1932

Abstract

For decades, viruses have been isolated primarily from humans and other organisms. Interestingly, one of the most complex sides of the virosphere was discovered using free-living amoebae as hosts. The discovery of giant viruses in the early twenty-first century opened a new chapter in the field of virology. Giant viruses are included in the phylum and harbor large and complex DNA genomes (up to 2.7 Mb) encoding genes never before seen in the virosphere and presenting gigantic particles (up to 1.5 μm). Different amoebae have been used to isolate and characterize a plethora of new viruses with exciting details about novel viral biology. Through distinct isolation techniques and metagenomics, the diversity and complexity of giant viruses have astonished the scientific community. Here, we discuss the latest findings on amoeba viruses and how using these single-celled organisms as hosts has revealed entities that have remained hidden in plain sight for ages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100520-125832
2022-09-29
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-100520-125832.html?itemId=/content/journals/10.1146/annurev-virology-100520-125832&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Suttle CA. 2005. Viruses in the sea. Nature 437:7057356–61
    [Crossref] [Google Scholar]
  2. 2.
    Suttle CA. 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:10801–12
    [Crossref] [Google Scholar]
  3. 3.
    Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV, Krupovic M. 2017. The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15:12724–39
    [Crossref] [Google Scholar]
  4. 4.
    Flint J, Racaniello VR, Rall GF, Hatziioannou T, Skalka AM. 2020. Principles of Virology Washington, DC: ASM. , 5th ed..
  5. 5.
    Rodrigues RA, dos Santos Pereira Andrade AC, Boratto PV, Trindade GD, Kroon EG, Abrahão JS 2017. An anthropocentric view of the virosphere-host relationship. Front. Microbiol. 8:1673
    [Crossref] [Google Scholar]
  6. 6.
    La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X et al. 2003. A giant virus in amoebae. Science 299:56152033
    [Crossref] [Google Scholar]
  7. 7.
    La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L et al. 2008. The virophage as a unique parasite of the giant mimivirus. Nature 455:7209100–4
    [Crossref] [Google Scholar]
  8. 8.
    Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA et al. 2020. Giant virus diversity and host interactions through global metagenomics. Nature 578:432–36
    [Crossref] [Google Scholar]
  9. 9.
    Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N et al. 2020. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat. Ecol. Evol. 4:121639–49
    [Crossref] [Google Scholar]
  10. 10.
    Raoult D, Audic S, Robert C, Abergel C, Renesto P et al. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–50
    [Crossref] [Google Scholar]
  11. 11.
    Arslan D, Legendre M, Seltzer V, Abergel C, Claverie J-M. 2011. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. PNAS 108:4217486–91
    [Crossref] [Google Scholar]
  12. 12.
    Yoosuf N, Yutin N, Colson P, Shabalina SA, Pagnier I et al. 2012. Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the Megavirus lineage. Genome Biol. Evol. 4:121324–30
    [Crossref] [Google Scholar]
  13. 13.
    Ghedin E, Claverie JM. 2005. Mimivirus relatives in the Sargasso sea. Virol. J. 2:62
    [Crossref] [Google Scholar]
  14. 14.
    Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H. 2018. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ 33:2162–71
    [Crossref] [Google Scholar]
  15. 15.
    Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G et al. 2009. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. PNAS 106:5121848–53
    [Crossref] [Google Scholar]
  16. 16.
    Thomas V, Bertelli C, Collyn F, Casson N, Telenti A et al. 2011. Lausannevirus, a giant amoebal virus encoding histone doublets. Environ. Microbiol. 13:61454–66
    [Crossref] [Google Scholar]
  17. 17.
    Aherfi S, Boughalmi M, Pagnier I, Fournous G, La Scola B et al. 2014. Complete genome sequence of Tunisvirus, a new member of the proposed family Marseilleviridae. Arch. Virol. 159:92349–58
    [Crossref] [Google Scholar]
  18. 18.
    Dornas FP, Assis FL, Aherfi S, Arantes T, Abrahão JS et al. 2016. A Brazilian Marseillevirus is the founding member of a lineage in family Marseilleviridae. Viruses 8:376
    [Crossref] [Google Scholar]
  19. 19.
    dos Santos RN, Campos FS, Medeiros de Albuquerque NR, Finoketti F, Côrrea RA et al. 2016. A new marseillevirus isolated in Southern Brazil from Limnoperna fortunei. Sci. Rep. 6:35237
    [Crossref] [Google Scholar]
  20. 20.
    Philippe N, Legendre M, Doutre G, Couté Y, Poirot O et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:6143281–86
    [Crossref] [Google Scholar]
  21. 21.
    Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K et al. 2014. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. PNAS 111:11201320670
    [Crossref] [Google Scholar]
  22. 22.
    Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R et al. 2018. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9:1749
    [Crossref] [Google Scholar]
  23. 23.
    Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI et al. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84:e00061–19
    [Crossref] [Google Scholar]
  24. 24.
    Rowbotham TJ. 1980. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 33:121179–83
    [Crossref] [Google Scholar]
  25. 25.
    Rowbotham TJ. 1983. Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J. Clin. Pathol. 36:9978–86
    [Crossref] [Google Scholar]
  26. 26.
    Birtles RJ, Rowbotham TJ, Michel R, Pitcher DG, La Scola B, Raoult D 2000.. ‘ Candidatus Odyssella thessalonicensis’ gen. nov., sp. nov., an obligate intracellular parasite of Acanthamoeba species. Int. J. Syst. Evol. Microbiol. 50:63–72
    [Crossref] [Google Scholar]
  27. 27.
    La Scola B, Birtles RJ, Greub G, Harrison TJ, Ratcliff RM, Raoult D 2004. Legionella drancourtii sp. nov., a strictly intracellular amoebal pathogen. Int. J. Syst. Evol. Microbiol. 54:699–703
    [Crossref] [Google Scholar]
  28. 28.
    Pagnier I, Reteno DG, Saadi H, Boughalmi M, Gaia M et al. 2013. A decade of improvements in Mimiviridae and Marseilleviridae isolation from amoebae. Intervirology 56:6354–63
    [Crossref] [Google Scholar]
  29. 29.
    Scheid P, Zöller L, Pressmar S, Richard G, Michel R 2008. An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis. Parasitol. Res. 102:5945–50
    [Crossref] [Google Scholar]
  30. 30.
    Khalil JYB, Andreani J, La Scola B 2016. Updating strategies for isolating and discovering giant viruses. Curr. Opin. Microbiol. 31:80–87
    [Crossref] [Google Scholar]
  31. 31.
    Campos RK, Boratto PV, Assis FL, Aguiar ER, Silva LCF et al. 2014. Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virol. J. 11:195
    [Crossref] [Google Scholar]
  32. 32.
    Khalil JYB, Robert S, Reteno DG, Andreani J, Raoult D, La Scola B 2016. High-throughput isolation of giant viruses in liquid medium using automated flow cytometry and fluorescence staining. Front. Microbiol. 7:26
    [Crossref] [Google Scholar]
  33. 33.
    Dornas FP, Khalil JYB, Pagnier I, Raoult D, Abrahão J, La Scola B 2015. Isolation of new Brazilian giant viruses from environmental samples using a panel of protozoa. Front. Microbiol. 6:1086
    [Crossref] [Google Scholar]
  34. 34.
    Reteno DG, Benamar S, Khalil JB, Andreani J, Armstrong N et al. 2015. Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J. Virol. 89:136585–94
    [Crossref] [Google Scholar]
  35. 35.
    Rolland C, Andreani J, Louazani AC, Aherfi S, Francis R et al. 2019. Discovery and further studies on giant viruses at the IHU Mediterranee infection that modified the perception of the virosphere. Viruses 11:4312
    [Crossref] [Google Scholar]
  36. 36.
    Fischer MG, Allen MJ, Wilson WH, Suttle CA. 2010. Giant virus with a remarkable complement of genes infects marine zooplankton. PNAS 107:4519508–13
    [Crossref] [Google Scholar]
  37. 37.
    Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M et al. 2013. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. PNAS 110:2610800–5
    [Crossref] [Google Scholar]
  38. 38.
    Deeg CM, Chow C-ET, Suttle CA 2018. The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. eLife 7:e33014
    [Crossref] [Google Scholar]
  39. 39.
    Francis R, Ominami Y, Khalil JYB, La Scola B 2019. High-throughput isolation of giant viruses using high-content screening. Commun. Biol. 2:216
    [Crossref] [Google Scholar]
  40. 40.
    Sahmi-Bounsiar D, de Miranda Boratto PV, Oliveira GP, Khalil JY, La Scola B, Andreani J 2019. Single cell micro-aspiration as an alternative strategy to fluorescence-activated cell sorting for giant virus mixture separation. J. Vis. Exp. 152:e60148
    [Google Scholar]
  41. 41.
    Colson P, La Scola B, Levasseur A, Caetano-Anollés G, Raoult D 2017. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat. Rev. Microbiol. 15:4243–54
    [Crossref] [Google Scholar]
  42. 42.
    Xiao C, Kuznetso YG, Sun S, Hafenstein SL, Kostyuchenko VA et al. 2009. Structural studies of the giant Mimivirus. PLOS Biol 7:4e1000092
    [Crossref] [Google Scholar]
  43. 43.
    Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK et al. 2017. Giant viruses with an expanded complement of translation system components. Science 356:633382–85
    [Crossref] [Google Scholar]
  44. 44.
    Schulz F, Alteio L, Goudeau D, Blanchard J, Woyke T et al. 2018. Hidden diversity of soil giant viruses. Nat. Commun. 9:4881
    [Crossref] [Google Scholar]
  45. 45.
    Andreani J, Aherfi S, Khalil JYB, Di Pinto F, Bitam I et al. 2016. Cedratvirus, a double-cork structured giant virus, is a distant relative of pithoviruses. Viruses 8:11300
    [Crossref] [Google Scholar]
  46. 46.
    Levasseur A, Andreani J, Delerce J, Bou Khalil J, Robert C et al. 2016. Comparison of a modern and fossil Pithovirus reveals its genetic conservation and evolution. Genome Biol. Evol. 8:82333–39
    [Crossref] [Google Scholar]
  47. 47.
    Bäckström D, Yutin N, Jørgensen SL, Dharamshi J, Homa F et al. 2019. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10:2e02497–18
    [Crossref] [Google Scholar]
  48. 48.
    Legendre M, Fabre E, Poirot O, Jeudy S, Lartigue A et al. 2018. Diversity and evolution of the emerging Pandoraviridae family. Nat. Commun. 9:12285
    [Crossref] [Google Scholar]
  49. 49.
    dos Santos Pereira Andrade AC, de Miranda Boratto PV, Rodrigues RAL, Bastos TM, Azevedo BL et al. 2019. New isolates of pandoraviruses: contribution to the study of replication cycle steps. J. Virol. 93:5e01942–18
    [Google Scholar]
  50. 50.
    Aherfi S, Andreani J, Baptiste E, Oumessoum A, Dornas FP et al. 2018. A large open pangenome and a small core genome for giant pandoraviruses. Front. Microbiol. 9:1486
    [Crossref] [Google Scholar]
  51. 51.
    Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J et al. 2015. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. PNAS 112:385327–35
    [Crossref] [Google Scholar]
  52. 52.
    Christo-Foroux E, Alempic J-M, Lartigue A, Santini S, Labadie K et al. 2020. Characterization of Mollivirus kamchatka, the first modern representative of the proposed Molliviridae family of giant viruses. J. Virol. 94:8e01997–19
    [Crossref] [Google Scholar]
  53. 53.
    Andreani J, Khalil JYB, Sevvana M, Benamar S, Di Pinto F et al. 2017. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and faustoviruses. J. Virol. 91:14e00212–17
    [Crossref] [Google Scholar]
  54. 54.
    Yoshikawa G, Blanc-Mathieu R, Song C, Kayama Y, Mochizuki T et al. 2019. Medusavirus, a novel large DNA virus discovered from hot spring water. J. Virol. 93:8e02130–18
    [Crossref] [Google Scholar]
  55. 55.
    Yoshida K, Zhang R, Garcia KG, Endo H, Gotoh Y et al. 2021. Draft genome sequence of Medusavirus stheno, isolated from the Tatakai river of Uji, Japan. Microbiol. Resour. Announc. 10:1e01323–20
    [Crossref] [Google Scholar]
  56. 56.
    Benamar S, Reteno DGI, Bandaly V, Labas N, Raoult D, La Scola B 2016. Faustoviruses: comparative genomics of new megavirales family members. Front. Microbiol. 7:3
    [Crossref] [Google Scholar]
  57. 57.
    Bajrai LH, Benamar S, Azhar EI, Robert C, Levasseur A et al. 2016. Kaumoebavirus, a new virus that clusters with Faustoviruses and Asfarviridae. Viruses 8:11278
    [Crossref] [Google Scholar]
  58. 58.
    Geballa-Koukoulas K, Andreani J, La Scola B, Blanc G 2021. The kaumoebavirus LCC10 genome reveals a unique gene strand bias among “extended Asfarviridae. .” Viruses 13:2148
    [Crossref] [Google Scholar]
  59. 59.
    Rolland C, Andreani J, Sahmi-Bounsiar D, Krupovic M, La Scola B, Levasseur A 2021. Clandestinovirus: a giant virus with chromatin proteins and a potential to manipulate the cell cycle of its host Vermamoeba vermiformis. Front. Microbiol. 12:715608
    [Crossref] [Google Scholar]
  60. 60.
    Bajrai LH, Andreani J, Baptiste E, Delerce J, Raoult D et al. 2020. Isolation of Yasminevirus, the first member of Klosneuvirinae isolated in coculture with Vermamoeba vermiformis. J. Virol. 94:1e01534–19
    [Google Scholar]
  61. 61.
    Andreani J, Khalil JYB, Baptiste E, Hasni I, Michelle C et al. 2018. Orpheovirus IHUMI-LCC2: a new virus among the giant viruses. Front. Microbiol. 8:2643
    [Crossref] [Google Scholar]
  62. 62.
    de Miranda Boratto PV, Oliveira GP, Machado TB, dos Santos Pereira Andrade AC, Baudoin JP et al. 2020. Yaravirus: a novel 80-nm virus infecting Acanthamoeba castellanii. PNAS 117:2816579–86
    [Crossref] [Google Scholar]
  63. 63.
    Moss B. 2014. Poxviridae. In Fields Virology D Knipe, P Howley 2129 Philadelphia: Lippincott, Williams & Wilkins. , 6th ed..
    [Google Scholar]
  64. 64.
    Van Etten JL, Agarkova IV, Dunigan DD 2019. Chloroviruses. Viruses 12:120
    [Crossref] [Google Scholar]
  65. 65.
    Yuan Y, Gao M. 2017. Jumbo bacteriophages: an overview. Front. Microbiol. 8:403
    [Google Scholar]
  66. 66.
    Legendre M, Santini S, Rico A, Abergel C, Claverie J-M. 2011. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol. J. 8:199
    [Crossref] [Google Scholar]
  67. 67.
    Valencia-Sánchez MI, Abini-Agbomson S, Wang M, Lee R, Vasilyev N et al. 2021. The structure of a virus-encoded nucleosome. Nat. Struct. Mol. Biol. 28:5413–17
    [Crossref] [Google Scholar]
  68. 68.
    Liu Y, Bisio H, Toner CM, Jeudy S, Philippe N et al. 2021. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 184:164237–50.e19
    [Crossref] [Google Scholar]
  69. 69.
    Piacente F, Marin M, Molinaro A, De Castro C, Seltzer V et al. 2012. Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-D-glucose (viosamine). J. Biol. Chem. 287:53009–18
    [Crossref] [Google Scholar]
  70. 70.
    Piacente F, De Castro C, Jeudy S, Molinaro A, Salis A et al. 2014. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars. J. Biol. Chem. 289:3524428–39
    [Crossref] [Google Scholar]
  71. 71.
    Aherfi S, Belhaouari DB, Pinault L, Baudoin JP, Decloquement P et al. 2021. Incomplete tricarboxylic acid cycle and proton gradient in Pandoravirus massiliensis: Is it still a virus?. ISME J. 16:3695–704
    [Crossref] [Google Scholar]
  72. 72.
    Azza S, Cambillau C, Raoult D, Suzan-Monti M. 2009. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain. BMC Mol. Biol. 10:39
    [Crossref] [Google Scholar]
  73. 73.
    Louazani AC, Baptiste E, Levasseur A, Colson P, La Scola B 2018. Faustovirus E12 transcriptome analysis reveals complex splicing in capsid gene. Front. Microbiol. 9:2534
    [Crossref] [Google Scholar]
  74. 74.
    Rodrigues RAL, Louazani AC, Picorelli A, Oliveira GP, Lobo FP et al. 2020. Analysis of a Marseillevirus transcriptome reveals temporal gene expression profile and host transcriptional shift. Front. Microbiol. 11:651
    [Crossref] [Google Scholar]
  75. 75.
    Desnues C, La Scola B, Yutin N, Fournous G, Robert C et al. 2012. Provirophages and transpovirons as the diverse mobilome of giant viruses. PNAS 109:4418078–83
    [Crossref] [Google Scholar]
  76. 76.
    Assis FL, Bajrai L, Abrahão JS, Kroon EG, Dornas FP et al. 2015. Pan-genome analysis of Brazilian lineage A amoebal mimiviruses. Viruses 7:73483–99
    [Crossref] [Google Scholar]
  77. 77.
    Claverie J-M, Abergel C. 2018. Mimiviridae: an expanding family of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic eukaryotes. Viruses 10:9506
    [Crossref] [Google Scholar]
  78. 78.
    Gallot-Lavallée L, Blanc G, Claverie J-M. 2017. Comparative genomics of Chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91:14e00230–17
    [Crossref] [Google Scholar]
  79. 79.
    Oliveira GP, de Aquino ILM, Luiz APMF, Abrahão JS. 2018. Putative promoter motif analyses reinforce the evolutionary relationships among Faustoviruses, Kaumoebavirus, and Asfarvirus. Front. Microbiol. 9:1041
    [Crossref] [Google Scholar]
  80. 80.
    Koonin EV, Krupovic M, Yutin N. 2015. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann. N.Y. Acad. Sci. 1341:110–24
    [Crossref] [Google Scholar]
  81. 81.
    Yutin N, Wolf YI, Koonin EV. 2014. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466–467:38–52
    [Crossref] [Google Scholar]
  82. 82.
    Rodrigues RAL, de Souza FG, de Azevedo BL, da Silva LCF, Abrahão JS. 2021. The morphogenesis of different giant viruses as additional evidence for a common origin of Nucleocytoviricota. Curr. Opin. Virol. 49:102–10
    [Crossref] [Google Scholar]
  83. 83.
    Guglielmini J, Woo A, Krupovic M, Forterre P, Gaia M. 2019. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. PNAS 116:3919585–92
    [Crossref] [Google Scholar]
  84. 84.
    Nasir A, Kim KM, Caetano-Anolles G. 2012. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol. Biol. 12:1156
    [Crossref] [Google Scholar]
  85. 85.
    Colson P, Levasseur A, La Scola B, Sharma V, Nasir A et al. 2018. Ancestrality and mosaicism of giant viruses supporting the definition of the fourth TRUC of microbes. Front. Microbiol. 9:2668
    [Crossref] [Google Scholar]
  86. 86.
    Klose T, Reteno DG, Benamar S, Hollerbach A, Colson P et al. 2016. Structure of faustovirus, a large dsDNA virus. PNAS 113:226206–11
    [Crossref] [Google Scholar]
  87. 87.
    Andreani J, Schulz F, Di Pinto F, Levasseur A, Woyke T, La Scola B 2021. Morphological and genomic features of the new Klosneuvirinae isolate fadolivirus IHUMI-VV54. Front. Microbiol. 12:719703
    [Crossref] [Google Scholar]
  88. 88.
    Schrad JR, Young EJ, Abrahão JS, Cortines JR, Parent KN. 2017. Microscopic characterization of the Brazilian giant samba virus. Viruses 9:230
    [Crossref] [Google Scholar]
  89. 89.
    dos Santos Pereira Andrade AC, Arantes TS, Rodrigues RAL, Machado TB, Dornas FP et al. 2018. Ubiquitous giants: a plethora of giant viruses found in Brazil and Antarctica. Virol. J. 15:122
    [Crossref] [Google Scholar]
  90. 90.
    Andreani J, Khalil JYB, Sevvana M, Benamar S, Di Pinto F et al. 2017. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J. Virol. 91:14e00212–17
    [Crossref] [Google Scholar]
  91. 91.
    dos Santos Silva LK, dos Santos Pereira Andrade AC, Dornas FP, Rodrigues RAL, Arantes T et al. 2018. Cedratvirus getuliensis replication cycle: an in-depth morphological analysis. Sci. Rep. 8:14000
    [Crossref] [Google Scholar]
  92. 92.
    Souza F, Rodrigues R, Reis E, Lima M, La Scola B, Abrahão J 2019. In-depth analysis of the replication cycle of Orpheovirus. Virol. J. 16:1158
    [Crossref] [Google Scholar]
  93. 93.
    Schrad JR, Abrahão JS, Cortines JR, Parent KN. 2020. Structural and proteomic characterization of the initiation of giant virus infection. Cell 181:51046–61.e6
    [Crossref] [Google Scholar]
  94. 94.
    dos Santos Pereira Andrade AC, Rodrigues RAL, Oliveira GP, Andrade KR, Bonjardim CA et al. 2017. Filling knowledge gaps for mimivirus entry, uncoating, and morphogenesis. J. Virol. 91:22e01335–17
    [Google Scholar]
  95. 95.
    Fabre E, Jeudy S, Legendre M, Trauchessec M, Claverie J, Abergel C. 2017. Noumeavirus replication relies on a transient remote control of the host nucleus. Nat. Commun. 8:15087
    [Crossref] [Google Scholar]
  96. 96.
    de Miranda Boratto PV, dos Santos Pereira Andrade AC, Rodrigues RAL, La Scola B, Abrahão JS 2019. The multiple origins of proteins present in tupanvirus particles. Curr. Opin. Virol. 36:25–31
    [Crossref] [Google Scholar]
  97. 97.
    Belhaouari DB, Baudoin J-P, Gnankou F, Di Pinto F, Colson P et al. 2019. Evidence of a cellulosic layer in Pandoravirus massiliensis tegument and the mystery of the genetic support of its biosynthesis. Front. Microbiol. 102932
  98. 98.
    Bajrai LH, de Assis FL, Azhar EI, Jardot P, Robert C et al. 2016. Saudi Moumouvirus, the first group B mimivirus isolated from Asia. Front. Microbiol. 7:2029
    [Crossref] [Google Scholar]
  99. 99.
    Rodrigues RAL, dos Santos Silva LK, Dornas FP, de Oliveira DB, Magalhães TFF et al. 2015. Mimivirus fibrils are important for viral attachment to the microbial world by a diverse glycoside interaction repertoire. J. Virol. 89:2311812–19
    [Crossref] [Google Scholar]
  100. 100.
    Boyer M, Azza S, Barrassi L, Klose T, Campocasso A et al. 2011. Mimivirus shows dramatic genome reduction after intraamoebal culture. PNAS 108:2510296–301
    [Crossref] [Google Scholar]
  101. 101.
    Korn ED, Weisman RA. 1967. Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events. J. Cell Biol. 34:1219–27
    [Crossref] [Google Scholar]
  102. 102.
    Silva LCF, Rodrigues RAL, Oliveira GP, Dornas FP, La Scola B et al. 2019. Microscopic analysis of the Tupanvirus cycle in Vermamoeba vermiformis. Front. Microbiol. 10:671
    [Crossref] [Google Scholar]
  103. 103.
    Arantes TS, Rodrigues RAL, dos Santos Silva LK, Oliveira GP, de Souza HL et al. 2016. The large marseillevirus explores different entry pathways by forming giant infectious vesicles. J. Virol. 90:115246–55
    [Crossref] [Google Scholar]
  104. 104.
    Borges I, Rodrigues RAL, Dornas FP, Almeida G, Aquino I et al. 2019. Trapping the enemy: Vermamoeba vermiformis circumvents faustovirus mariensis dissemination by enclosing viral progeny inside cysts. J. Virol. 93:14e00312–19
    [Crossref] [Google Scholar]
  105. 105.
    Albrecht T, Fons M, Boldogh I, Rabson AS, Baron S. 1996. Effects on cells. Medical Microbiology S Baron, ch. 44 Galveston, TX: University of Texas Medical Branch at Galveston., 4th ed..
    [Google Scholar]
  106. 106.
    Fukaya S, Takemura M. 2021. Kinetic analysis of Acanthamoeba castellanii infected with giant viruses quantitatively revealed process of morphological and behavioral changes in host cells. Microbiol. Spectr. 9:1e00368–21
    [Crossref] [Google Scholar]
  107. 107.
    Ben Yaakov L, Mutsa Y, Porat Z, Dadosh T, Minsky A. 2019. Kinetics of Mimivirus infection stages quantified using image flow cytometry. Cytom. A 95:5534–48
    [Crossref] [Google Scholar]
  108. 108.
    Oliveira G, Silva L, Leão T, Mougari S, da Fonseca FG et al. 2019. Tupanvirus-infected amoebas are induced to aggregate with uninfected cells promoting viral dissemination. Sci. Rep. 9:1183
    [Crossref] [Google Scholar]
  109. 109.
    Aoki K, Fukaya S, Takahashi H, Kobayashi M, Sasaki K, Takemura M. 2021. Marseilleviridae lineage B diversity and bunch formation inhibited by galactose. Microbes Environ 36:1ME20139
    [Crossref] [Google Scholar]
  110. 110.
    Marciano-Cabral F, Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16:2273–307
    [Crossref] [Google Scholar]
  111. 111.
    Siddiqui R, Makhlouf Z, Khan NA. 2021. The increasing importance of Vermamoeba vermiformis. J. Eukaryot. Microbiol. 68:5e12857
    [Crossref] [Google Scholar]
  112. 112.
    dos Santos Silva LK, de Miranda Boratto PV, La Scola B, Bonjardim CA, Abrahão JS 2016. Acanthamoeba and mimivirus interactions: the role of amoebal encystment and the expansion of the “Cheshire Cat” theory. Curr. Opin. Microbiol. 31:9–15
    [Crossref] [Google Scholar]
  113. 113.
    Boratto P, Albarnaz JD, de Freitas Almeida GM, Botelho L, Fontes ACL et al. 2015. Acanthamoeba polyphaga mimivirus prevents amoebal encystment-mediating serine proteinase expression and circumvents cell encystment. J. Virol. 89:52962–65
    [Crossref] [Google Scholar]
  114. 114.
    Moon E-K, Chung D-I, Hong Y-C, Kong H-H. 2008. Characterization of a serine proteinase mediating encystation of Acanthamoeba. Eukaryot. Cell 7:91513–17
    [Crossref] [Google Scholar]
  115. 115.
    Sun S, La Scola B, Bowman VD, Ryan CM, Whitelegge JP et al. 2010. Structural studies of the Sputnik virophage. J. Virol. 84:2894–97
    [Crossref] [Google Scholar]
  116. 116.
    Fischer MG, Suttle CA. 2011. A virophage at the origin of large DNA transposons. Science 332:6026231–34
    [Crossref] [Google Scholar]
  117. 117.
    Mougari S, Sahmi-Bounsiar D, Levasseur A, Colson P, La Scola B 2019. Virophages of giant viruses: an update at eleven. Viruses 11:8733
    [Crossref] [Google Scholar]
  118. 118.
    Gaia M, Benamar S, Boughalmi M, Pagnier I, Croce O et al. 2014. Zamilon, a novel virophage with Mimiviridae host specificity. PLOS ONE 9:4e94923
    [Crossref] [Google Scholar]
  119. 119.
    Blanc G, Gallot-Lavallée L, Maumus F. 2015. Provirophages in the Bigelowiella genome bear testimony to past encounters with giant viruses. PNAS 112:38E5318–26
    [Crossref] [Google Scholar]
  120. 120.
    Fischer MG, Hackl T. 2016. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540:7632288–91
    [Crossref] [Google Scholar]
  121. 121.
    Levasseur A, Bekliz M, Chabrière E, Pontarotti P, La Scola B, Raoult D 2016. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage. Nature 531:7593249–52
    [Crossref] [Google Scholar]
  122. 122.
    Michel R, Schmid EN, Hoffmann R, Müller KD. 2003. Endoparasite KC5/2 encloses large areas of sol-like cytoplasm within Acanthamoebae. Normal behavior or aberration?. Parasitol. Res. 91:4265–66
    [Crossref] [Google Scholar]
  123. 123.
    Scheid P, Hauröder B, Michel R. 2010. Investigations of an extraordinary endocytobiont in Acanthamoeba sp.: development and replication. Parasitol. Res. 106:61371–77
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100520-125832
Loading
/content/journals/10.1146/annurev-virology-100520-125832
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error