1932

Abstract

This review discusses several pervasive myths about peripheral vision, as well as what is actually true: Peripheral vision underlies a broad range of visual tasks, in spite of its significant loss of information. New understanding of peripheral vision, including likely mechanisms, has deep implications for our understanding of vision. From peripheral recognition to visual search, from change blindness to getting the gist of a scene, a lossy but relatively fixed peripheral encoding may determine the difficulty of many tasks. This finding suggests that the visual system may be more stable, and less dynamically changing as a function of attention, than previously assumed.

Keyword(s): acuityattentioncrowdingencoding
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-082114-035733
2016-10-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/2/1/annurev-vision-082114-035733.html?itemId=/content/journals/10.1146/annurev-vision-082114-035733&mimeType=html&fmt=ahah

Literature Cited

  1. Abramov I, Gordon J, Chan H. 1991. Color appearance in the peripheral retina: effects of stimulus size. J. Opt. Soc. Am. A 8:2404–14 [Google Scholar]
  2. Anstis SM. 1974. A chart demonstrating variations in acuity with retinal position. Vis. Res. 14:589–92 [Google Scholar]
  3. Anstis SM. 1998. Picturing peripheral acuity. Perception 27:7817–25 [Google Scholar]
  4. Balas BJ, Nakano L, Rosenholtz R. 2009. A summary-statistic representation in peripheral vision explains visual crowding. J. Vis. 9:1213 doi: 10.1167/9.12.13 [Google Scholar]
  5. Baldassi S, Megna N, Burr DC. 2006. Visual clutter causes high-magnitude errors. PLOS Biol. 4:3e56 doi: 10.1371/journal.pbio.0040056 [Google Scholar]
  6. Banks WP, Larson DW, Prinzmetal W. 1979. Asymmetry of visual interference. Percept. Psychophys. 25:447–56 [Google Scholar]
  7. Bennett PJ, Banks MS. 1991. The effects of contrast, spatial scale, and orientation on foveal and peripheral phase discrimination. Vis. Res. 31:101759–86 [Google Scholar]
  8. Bouma H. 1970. Interaction effects in parafoveal letter recognition. Nature 226:177–78 [Google Scholar]
  9. Carrasco M, Evert DL, Chang I, Katz SM. 1995. The eccentricity effect: Target eccentricity affects performance on conjunction searches. Percept. Psychophys. 57:1241–61 [Google Scholar]
  10. Carrasco M, Frieder KS. 1997. Cortical magnification neutralizes the eccentricity effect in visual search. Vis. Res. 37:63–82 [Google Scholar]
  11. Chaney W, Fischer J, Whitney D. 2014. The hierarchical sparse selection model of visual crowding. Front. Integr. Neurosci. 8:73 doi: 10.3389/fnint.2014.00073 [Google Scholar]
  12. Chelazzi L, Miller EK, Duncan J, Desimone R. 2001. Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex 11:8761–72 [Google Scholar]
  13. Costen NP, Craw I, Ellis HD, Shepherd JW. 1994. Masking of faces by facial and non-facial stimuli. Vis. Cogn. 1:227–51 [Google Scholar]
  14. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523 [Google Scholar]
  15. Esteves F, Öhman A. 1993. Masking the face: recognition of emotional facial expressions as a function of the parameters of backward masking. Scand. J. Psychol. 34:11–18 [Google Scholar]
  16. Freeman J, Chakravarthi R, Pelli DG. 2012. Substitution and pooling in crowding. Atten. Percept. Psychophys. 74:2379–96 doi: 10.3758/s13414-011-0229-0 [Google Scholar]
  17. Freeman J, Simoncelli EP. 2011. Metamers of the ventral stream. Nat. Neurosci. 14:91195–201 [Google Scholar]
  18. Freeman J, Ziemba CM, Heeger DJ, Simoncelli EP, Movshon JA. 2013. A functional and perceptual signature of the second visual area in primates. Nat. Neurosci. 16:7974–81 [Google Scholar]
  19. Fukushima K. 1980. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36:193–202 [Google Scholar]
  20. Gatys LA, Ecker AS, Bethge M. 2015. Texture synthesis using convolutional neural networks. Proc. Neural Inf. Process. Syst. 2015, Montreal, Can., Dec. 7–12. http://arxiv.org/pdf/1505.07376
  21. Geisler WS, Chou K-L. 1995. Separation of low-level and high-level factors in complex tasks: visual search. Psychol. Rev. 102:356–78 [Google Scholar]
  22. Geisler WS, Perry JS, Najemnik J. 2006. Visual search: the role of peripheral information measured using gaze-contingent displays. J. Vis. 6:91 doi: 10.1167/6.9.1 [Google Scholar]
  23. Gheri C, Morgan MJ, Solomon JA. 2007. The relationship between search efficiency and crowding. Perception 36:1779–87 [Google Scholar]
  24. Greene MR, Oliva A. 2009. Recognition of natural scenes from global properties: seeing the forest without representing the trees. Cogn. Psychol. 58:137–76 [Google Scholar]
  25. Greenwood JA, Bex PJ, Dakin SC. 2009. Positional averaging explains crowding with letter-like stimuli. PNAS 106:13130–35 doi: 10.1073/pnas.0901352106 [Google Scholar]
  26. Greenwood JA, Bex PJ, Dakin SC. 2012. Crowding follows the binding of relative position and orientation. J. Vis. 12:318 doi: 10.1167/12.3.18 [Google Scholar]
  27. Grimes J. 1996. On the failure to detect changes in scenes across saccades. Perception 2 K Akins 89–110 New York: Oxford Univ. Press [Google Scholar]
  28. Hansen T, Pracejus L, Gegenfurtner KR. 2009. Color perception in the intermediate periphery of the visual field. J. Vis. 9:426 [Google Scholar]
  29. Henderson JM, Hollingworth A. 1999. The role of fixation position in detecting scene changes across saccades. Psychol. Sci. 10:438–43 [Google Scholar]
  30. Hochberg J. 1968. In the mind's eye. Contemporary Theory and Research in Visual Perception RN Haber 309–31 New York: Holt, Rinehart, and Winston [Google Scholar]
  31. Horton JC, Hoyt WF. 1991. The representation of the visual field in human striate cortex. Arch. Ophthalmol. 109:816–24 [Google Scholar]
  32. Intriligator J, Cavanagh P. 2001. The spatial resolution of visual attention. Cogn. Psychol. 43:171–216 [Google Scholar]
  33. Johnson J. 2010. Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules. San Francisco: Morgan Kaufmann
  34. Keshvari S, Rosenholtz R. 2016. Pooling of continuous features provides a unifying account of crowding. J. Vis. 16:339 [Google Scholar]
  35. Koenderink J, Richards W, van Doorn AJ. 2012. Space-time disarray and visual awareness. i-Perception 3:3159–65 [Google Scholar]
  36. Korte W. 1923. Über die Gestaltauffassung im indirekten Sehen. Z. Psych. 9317–82
  37. Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep convolutional neural networks. Proc. Neural Inf. Process. Syst. 2012, Lake Tahoe, NV, Dec. 3–81097–105
  38. Krumhansl CL, Thomas EAC. 1977. Effect of level of confusability on reporting letters from briefly presented visual displays. Percept. Psychophys. 21:3269–79 [Google Scholar]
  39. Lettvin JY. 1976. On seeing sidelong. Sciences 16:410–20 [Google Scholar]
  40. Levi DM. 2008. Crowding—an essential bottleneck for object recognition: a mini-review. Vis. Res. 48:635–54 [Google Scholar]
  41. Levi DM, Klein SA. 1986. Sampling in spatial vision. Nature 320:360–62 [Google Scholar]
  42. Levi DM, Klein SA, Aitsebaomo AP. 1984. Detection and discrimination of the direction of motion in central and peripheral vision of normal and amblyopic observers. Vis. Res. 24:8789–800 [Google Scholar]
  43. Levi DM, Klein SA, Aitsebaomo AP. 1985. Vernier acuity, crowding, and cortical magnification. Vis. Res. 25:7963–77 [Google Scholar]
  44. Lévy-Schoen A. 1976. Exploration et connaissance de l'espace visual sans vision périphérique. Trav. Hum. 39:63–72 [Google Scholar]
  45. Loffler G, Gordon GE, Wilkinson F, Goren D, Wilson HR. 2005. Configural masking of faces: evidence for high-level interactions in face perception. Vis. Res. 45:172287–97 [Google Scholar]
  46. Loftus GR, Ginn M. 1984. Perceptual and conceptual masking of pictures. J. Exp. Psychol. Learn. Mem. Cogn. 10:3435–41 [Google Scholar]
  47. Loschky LC, Sethi A, Simons DJ, Pydimarri TN, Ochs D, Corbeille JL. 2007. The importance of information localization in scene gist recognition. J. Exp. Psychol. Hum. Percept. Perform. 33:61431–50 [Google Scholar]
  48. Mace MJ-M, Joubert OR, Nespoulous J, Fabre-Thorp M. 2009. The time-course of visual categorizations: You spot the animal faster than the bird. PLOS ONE 4:6e5927 [Google Scholar]
  49. Martelli M, Majaj NJ, Pelli DG. 2005. Are faces processed like words? A diagnostic test for recognition by parts. J. Vis. 5:16 [Google Scholar]
  50. May KA, Hess RF. 2007. Ladder contours are undetectable in the periphery: a crowding effect?. J. Vis. 7:139 doi: 10.1167/7.13.9 [Google Scholar]
  51. McAdams CJ, Maunsell JHR. 1999. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19:1431–41 [Google Scholar]
  52. McConkie GW, Currie CB. 1996. Visual stability across saccades while viewing complex pictures. J. Exp. Psychol. Hum. Percept. Perform. 22:3563–81 [Google Scholar]
  53. McKee SP, Nakayama K. 1984. The detection of motion in the peripheral visual field. Vis. Res. 24:125–32 [Google Scholar]
  54. Michel M, Geisler WS. 2011. Intrinsic position uncertainty explains detection and localization performance in peripheral vision. J. Vis. 11:118 doi: 10.1167/11.1.18 [Google Scholar]
  55. Najemnik J, Geisler WS. 2008. Eye movement statistics in humans are consistent with an optimal search strategy. J. Vis. 8:34 doi: 10.1167/8.3.4 [Google Scholar]
  56. Nandy AS, Tjan BS. 2012. Saccade-confounded image statistics explain visual crowding. Nat. Neurosci. 15:463–69 doi: 10.1038/nn.3021 [Google Scholar]
  57. Oliva A, Torralba A. 2006. Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155:23–36 [Google Scholar]
  58. O'Regan JK, Deubel H, Clark JJ, Rensink RA. 2000. Picture changes during blinks: looking without seeing and seeing without looking. Vis. Cogn. 7:1–3191–211 [Google Scholar]
  59. O'Regan JK, Rensink RA, Clark JJ. 1999. Change-blindness as a result of ‘mudsplashes.’. Nature 398:434 [Google Scholar]
  60. Østerberg G. 1935. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. Suppl. 6–10:11–96 [Google Scholar]
  61. Parker RE. 1978. Picture processing during recognition. J. Exp. Psychol. Hum. Percept. Perform. 4:2284–93 [Google Scholar]
  62. Parkes L, Lund J, Angelucci A, Solomon JA, Morgan M. 2001. Compulsory averaging of crowded orientation signals in human vision. Nat. Neurosci. 4:739–44 [Google Scholar]
  63. Pelli DG, Palomares M, Majaj N. 2004. Crowding is unlike ordinary masking: distinguishing feature integration from detection. J. Vis. 4:1212 [Google Scholar]
  64. Pelli DG, Tillman KA. 2008. The uncrowded window for object recognition. Nat. Neurosci. 11:101129–35 [Google Scholar]
  65. Peripheral acuity. 2012. Illusions November 20. http://anstislab.ucsd.edu/2012/11/20/peripheral-acuity/
  66. Põder E, Wagemans J. 2007. Crowding with conjunctions of simple features. J. Vis. 7:223 doi: 10.1167/7.2.23 [Google Scholar]
  67. Popescu ML, Boisjoly H, Schmaltz H, Kergoat M-J, Rousseau J. et al. 2011. Age-related eye disease and mobility limitations in older adults. Investig. Ophthal. Vis. Sci. 52:7168–74 [Google Scholar]
  68. Portilla J, Simoncelli EP. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40:149–71 doi: 10.1023/A:1026553619983 [Google Scholar]
  69. Potter MC. 1975. Meaning in visual search. Science 187:965–66 [Google Scholar]
  70. Potter MC, Fox LF. 2009. Detecting and remembering simultaneous pictures in a rapid serial visual presentation. J. Exp. Psychol. Hum. Percept. Perform. 35:28–38 [Google Scholar]
  71. Pringle HL, Irwin DE, Kramer AF, Atchley P. 2001. The role of attentional breadth in perceptual change detection. Psychon. Bull. Rev. 8:189–95 [Google Scholar]
  72. Rensink RA, O'Regan JK, Clark JJ. 1997. To see or not to see: the need for attention to perceive changes in scenes. Psychol. Sci. 8:368–73 [Google Scholar]
  73. Rentschler I, Treutwein B. 1985. Loss of spatial phase relationships in extrafoveal vision. Nature 313:308–10 [Google Scholar]
  74. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:111019–25 [Google Scholar]
  75. Rosenholtz R. 2011. What your visual system sees where you are not looking. Proc. SPIE 7865, Hum. Vis. Electron. Imaging, XVI, San Francisco, Feb. 2.
  76. Rosenholtz R. 2014. Texture perception. Oxford Handbook of Perceptual Organization J Wagemans 167–86 Oxford, UK: Oxford Univ. Press doi: 10.1093/oxfordhb/9780199686858.013.058 [Google Scholar]
  77. Rosenholtz R, Huang J, Ehinger KA. 2012a. Rethinking the role of top-down attention in vision: effects attributable to a lossy representation in peripheral vision. Front. Psychol. 3:13 doi: 10.3389/fpsyg.2012.00013 [Google Scholar]
  78. Rosenholtz R, Huang J, Raj A, Balas BJ, Ilie L. 2012b. A summary statistic representation in peripheral vision explains visual search. J. Vis. 12:414 doi: 10.1167/12.4.14 [Google Scholar]
  79. Rousselet GA, Husk JS, Bennett PJ, Sekuler AB. 2005a. Spatial scaling factors explain eccentricity effects on face ERPs. J. Vis. 5:101 doi: 10.1167/5.10.1 [Google Scholar]
  80. Rousselet GA, Joubert O, Fabre-Thorpe M. 2005b. How long to get to the “gist” of real-world natural scenes?. Vis. Cogn. 12:6852–77 [Google Scholar]
  81. Simons DJ, Levin DT. 1997. Change blindness. Trends Cogn. Sci. 1:261–67 [Google Scholar]
  82. Strasburger H, Rentschler I, Jüttner M. 2011. Peripheral vision and pattern recognition: a review. J. Vis. 11:513 [Google Scholar]
  83. Toet A, Levi DM. 1992. The two-dimensional shape of spatial interaction zones in the parafovea. Vis. Res. 32:1349–57 [Google Scholar]
  84. Torralba A. 2009. How many pixels make an image?. Vis. Neurosci. 26:1123–31 [Google Scholar]
  85. Treisman A. 1985. Preattentive processing in vision. Comput. Vis. Graph. Image Process. 31:156–77 [Google Scholar]
  86. Treisman A. 2006. How the deployment of attention determines what we see. Vis. Cogn. 14:411–43 [Google Scholar]
  87. Treisman A, Gelade G. 1980. A feature-integration theory of attention. Cogn. Psychol. 12:97–136 [Google Scholar]
  88. van den Berg R, Roerdink JBTM, Cornelissen FW. 2010. A neurophysiologically plausible population code model for feature integration explains visual crowding. PLOS Comput. Biol. 6:e1000646 [Google Scholar]
  89. Van Essen DC, Anderson CH. 1995. Information processing strategies and pathways in the primate visual system. An Introduction to Neural and Electronic Networks SF Zornetzer, JL Davis, C Lau, T McKenna 45–76 San Diego, CA: Academic, 2nd ed.. [Google Scholar]
  90. Vlaskamp BNS, Over EAC, Hooge ITC. 2005. Saccadic search performance: the effect of element spacing. Exp. Brain Res. 167:246–59 [Google Scholar]
  91. Watson AB. 2014. A formula for human retinal ganglion cell receptive field density as a function of visual field location. J. Vis. 14:715 [Google Scholar]
  92. Wertheim AH, Hooge ITC, Krikke K, Johnson A. 2006. How important is lateral masking in visual search. Exp. Brain Res. 170:387–401 [Google Scholar]
  93. Wilkinson F, Wilson HR, Ellemberg D. 1997. Lateral interactions in peripherally viewed texture arrays. J. Opt. Soc. Am. A 14:2057–68 [Google Scholar]
  94. Wolford G. 1975. Perturbation model for letter identification. Psychol. Rev. 82:3184–99 [Google Scholar]
  95. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:8619–24 doi: 10.1073/pnas.1403112111 [Google Scholar]
  96. Young AH, Hulleman J. 2013. Eye movements reveal how task difficulty moulds visual search. J. Exp. Psychol. Hum. Percept. Perform. 39:1168–90 doi: 10.1037/a0028679 [Google Scholar]
  97. Zelinsky GJ. 2001. Eye movements during change detection: implications for search constraints, memory limitations, and scanning strategies.. Percept. Psychophys. 63:2209–25 [Google Scholar]
  98. Zhang X, Huang J, Yigit-Elliott S, Rosenholtz R. 2015. Cube search, revisited. J. Vis. 15:39 doi: 10.1167/15.3.9 [Google Scholar]
/content/journals/10.1146/annurev-vision-082114-035733
Loading
/content/journals/10.1146/annurev-vision-082114-035733
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error