. Potential and emerging treatment options for Ebola virus disease. Ann. Pharmacother. 49:196–206 [Google Scholar]
  108. Lee K, Ren T, Cote M, Gholamreza B, Misasi J. 108.  et al. 2013. Inhibition of Ebola virus infection: identification of Niemann-Pick C1 as the target by optimization of a chemical probe. ACS Med. Chem. Lett. 4:239–43 [Google Scholar]
  109. Shoemaker CJ, Schornberg KL, Delos SE, Scully C, Pajouhesh H. 109.  et al. 2013. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection. PLOS ONE 8:e56265 [Google Scholar]
  110. Doudna JA, Charpentier E. 110.  2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 [Google Scholar]
  111. Hsu PD, Lander ES, Zhang F. 111.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  112. Bergelson JM, Chan M, Solomon KR, St. John NF, Lin H, Finberg RW. 112.  1994. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. PNAS 91:6245–48 [Google Scholar]
  113. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A. 113.  et al. 1997. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–23 [Google Scholar]
  114. Yan H, Zhong G, Xu G, He W, Jing Z. 114.  et al. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1:e00049 [Google Scholar]
  115. Timms RT, Duncan LM, Tchasovnikarova IA, Antrobus R, Smith DL. 115.  et al. 2013. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases. PLOS Pathog. 9:e1003772 [Google Scholar]
  116. Guimaraes CP, Carette JE, Varadarajan M, Antos J, Popp MW. 116.  et al. 2011. Identification of host cell factors required for intoxication through use of modified cholera toxin. J. Cell Biol. 195:751–64 [Google Scholar]
  117. Rosmarin DM, Carette JE, Olive AJ, Starnbach MN, Brummelkamp TR, Ploegh HL. 117.  2012. Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. PNAS 109:10059–64 [Google Scholar]
  118. Winter GE, Radic B, Mayor-Ruiz C, Blomen VA, Trefzer C. 118.  et al. 2014. The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nat. Chem. Biol. 10:768–73 [Google Scholar]
  119. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C. 119.  et al. 2014. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56:481–95 [Google Scholar]
  120. Lee CC, Carette JE, Brummelkamp TR, Ploegh HL. 120.  2013. A reporter screen in a human haploid cell line identifies CYLD as a constitutive inhibitor of NF-κB. PLOS ONE 8:e70339 [Google Scholar]
  121. Reiling JH, Olive AJ, Sanyal S, Carette JE, Brummelkamp TR. 121.  et al. 2013. A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat. Cell Biol. 15:1473–85 [Google Scholar]
  122. Reiling JH, Clish CB, Carette JE, Varadarajan M, Brummelkamp TR, Sabatini DM. 122.  2011. A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. PNAS 108:11756–65 [Google Scholar]
  123. Leeb M, Dietmann S, Paramor M, Niwa H, Smith A. 123.  2014. Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 14:385–93 [Google Scholar]
/content/journals/10.1146/annurev-virology-100114-055119
Loading
/content/journals/10.1146/annurev-virology-100114-055119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error