1932

Abstract

The superior colliculus (SC) has long been associated with the neural control of eye movements. Over seventy years ago, the orderly topography of saccade vectors and corresponding visual field locations were discovered in the cat SC. Since then, numerous high-impact studies have investigated and manipulated the relationship between visuotopic space and saccade vector across this topography to better understand the physiological underpinnings of the sensorimotor signal transformation. However, less attention has been paid to the other motor responses that may be associated with SC activity, ranging in complexity from concerted movements of skeletomotor muscle groups, such as arm-reaching movements, to behaviors that involve whole-body movement sequences, such as fight-or-flight responses in murine models. This review surveys these more complex movements associated with SC (optic tectum in nonmammalian species) activity and, where possible, provides phylogenetic and ethological perspective.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-012521-102314
2021-09-15
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-012521-102314.html?itemId=/content/journals/10.1146/annurev-vision-012521-102314&mimeType=html&fmt=ahah

Literature Cited

  1. Adamuk E. 1870. Über die Innervation der Augenbewegungen. Zbl. Med. Wiss. 8:65–67
    [Google Scholar]
  2. Alstermark B, Gorska T, Lundberg A, Pettersson LG. 1990. Integration in descending motor pathways controlling the forelimb in the cat. 16. Visually guided switching of target-reaching. Exp. Brain Res. 80:11–11
    [Google Scholar]
  3. Apter JT. 1946. Eye movements following strychninization of the superior colliculus of cats. J. Neurophysiol. 9:273–86
    [Google Scholar]
  4. Barker AJ, Baier H. 2015. Sensorimotor decision making in the zebrafish tectum. Curr. Biol. 25:212804–14
    [Google Scholar]
  5. Basso MA, May PJ. 2017. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. 3:197–226
    [Google Scholar]
  6. Basso MA, Wurtz RH. 1998. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18:187519–34
    [Google Scholar]
  7. Bianco IH, Kampff AR, Engert F. 2011. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5:101
    [Google Scholar]
  8. Bilotta J, Saszik S. 2001. The zebrafish as a model visual system. Int. J. Dev. Neurosci. 19:7621–29
    [Google Scholar]
  9. Bodznick D, Northcutt RG. 1981. Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive. Science 212:4493465–67
    [Google Scholar]
  10. Burnett LR, Stein BE, Chaponis D, Wallace MT. 2004. Superior colliculus lesions preferentially disrupt multisensory orientation. Neuroscience 124:3535–47
    [Google Scholar]
  11. Butler AB. 2008. Evolution of brains, cognition, and consciousness. Brain Res. Bull. 75:2–4442–49
    [Google Scholar]
  12. Carello CD, Krauzlis RJ. 2004. Manipulating intent: evidence for a causal role of the superior colliculus in target selection. Neuron 43:4575–83
    [Google Scholar]
  13. Castiglioni AJ, Gallaway M, Coulter JD. 1978. Spinal projections from the midbrain in monkey. J. Comp. Neurol. 178:2329–45
    [Google Scholar]
  14. Cornide-Petronio ME, Barreiro-Iglesias A, Anadón R, Rodicio MC. 2011. Retinotopy of visual projections to the optic tectum and pretectum in larval sea lamprey. Exp. Eye Res. 92:4274–81
    [Google Scholar]
  15. Courjon JH, Olivier E, Pélisson D 2004. Direct evidence for the contribution of the superior colliculus in the control of visually guided reaching movements in the cat. J. Physiol. 556:3675–81
    [Google Scholar]
  16. Courjon JH, Zénon A, Clément G, Urquizar C, Olivier E, Pélisson D 2015. Electrical stimulation of the superior colliculus induces non-topographically organized perturbation of reaching movements in cats. Front. Syst. Neurosci. 9:109
    [Google Scholar]
  17. Cowie RJ, Robinson DL. 1994. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol. 72:62648–64
    [Google Scholar]
  18. De Francheschi G, Viyattanasam T, Saleem AB, Solomon SG. 2016. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26:162150–54
    [Google Scholar]
  19. Dean P, Redgrave P, Mitchell IJ. 1988. Organisation of efferent projections from superior colliculus to brainstem in rat: evidence for functional output channels. Prog. Brain Res. 75:27–36
    [Google Scholar]
  20. Dean P, Redgrave P, Sahibzada N, Tsuji K. 1986. Head and body movements produced by electrical stimulation of superior colliculus in rats: effects of interruption of crossed tectoreticulospinal pathway. Neuroscience 19:2367–80
    [Google Scholar]
  21. Dean P, Redgrave P, Westby GWM. 1989. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 12:4137–47
    [Google Scholar]
  22. DesJardin JT, Holmes AL, Forcelli PA, Cole CE, Gale JT et al. 2013. Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J. Neurosci. 33:1150–55
    [Google Scholar]
  23. Drager UC, Hubel DH. 1975. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol. 38:3690–713
    [Google Scholar]
  24. Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB et al. 2016. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 89:3613–28
    [Google Scholar]
  25. Edwards SB, Ginsburgh CL, Henkel CK, Stein BE. 1979. Sources of subcortical projections to the superior colliculus in the cat. J. Comp. Neurol. 184:2309–29
    [Google Scholar]
  26. Eilam D. 2005. Die hard: a blend of freezing and fleeing as a dynamic defense—implications for the control of defensive behavior. Neurosci. Biobehav. Rev. 29:81181–91
    [Google Scholar]
  27. Freedman EG, Stanford TR, Sparks DL. 1996. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol. 76:2927–52
    [Google Scholar]
  28. Fries W. 1984. Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J. Comp. Neurol. 230:155–76
    [Google Scholar]
  29. Gandhi NJ, Katnani HA. 2011. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34:205–31
    [Google Scholar]
  30. Gess RW, Coates MI, Rubidge BS. 2006. A lamprey from the Devonian period of South Africa. Nature 443:7114981–84
    [Google Scholar]
  31. Glimcher PW, Sparks DL. 1992. Movement selection in advance of action in the superior colliculus. Nature 355:6360542–45
    [Google Scholar]
  32. Goldberg ME, Wurtz RH. 1972. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35:4542–59
    [Google Scholar]
  33. Goodale MA, Murison RC. 1975. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. Brain Res 88:2243–61
    [Google Scholar]
  34. Graf W, Meyer DL. 1978. Eye positions in fishes suggest different modes of interaction between commands and reflexes. J. Comp. Physiol. 128:3241–50
    [Google Scholar]
  35. Green SA, Bronner ME. 2014. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 87:1–244–51
    [Google Scholar]
  36. Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B. 2008. Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res. Rev. 57:12–12
    [Google Scholar]
  37. Guillaume A, Pélisson D. 2001. Gaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. I. Effect of the locus and of the parameters of stimulation. Eur. J. Neurosci. 14:81331–44
    [Google Scholar]
  38. Harris LR. 1980. The superior colliculus and movements of the head and eyes in cats. J. Physiol. 300:1367–91
    [Google Scholar]
  39. Helmbrecht TO, Dal Maschio M, Donovan JC, Koutsouli S, Baier H 2018. Topography of a visuomotor transformation. Neuron 100:61429–45
    [Google Scholar]
  40. Herrero L, Rodríguez F, Salas C, Torres B. 1998. Tail and eye movements evoked by electrical microstimulation of the optic tectum in goldfish. Exp. Brain Res. 120:3291–305
    [Google Scholar]
  41. Himmelbach M, Linzenbold W, Ilg UJ. 2013. Dissociation of reach-related and visual signals in the human superior colliculus. NeuroImage 82:61–67
    [Google Scholar]
  42. Horn AK. 2006. The reticular formation. Prog. Brain Res 151:127–55
    [Google Scholar]
  43. Huerta MF, Harting JK. 1984. Connectional organization of the superior colliculus. Trends Neurosci 7:8286–89
    [Google Scholar]
  44. Illert M, Lundberg A, Padel Y, Tanaka R. 1978. Integration in descending motor pathways controlling the forelimb in the cat. 5. Properties of and monosynaptic excitatory convergence on C3–C4 propriospinal neurones. Exp. Brain Res. 33:1101–30
    [Google Scholar]
  45. Imperato A, Di Chiara G. 1981. Behavioural effects of GABA-agonists and antagonists infused in the mesencephalic reticular formation-deep layers of superior colliculus. Brain Res 224:1185–94
    [Google Scholar]
  46. Jones MR, Grillner S, Robertson B. 2009. Selective projection patterns from subtypes of retinal ganglion cells to tectum and pretectum: distribution and relation to behavior. J. Comp. Neurol. 517:3257–75
    [Google Scholar]
  47. Kaas JH. 1997. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44:2107–12
    [Google Scholar]
  48. Kardamakis AA, Perez-Fernandez J, Grillner S 2016. Spatiotemporal interplay between multisensory excitation and recruited inhibition in the lamprey optic tectum. eLife 5:e16472
    [Google Scholar]
  49. Kardamakis AA, Saitoh K, Grillner S 2015. Tectal microcircuit generating visual selection commands on gaze-controlling neurons. PNAS 112:15E1956–65
    [Google Scholar]
  50. Kennedy MC, Rubinson K. 1977. Retinal projections in larval, transforming and adult sea lamprey, Petromyzon marinus. J. Comp. Neurol. 171:4465–79
    [Google Scholar]
  51. King AJ. 2004. The superior colliculus. Curr. Biol. 14:9R335–38
    [Google Scholar]
  52. Kosareva AA. 1980. Retinal projections in lamprey (Lampetra fluviatilis). J. Hirnforsch. 21:3243–56
    [Google Scholar]
  53. Krauzlis RJ, Goffart L, Hafed ZM. 2017. Neuronal control of fixation and fixational eye movements. Philos. Trans. R. Soc. Lond. B 372: 1718.20160205
    [Google Scholar]
  54. Krauzlis RJ, Lovejoy LP, Zénon A. 2013. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36:165–82
    [Google Scholar]
  55. Kumar S, Hedges SB. 1998. A molecular timescale for vertebrate evolution. Nature 392:6679917–20
    [Google Scholar]
  56. Land MF. 2015. Eye movements of vertebrates and their relation to eye form and function. J. Comp. Physiol. A 201:2195–214
    [Google Scholar]
  57. Linzenbold W, Himmelbach M. 2012. Signals from the deep: reach-related activity in the human superior colliculus. J. Neurosci. 32:4013881–88
    [Google Scholar]
  58. May PJ. 2006. The mammalian superior colliculus: laminar structure and connections. Prog. Brain Res. 151:321–78
    [Google Scholar]
  59. McArthur KL, Chow DM, Fetcho JR 2020. Zebrafish as a model for revealing the neuronal basis of behavior. The Zebrafish in Biomedical Research S Cartner, J Eisen, S Farmer, K Guillemin, M Kent, G Sanders 593–617 Amsterdam: Elsevier
    [Google Scholar]
  60. McCauley DW, Docker MF, Whyard S, Li W. 2015. Lampreys as diverse model organisms in the genomics era. BioScience 65:111046–56
    [Google Scholar]
  61. McHaffie JG, Stein BE. 1982. Eye movements evoked by electrical stimulation in the superior colliculus of rats and hamsters. Brain Res 247:2243–53
    [Google Scholar]
  62. McPeek RM, Keller EL. 2002. Saccade target selection in the superior colliculus during a visual search task. J. Neurophysiol. 88:42019–34
    [Google Scholar]
  63. McPeek RM, Keller EL. 2004. Deficits in saccade target selection after inactivation of superior colliculus. Nat. Neurosci. 7:7757–63
    [Google Scholar]
  64. Meredith MA, Stein BE. 1986. Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 56:3640–62
    [Google Scholar]
  65. Mort E, Cairns S, Hersch H, Finlay B 1980. The role of the superior colliculus in visually guided locomotion and visual orienting in the hamster. Physiol. Psychol. 8:120–28
    [Google Scholar]
  66. Munoz DP, Guitton D. 1989. Fixation and orientation control by the tecto-reticulo-spinal system in the cat whose head is unrestrained. Rev. Neurol. 145:8–9567–79
    [Google Scholar]
  67. Nagy A, Kruse W, Rottmann S, Dannenberg S, Hoffmann KP. 2006. Somatosensory-motor neuronal activity in the superior colliculus of the primate. Neuron 52:3525–34
    [Google Scholar]
  68. Nevin LM, Robles E, Baier H, Scott EK. 2010. Focusing on optic tectum circuitry through the lens of genetics. BMC Biol 8:1126
    [Google Scholar]
  69. Nikitina N, Bronner-Fraser M, Sauka-Spengler T. 2009. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harb. Protoc. 2009:1 pdb–emo113
    [Google Scholar]
  70. Northmore D. 2011. The optic tectum. Encyclopedia of Fish Physiology: From Genome to Environment AP Farrell 131–42 Amsterdam: Elsevier
    [Google Scholar]
  71. Nudo RJ, Sutherland DP, Masterton RB. 1993. Inter- and intra-laminar distribution of tectospinal neurons in 23 mammals. Brain Behav. Evol. 42:11–23
    [Google Scholar]
  72. Nummela SU, Krauzlis RJ. 2010. Inactivation of primate superior colliculus biases target choice for smooth pursuit, saccades, and button press responses. J. Neurophysiol. 104:31538–48
    [Google Scholar]
  73. Olds ME, Olds J. 1963. Approach-avoidance analysis of rat diencephalon. J. Comp. Neurol. 120:259–95
    [Google Scholar]
  74. Olivier E, Chat M, Grantyn A. 1991. Rostrocaudal and lateromedial density distributions of superior colliculus neurons projecting in the predorsal bundle and to the spinal cord: a retrograde HRP study in the cat. Exp. Brain Res. 87:2268–82
    [Google Scholar]
  75. Panksepp J. 1971. Aggression elicited by electrical stimulation of the hypothalamus in albino rats. Physiol. Behav. 6:4321–29
    [Google Scholar]
  76. Philipp R, Hoffmann KP. 2014. Arm movements induced by electrical microstimulation in the superior colliculus of the macaque monkey. J. Neurosci. 34:93350–63
    [Google Scholar]
  77. Preuss SJ, Trivedi CA, vom Berg-Maurer CM, Ryu S, Bollmann JH. 2014. Classification of object size in retinotectal microcircuits. Curr. Biol. 24:202376–85
    [Google Scholar]
  78. Redgrave P, Dean P, Mitchell IJ, Odekunle A, Clark A. 1988. The projection from superior colliculus to cuneiform area in the rat. Exp. Brain Res. 72:3611–25
    [Google Scholar]
  79. Redgrave P, Prescott TJ, Gurney K. 1999. The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 89:41009–23
    [Google Scholar]
  80. Robinson DA. 1972. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12:111795–808
    [Google Scholar]
  81. Robinson FR, Phillips JO, Fuchs AF. 1994. Coordination of gaze shifts in primates: brainstem inputs to neck and extraocular motoneuron pools. J. Comp. Neurol. 346:143–62
    [Google Scholar]
  82. Roucoux A, Guitton D, Crommelinck M. 1980. Stimulation of the superior colliculus in the alert cat. Exp. Brain Res. 39:175–85
    [Google Scholar]
  83. Sahibzada N, Dean P, Redgrave P. 1986. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6:3723–33
    [Google Scholar]
  84. Saitoh K, Ménard A, Grillner S. 2007. Tectal control of locomotion, steering, and eye movements in lamprey. J. Neurophysiol. 97:43093–108
    [Google Scholar]
  85. Sajad A, Sadeh M, Crawford JD. 2020. Spatiotemporal transformations for gaze control. Physiol. Rep. 8:16e14533
    [Google Scholar]
  86. Salas C, Herrero L, Rodrıguez F, Torres B. 1997. Tectal codification of eye movements in goldfish studied by electrical microstimulation. Neuroscience 78:1271–88
    [Google Scholar]
  87. Schaefer KP. 1970. Unit analysis and electrical stimulation in the optic tectum of rabbits and cats. Brain Behav. Evol. 3:1–4222–40
    [Google Scholar]
  88. Schiller PH, Stryker M. 1972. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35:6915–24
    [Google Scholar]
  89. Schneider GE. 2014. Brain Structure and Its Origins: In Development and in Evolution of Behavior and the Mind Cambridge, MA: MIT Press
  90. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ et al. 2007. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods 4:4323–26
    [Google Scholar]
  91. Shang C, Chen Z, Liu A, Li Y, Zhang J et al. 2018. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9:11232
    [Google Scholar]
  92. Shang C, Liu Z, Chen Z, Shi Y, Wang Q et al. 2015. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348:62421472–77
    [Google Scholar]
  93. Shen K, Paré M. 2007. Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. J. Vis. 7:515
    [Google Scholar]
  94. Song JH, McPeek RM. 2015. Neural correlates of target selection for reaching movements in superior colliculus. J. Neurophysiol. 113:51414–22
    [Google Scholar]
  95. Song JH, Rafal RD, McPeek RM 2011. Deficits in reach target selection during inactivation of the midbrain superior colliculus. PNAS 108:51E1433–40
    [Google Scholar]
  96. Sparks DL. 1988. Neural cartography: sensory and motor maps in the superior colliculus. Brain Behav. Evol. 31:149–56
    [Google Scholar]
  97. Stein BE. 1981. Organization of the rodent superior colliculus: some comparisons with other mammals. Behav. Brain Res. 3:2175–88
    [Google Scholar]
  98. Stuphorn V, Bauswein E, Hoffmann KP. 2000. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. J. Neurophysiol. 83:31283–99
    [Google Scholar]
  99. Suzuki DG, Pérez-Fernández J, Wibble T, Kardamakis AA, Grillner S 2019. The role of the optic tectum for visually evoked orienting and evasive movements. PNAS 116:3015272–81
    [Google Scholar]
  100. Temizer I, Donovan JC, Baier H, Semmelhack JL. 2015. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25:141823–34
    [Google Scholar]
  101. Torres B, Luque MA, Pérez-Pérez MP, Herrero L 2005. Visual orienting response in goldfish: a multidisciplinary study. Brain Res. Bull. 66:4–6376–80
    [Google Scholar]
  102. Torres B, Pastor AM, Cabrera B, Salas C, Delgado-García JM. 1992. Afferents to the oculomotor nucleus in the goldfish (Carassius auratus) as revealed by retrograde labeling with horseradish peroxidase. J. Comp. Neurol. 324:3449–61
    [Google Scholar]
  103. Valenstein ES. 1965. Independence of approach and escape reactions to electrical stimulation of the brain. J. Comp. Physiol. Psychol. 60:20–30
    [Google Scholar]
  104. Valentine DE, Sinha SR, Moss CF. 2002. Orienting responses and vocalizations produced by microstimulation in the superior colliculus of the echolocating bat, Eptesicus fuscus. J. Comp. Physiol. A 188:289–108
    [Google Scholar]
  105. Waldbillig RJ. 1975. Attack, eating, drinking, and gnawing elicited by electrical stimulation of rat mesencephalon and pons. J. Comp. Physiol. Psychol. 89:3200–12
    [Google Scholar]
  106. Wallace MT, Wilkinson LK, Stein BE. 1996. Representation and integration of multiple sensory inputs in primate superior colliculus. J. Neurophysiol. 76:21246–66
    [Google Scholar]
  107. Welch RB, DuttonHurt LD, Warren DH. 1986. Contributions of audition and vision to temporal rate perception. Percept. Psychophys. 39:4294–300
    [Google Scholar]
  108. Weldon DA, Calabrese LC, Nicklaus KJ. 1983. Rotational behavior following cholinergic stimulation of the superior colliculus in rats. Pharmacol. Biochem. Behav. 19:5813–20
    [Google Scholar]
  109. Werner W. 1993. Neurons in the primate superior colliculus are active before and during arm movements to visual targets. Eur. J. Neurosci. 5:4335–40
    [Google Scholar]
  110. Werner W, Dannenberg S, Hoffmann KP. 1997. Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Exp. Brain Res. 115:2191–205
    [Google Scholar]
  111. Westby GWM, Keay KA, Redgrave P, Dean P, Bannister M. 1990. Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp. Brain Res. 81:3626–38
    [Google Scholar]
  112. White BJ, Munoz DP 2011. The superior colliculus. The Oxford Handbook of Eye Movements SP Liversedge, I Gilchrist, S Everling 195 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  113. Wiberg M, Westman J, Blomqvist A. 1987. Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J. Comp. Neurol. 264:192–117
    [Google Scholar]
  114. Wurtz RH, Goldberg ME. 1971. Superior colliculus cell responses related to eye movements in awake monkeys. Science 171:396682–84
    [Google Scholar]
  115. Xu Y, Zhu S-W, Li Q-W. 2016. Lamprey: a model for vertebrate evolutionary research. Zool. Res. 37:5263–69
    [Google Scholar]
  116. Yilmaz M, Meister M. 2013. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23:202011–15
    [Google Scholar]
  117. Zelinsky GJ, Bisley JW. 2015. The what, where, and why of priority maps and their interactions with visual working memory. Ann. New York Acad. Sci. 1339:1154–64
    [Google Scholar]
/content/journals/10.1146/annurev-vision-012521-102314
Loading
/content/journals/10.1146/annurev-vision-012521-102314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error