1932

Abstract

Electrical synaptic transmission via gap junctions underlies direct and rapid neuronal communication in the central nervous system. The diversity of functional roles played by electrical synapses is perhaps best exemplified in the vertebrate retina, in which gap junctions are expressed by each of the five major neuronal types. These junctions are highly plastic; they are dynamically regulated by ambient illumination and circadian rhythms acting through light-activated neuromodulators. The networks formed by electrically coupled neurons provide plastic, reconfigurable circuits positioned to play key and diverse roles in the transmission and processing of visual information at every retinal level. Recent work indicates gap junctions also play a role in the progressive cell death and aberrant activity seen in various pathological conditions of the retina. Gap junctions thus form potential targets for novel neuroprotective therapies in the treatment of neurodegenerative retinal diseases such as glaucoma and ischemic retinopathies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034133
2018-09-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034133.html?itemId=/content/journals/10.1146/annurev-vision-091517-034133&mimeType=html&fmt=ahah

Literature Cited

  1. Ackert JM, Wu SH, Lee JC, Abrams J, Hu EH et al. 2006. Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. J. Neurosci. 26:4206–15
    [Google Scholar]
  2. Akopian A, Atlasz T, Pan F, Wong S, Zhang Y et al. 2014. Gap junction-mediated death of retinal neurons is connexin and insult specific: a potential target for neuroprotection. J. Neurosci. 34:10582–91
    [Google Scholar]
  3. Akopian A, Kumar S, Ramakrishnan H, Roy K, Viswanathan S, Bloomfield SA 2017. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma. J. Clin. Invest. 127:2647–61
    [Google Scholar]
  4. Andrade-Rozental AF, Rozental R, Hopperstad MG, Wu JK, Vrionis FD, Spray DC 2000. Gap junctions: the “kiss of death” and the “kiss of life.”. Brain Res. Rev. 32:308–15
    [Google Scholar]
  5. Arai I, Tanaka M, Tachibana M 2010. Active roles of electrically coupled bipolar cell network in the adult retina. J. Neurosci. 30:9260–70
    [Google Scholar]
  6. Arroyo DA, Kirkby LA, Feller MB 2016. Retinal waves modulate an intraretinal circuit of intrinsically photosensitive retinal ganglion cells. J. Neurosci. 36:6892–905
    [Google Scholar]
  7. Ashe PC, Berry MD 2003. Apoptotic signaling cascades. Prog. Neuropsychopharmacol. Biol. Psychiatry 27:199–214
    [Google Scholar]
  8. Atkinson CL, Feng J, Zhang DQ 2013. Functional integrity and modification of retinal dopaminergic neurons in the rd1 mutant mouse: roles of melanopsin and GABA. J. Neurophysiol. 109:1589–99
    [Google Scholar]
  9. Attwell D, Borges S, Wu SM, Wilson M 1987. Signal clipping by the rod output synapse. Nature 328:522–24
    [Google Scholar]
  10. Baldridge WH 2001. Triphasic adaptation of teleost horizontal cells. Prog. Brain Res. 131:437–49
    [Google Scholar]
  11. Baldridge WH, Ball AK 1991. Background illumination reduces horizontal cell receptive-field size in both normal and 6-hydroxydopamine-lesioned goldfish retinas. Vis. Neurosci. 7:441–50
    [Google Scholar]
  12. Barrio LC, Capel J, Jarillo JA, Castro C, Revilla A 1997. Species-specific voltage-gating properties of connexin-45 junctions expressed in Xenopus oocytes. Biophys. J. 73:757–69
    [Google Scholar]
  13. Baylor DA, Fuortes MG, O'Bryan PM 1971. Receptive fields of cones in the retina of the turtle. J. Physiol. 214:265–94
    [Google Scholar]
  14. Belousov AB, Fontes JD 2013. Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci 36:227–36
    [Google Scholar]
  15. Blankenship AG, Hamby AM, Firl A, Vyas S, Maxeiner S et al. 2011. The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina. J. Neurosci. 31:9998–10008
    [Google Scholar]
  16. Bloomfield SA, Miller RF 1982. A physiological and morphological study of the horizontal cell types of the rabbit retina. J. Comp. Neurol. 208:288–303
    [Google Scholar]
  17. Bloomfield SA, Völgyi B 2004. Function and plasticity of homologous coupling between AII amacrine cells. Vis. Res. 44:3297–306
    [Google Scholar]
  18. Bloomfield SA, Völgyi B 2009. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat. Rev. Neurosci. 10:495–506
    [Google Scholar]
  19. Bloomfield SA, Xin D, Osborne T 1997. Light-induced modulation of coupling between AII amacrine cells in the rabbit retina. Vis. Neurosci. 14:565–76
    [Google Scholar]
  20. Borowska J, Trenholm S, Awatramani GB 2011. An intrinsic neural oscillator in the degenerating mouse retina. J. Neurosci. 31:5000–12
    [Google Scholar]
  21. Brivanlou IH, Warland DK, Meister M 1998. Mechanisms of concerted firing among retinal ganglion cells. Neuron 20:527–39
    [Google Scholar]
  22. Bukauskas FF, Angele AB, Verselis VK, Bennett MV 2002. Coupling asymmetry of heterotypic connexin 45/connexin 43-EGFP gap junctions: properties of fast and slow gating mechanisms. PNAS 99:7113–18
    [Google Scholar]
  23. Cruciani V, Mikalsen SO 2007. Evolutionary selection pressure and family relationships among connexin genes. Biol. Chem. 388:253–64
    [Google Scholar]
  24. Curti S, Pereda AE 2004. Voltage-dependent enhancement of electrical coupling by a subthreshold sodium current. J. Neurosci. 24:3999–4010
    [Google Scholar]
  25. Cusato K, Ripps H, Zakevicius J, Spray DC 2006. Gap junctions remain open during cytochrome c–induced cell death: relationship of conductance to ‘bystander’ cell killing. Cell Death Differ 13:1707–14
    [Google Scholar]
  26. Dacheux RF, Raviola E 1982. Horizontal cells in the retina of the rabbit. J. Neurosci. 2:1486–93
    [Google Scholar]
  27. Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O'Carroll SJ et al. 2012. Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 135:506–20
    [Google Scholar]
  28. Danesh-Meyer HV, Zhang J, Acosta ML, Rupenthal ID, Green CR 2016. Connexin43 in retinal injury and disease. Prog. Retin. Eye Res. 51:41–68
    [Google Scholar]
  29. de Rivero Vaccari JC, Corriveau RA, Belousov AB 2007. Gap junctions are required for NMDA receptor dependent cell death in developing neurons. J. Neurophysiol. 98:2878–86
    [Google Scholar]
  30. Decrock E, Vinken M, De Vuyst E, Krysko DV, D'Herde K et al. 2009. Connexin-related signaling in cell death: to live or let die. ? Cell Death Differ 16:524–36
    [Google Scholar]
  31. Degen J, Meier C, Van Der Giessen RS, Sohl G, Petrasch-Parwez E et al. 2004. Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. J. Comp. Neurol. 473:511–25
    [Google Scholar]
  32. Dermietzel R, Kremer M, Paputsoglu G, Stang A, Skerrett IM et al. 2000. Molecular and functional diversity of neural connexins in the retina. J. Neurosci. 20:8331–43
    [Google Scholar]
  33. DeVries SH 1999. Correlated firing in rabbit retinal ganglion cells. J. Neurophysiol. 81:908–20
    [Google Scholar]
  34. DeVries SH, Baylor DA 1995. An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. PNAS 92:10658–62
    [Google Scholar]
  35. Dong CJ, McReynolds JS 1991. The relationship between light, dopamine release and horizontal cell coupling in the mudpuppy retina. J. Physiol. 440:291–309
    [Google Scholar]
  36. Dorgau B, Herrling R, Schultz K, Greb H, Segelken J et al. 2015. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions. J. Comp. Neurol. 523:2062–81
    [Google Scholar]
  37. Drager UC, Hubel DH 1978. Studies of visual function and its decay in mice with hereditary retinal degeneration. J. Comp. Neurol. 180:85–114
    [Google Scholar]
  38. Dunn FA, Doan T, Sampath AP, Rieke F 2006. Controlling the gain of rod-mediated signals in the mammalian retina. J. Neurosci. 26:3959–70
    [Google Scholar]
  39. Elmore S 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495–516
    [Google Scholar]
  40. Fain GL 1975. Quantum sensitivity of rods in the toad retina. Science 187:838–41
    [Google Scholar]
  41. Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J et al. 2004. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J. Neurosci. 24:3325–34
    [Google Scholar]
  42. Feigenspan A, Teubner B, Willecke K, Weiler R 2001. Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J. Neurosci. 21:230–39
    [Google Scholar]
  43. Festjens N, Vanden Berghe T, Vandenabeele P 2006. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta 1757:1371–87
    [Google Scholar]
  44. Ffytche DH 2009. Visual hallucinations in eye disease. Curr. Opin. Neurol. 22:28–35
    [Google Scholar]
  45. Frantseva MV, Kokarovtseva L, Naus CG, Carlen PL, MacFabe D, Perez Velazquez JL 2002.a Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J. Neurosci. 22:644–53
    [Google Scholar]
  46. Frantseva MV, Kokarovtseva L, Perez Velazquez JL 2002.b Ischemia-induced brain damage depends on specific gap-junctional coupling. J. Cereb. Blood Flow Metab. 22:453–62
    [Google Scholar]
  47. Goodenough DA, Revel JP 1970. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol. 45:272–90
    [Google Scholar]
  48. Guldenagel M, Ammermuller J, Feigenspan A, Teubner B, Degen J et al. 2001. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J. Neurosci. 21:6036–44
    [Google Scholar]
  49. Hampson EC, Vaney DI, Weiler R 1992. Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J. Neurosci. 12:4911–22
    [Google Scholar]
  50. Hampson EC, Weiler R, Vaney DI 1994. pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina. Proc. R. Soc. B 255:67–72
    [Google Scholar]
  51. Han Y, Massey SC 2005. Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. PNAS 102:13313–18
    [Google Scholar]
  52. Hansen KA, Torborg CL, Elstrott J, Feller MB 2005. Expression and function of the neuronal gap junction protein connexin 36 in developing mammalian retina. J. Comp. Neurol. 493:309–20
    [Google Scholar]
  53. Hernandez MR, Miao H, Lukas T 2008. Astrocytes in glaucomatous optic neuropathy. Prog. Brain Res. 173:353–73
    [Google Scholar]
  54. Hidaka S, Akahori Y, Kurosawa Y 2004. Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J. Neurosci. 24:10553–67
    [Google Scholar]
  55. Hidaka S, Kato T, Miyachi E 2002. Expression of gap junction connexin36 in adult rat retinal ganglion cells. J. Integr. Neurosci. 1:3–22
    [Google Scholar]
  56. Hombach S, Janssen-Bienhold U, Sohl G, Schubert T, Bussow H et al. 2004. Functional expression of connexin57 in horizontal cells of the mouse retina. Eur. J. Neurosci. 19:2633–40
    [Google Scholar]
  57. Hornstein EP, Verweij J, Li PH, Schnapf JL 2005. Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J. Neurosci. 25:11201–9
    [Google Scholar]
  58. Hoshi H, Mills SL 2009. Components and properties of the G3 ganglion cell circuit in the rabbit retina. J. Comp. Neurol. 513:69–82
    [Google Scholar]
  59. Hu EH, Bloomfield SA 2003. Gap junctional coupling underlies the short-latency spike synchrony of retinal alpha ganglion cells. J. Neurosci. 23:6768–77
    [Google Scholar]
  60. Hu EH, Pan F, Völgyi B, Bloomfield SA 2010. Light increases the gap junctional coupling of retinal ganglion cells. J. Physiol. 588:4145–63
    [Google Scholar]
  61. Huberman AD, Feller MB, Chapman B 2008. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31:479–509
    [Google Scholar]
  62. Ivanova E, Yee CW, Baldoni R Jr., Sagdullaev BT 2016. Aberrant activity in retinal degeneration impairs central visual processing and relies on Cx36-containing gap junctions. Exp. Eye Res. 150:81–89
    [Google Scholar]
  63. Ivanova E, Yee CW, Sagdullaev BT 2015. Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina. Front. Cell Neurosci. 9:390
    [Google Scholar]
  64. Jackson CR, Chaurasia SS, Hwang CK, Iuvone PM 2011. Dopamine D4 receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur J. Neurosci. 34:57–64
    [Google Scholar]
  65. Janssen-Bienhold U, Dermietzel R, Weiler R 1998. Distribution of connexin43 immunoreactivity in the retina of different vertebrates. J. Comp. Neurol. 396:310–21
    [Google Scholar]
  66. Janssen-Bienhold U, Trumpler J, Hilgen G, Schultz K, Muller LP et al. 2009. Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light. J. Comp. Neurol. 513:363–74
    [Google Scholar]
  67. Jin NG, Chuang AZ, Masson PJ, Ribelayga CP 2015. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina. J. Physiol. 593:1597–631
    [Google Scholar]
  68. Jonas JB, Königsreuther KA, Nauman GOH 1992. Optic disc histomorphology in normal eyes and eyes with secondary angle-closure glaucoma. Graefe's Arch. Clin. Exp. Ophthalmol. 230:134–39
    [Google Scholar]
  69. Katti C, Butler R, Sekaran S 2013. Diurnal and circadian regulation of connexin 36 transcript and protein in the mammalian retina. Invest. Ophthalmol. Vis. Sci. 54:821–29
    [Google Scholar]
  70. Kermer P, Klocker N, Bahr M 1999. Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res 298:383–95
    [Google Scholar]
  71. Kerr NM, Johnson CS, Green CR, Danesh-Meyer CV 2011. Gap junction protein connexin43 (GJA1) in the human glaucomatous optic nerve head and retina. J. Clin. Neurosci. 18:102–8
    [Google Scholar]
  72. Kerr NM, Johnson CS, Zhang J, Eady EK, Green CR, Danesh-Meyer HV 2012. High pressure-induced retinal ischaemia reperfusion causes upregulation of gap junction protein connexin43 prior to retinal ganglion cell loss. Exp. Neurol. 234:144–52
    [Google Scholar]
  73. Klaassen LJ, Sun Z, Steijaert MN, Bolte P, Fahrenfort I et al. 2011. Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLOS Biol 9:e1001107
    [Google Scholar]
  74. Kolb H, Famiglietti EV 1974. Rod and cone pathways in the inner plexiform layer of cat retina. Science 186:47–49
    [Google Scholar]
  75. Kothmann WW, Massey SC, O'Brien J 2009. Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling. J. Neurosci. 29:14903–11
    [Google Scholar]
  76. Kothmann WW, Trexler EB, Whitaker CM, Li W, Massey SC, O'Brien J 2012. Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J. Neurosci. 32:6747–59
    [Google Scholar]
  77. Kranz K, Paquet-Durand F, Weiler R, Janssen-Bienhold U, Dedek K 2013. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: Secondary cone death is not altered by deletion of connexin36 from cones. PLOS ONE 8:e57163
    [Google Scholar]
  78. Kreuzberg MM, Sohl G, Kim JS, Verselis VK, Willecke K, Bukauskas FF 2005. Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ. Res. 96:1169–77
    [Google Scholar]
  79. Lamb TD, Simon EJ 1976. The relation between intercellular coupling and electrical noise in turtle photoreceptors. J. Physiol. 263:257–86
    [Google Scholar]
  80. Lasater EM, Dowling JE 1985. Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. PNAS 82:3025–29
    [Google Scholar]
  81. Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY et al. 2003. The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur. J. Neurosci. 18:2925–34
    [Google Scholar]
  82. Lei Y, Garrahan N, Hermann B, Fautsch MP, Johnson DH et al. 2009. Topography of neuron loss in the retinal ganglion cell layer in human glaucoma. Br. J. Ophthalmol. 93:1676–79
    [Google Scholar]
  83. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D'Anna SA, Kerrigan D, Pease ME 2001. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 42:975–82
    [Google Scholar]
  84. Li AF, Roy S 2009. High glucose-induced downregulation of connexin 43 expression promotes apoptosis in microvascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 50:1400–7
    [Google Scholar]
  85. Li H, Chuang AZ, O'Brien J 2009. Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina. J. Neurosci. 29:15178–86
    [Google Scholar]
  86. Li H, Chuang AZ, O'Brien J 2014. Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina. Vis. Neurosci. 31:237–43
    [Google Scholar]
  87. Li H, Zhang Z, Blackburn MR, Wang SW, Ribelayga CP, O'Brien J 2013. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J. Neurosci. 33:3135–50
    [Google Scholar]
  88. Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S et al. 2008. Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J. Neurosci. 28:9769–89
    [Google Scholar]
  89. Ly A, Yee P, Vessey KA, Phipps JA, Jobling AI, Fletcher EL 2011. Early inner retinal astrocyte dysfunction during diabetic and development of hypoxia, retinal stress, and neuronal functional loss. Invest. Ophthalmol. Vis. Sci. 52:9316–26
    [Google Scholar]
  90. Malone P, Miao H, Parker A, Juarez S, Hernandez MR 2007. Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes. Glia 55:1085–98
    [Google Scholar]
  91. Manookin MB, Beaudoin DL, Ernst ZR, Flagel LJ, Demb JB 2008. Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J. Neurosci. 28:4136–50
    [Google Scholar]
  92. Manor Y, Rinzel J, Segev I, Yarom Y 1997. Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J. Neurophysiol. 77:2736–52
    [Google Scholar]
  93. Margolis DJ, Gartland AJ, Singer JH, Detwiler PB 2014. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLOS ONE 9:e86253
    [Google Scholar]
  94. Margolis DJ, Newkirk G, Euler T, Detwiler PB 2008. Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J. Neurosci. 28:6526–36
    [Google Scholar]
  95. Mastronarde DN 1983. Interactions between ganglion cells in cat retina. J. Neurophysiol. 49:350–65
    [Google Scholar]
  96. Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermuller J, Brune H et al. 2005. Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J. Neurosci. 25:566–76
    [Google Scholar]
  97. Miller JW, Le Couter J, Strauss EC, Ferrara N 2013. Vascular endothelial growth factor A in intraocular vascular disease. Ophthalmology 120:106–14
    [Google Scholar]
  98. Mills SL, Massey SC 1995. Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377:734–37
    [Google Scholar]
  99. Mills SL, Massey SC 2000. A series of biotinylated tracers distinguishes three types of gap junction in retina. J. Neurosci. 20:8629–36
    [Google Scholar]
  100. Mills SL, O'Brien JJ, Li W, O'Brien J, Massey SC 2001. Rod pathways in the mammalian retina use connexin36. J. Comp. Neurol. 436:336–50
    [Google Scholar]
  101. Mills SL, Xia XB, Hoshi H, Firth SI, Rice ME et al. 2007. Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network. Vis. Neurosci. 24:593–608
    [Google Scholar]
  102. Muller LP, Dedek K, Janssen-Bienhold U, Meyer A, Kreuzberg MM et al. 2010. Expression and modulation of connexin 30.2, a novel gap junction protein in the mouse retina. Vis. Neurosci. 27:91–101
    [Google Scholar]
  103. Munch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B 2009. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12:1308–16
    [Google Scholar]
  104. Muto T, Tien T, Kim D, Sarthy VP, Roy S 2014. High glucose alters Cx43 expression and gap junction intercellular communication in retinal Muller cells: promotes Muller cell and pericyte apoptosis. Invest. Ophthalmol. Vis. Sci. 55:4327–37
    [Google Scholar]
  105. O'Brien J 2014. The ever-changing electrical synapse. Curr. Opin. Neurobiol. 29C:64–72
    [Google Scholar]
  106. O'Brien J 2017. Design principles of electrical synaptic plasticity. Neurosci. Lett. In press. https://doi.org/10.1016/j.neulet.2017.09.003
    [Crossref]
  107. O'Brien J, Nguyen HB, Mills SL 2004. Cone photoreceptors in bass retina use two connexins to mediate electrical coupling. J. Neurosci. 24:5632–42
    [Google Scholar]
  108. O'Brien JJ, Chen X, Macleish PR, O'Brien J, Massey SC 2012. Photoreceptor coupling mediated by connexin36 in the primate retina. J. Neurosci. 32:4675–87
    [Google Scholar]
  109. O'Brien JJ, Li W, Pan F, Keung J, O'Brien J, Massey SC 2006. Coupling between A-type horizontal cells is mediated by connexin 50 gap junctions in the rabbit retina. J. Neurosci. 26:11624–36
    [Google Scholar]
  110. Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J 2004. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog. Retin. Eye Res. 23:91–147
    [Google Scholar]
  111. Palacios-Prado N, Sonntag S, Skeberdis VA, Willecke K, Bukauskas FF 2009. Gating, permselectivity and pH-dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina. J. Physiol. 587:3251–69
    [Google Scholar]
  112. Pan F, Keung J, Kim IB, Snuggs MB, Mills SL et al. 2012. Connexin 57 is expressed by the axon terminal network of B-type horizontal cells in the rabbit retina. J. Comp. Neurol. 520:2256–74
    [Google Scholar]
  113. Pandarinath C, Bomash I, Victor JD, Prusky GT, Tschetter WW, Nirenberg S 2010. A novel mechanism for switching a neural system from one state to another. Front. Comput. Neurosci. 4:2
    [Google Scholar]
  114. Park WM, Wang Y, Park S, Denisova JV, Fontes JD, Belousov AB 2011. Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses. J. Neurosci. 31:5909–20
    [Google Scholar]
  115. Perez Velazquez JL, Frantseva MV, Naus CC 2003. Gap junctions and neuronal injury: protectants or executioners. ? Neuroscientist 9:5–9
    [Google Scholar]
  116. Piccolino M, Neyton J, Gerschenfeld HM 1984. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′:5′-monophosphate in horizontal cells of turtle retina. J. Neurosci. 4:2477–88
    [Google Scholar]
  117. Pottek M, Schultz K, Weiler R 1997. Effects of nitric oxide on the horizontal cell network and dopamine release in the carp retina. Vis. Res. 37:1091–102
    [Google Scholar]
  118. Quigley HA 1999. Neuronal death in glaucoma. Prog. Ret Eye Res. 18:39–57
    [Google Scholar]
  119. Reichstein D, Ren L, Filippopoulos T, Mittag T, Danias J 2007. Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma. Exp. Eye Res. 84:13–21
    [Google Scholar]
  120. Ribelayga C, Cao Y, Mangel SC 2008. The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801
    [Google Scholar]
  121. Ribelayga C, Mangel SC 2010. Identification of a circadian clock-controlled neural pathway in the rabbit retina. PLOS ONE 5:e11020
    [Google Scholar]
  122. Ribelayga C, Wang Y, Mangel SC 2002. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells. J. Physiol. 544:801–16
    [Google Scholar]
  123. Ripps H 2002. Cell death in retinitis pigmentosa: gap junctions and the ‘bystander’ effect. Exp. Eye Res. 74:327–36
    [Google Scholar]
  124. Roy K, Kumar S, Bloomfield SA 2017. Gap junctional coupling between retinal amacrine cells and ganglion cells underlies coherent activity integral to global object perception. PNAS 114:E10484–93
    [Google Scholar]
  125. Schnitzer MJ, Meister M 2003. Multineuronal firing patterns in the signal from eye to brain. Neuron 37:499–511
    [Google Scholar]
  126. Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R 2005.a Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J. Comp. Neurol. 485:191–201
    [Google Scholar]
  127. Schubert T, Maxeiner S, Kruger O, Willecke K, Weiler R 2005.b Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J. Comp. Neurol. 490:29–39
    [Google Scholar]
  128. Schwartz EA 1975. Rod-rod interaction in the retina of the turtle. J. Physiol. 246:617–38
    [Google Scholar]
  129. Schwartz M 2003. Neurodegeneration and neuroprotection in glaucoma: development of a therapeutic neuroprotective vaccine: Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 44:1407–11
    [Google Scholar]
  130. Sohl G, Joussen A, Kociok N, Willecke K 2010. Expression of connexin genes in the human retina. BMC Ophthalmol 10:27
    [Google Scholar]
  131. Sohl G, Maxeiner S, Willecke K 2005. Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6:191–200
    [Google Scholar]
  132. Sohl G, Willecke K 2003. An update on connexin genes and their nomenclature in mouse and man. Cell Commun. Adhes. 10:173–80
    [Google Scholar]
  133. Srinivas M, Costa M, Gao Y, Fort A, Fishman GI, Spray DC 1999.a Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J. Physiol. 517:673–89
    [Google Scholar]
  134. Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M et al. 1999.b Functional properties of channels formed by the neuronal gap junction protein connexin36. J. Neurosci. 19:9848–55
    [Google Scholar]
  135. Steiner E, Ebihara L 1996. Functional characterization of canine connexin45. J. Membr. Biol. 150:153–61
    [Google Scholar]
  136. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B et al. 2007. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130:730–41
    [Google Scholar]
  137. Striedinger K, Petrasch-Parwez E, Zoidl G, Napirei M, Meier C et al. 2005. Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. Eur. J. Neurosci. 22:605–16
    [Google Scholar]
  138. Suarez S, Ballmer-Hofer K 2001. VEGF transiently disrupts gap junctional communication in endothelial cells. J. Cell Sci. 114:1229–35
    [Google Scholar]
  139. Sun Z, Risner ML, van Asselt JB, Zhang DQ, Kamermans M, McMahon DG 2012. Physiological and molecular characterization of connexin hemichannels in zebrafish retinal horizontal cells. J. Neurophysiol. 107:2624–32
    [Google Scholar]
  140. Teranishi T, Negishi K, Kato S 1983. Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301:243–46
    [Google Scholar]
  141. Teubner B, Degen J, Sohl G, Guldenagel M, Bukauskas FF et al. 2000. Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J. Membr. Biol. 176:249–62
    [Google Scholar]
  142. Tien T, Muto T, Barrette K, Challyandra L, Roy S 2014. Downregulation of Connexin 43 promotes vascular cell loss and excess permeability associated with the development of vascular lesions in the diabetic retina. Mol. Vis. 20:732–41
    [Google Scholar]
  143. Toychiev AH, Ivanova E, Yee CW, Sagdullaev BT 2013. Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration. J. Neurosci. 33:13972–77
    [Google Scholar]
  144. Trenholm S, Awatramani GB 2017. Dynamic properties of electrically coupled retinal networks A2. Network Functions and Plasticity J Jing 183–208 New York: Academic
    [Google Scholar]
  145. Trenholm S, Borowska J, Zhang J, Hoggarth A, Johnson K et al. 2012. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine-ON cone bipolar cell network is driven by voltage-gated Na+ channels. J. Physiol. 590:2501–17
    [Google Scholar]
  146. Trenholm S, McLaughlin AJ, Schwab DJ, Awatramani GB 2013.a Dynamic tuning of electrical and chemical synaptic transmission in a network of motion coding retinal neurons. J. Neurosci. 33:14927–38
    [Google Scholar]
  147. Trenholm S, McLaughlin AJ, Schwab DJ, Turner MH, Smith RG et al. 2014. Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations. Nat. Neurosci. 17:1759–66
    [Google Scholar]
  148. Trenholm S, Schwab DJ, Balasubramanian V, Awatramani GB 2013.b Lag normalization in an electrically coupled neural network. Nat. Neurosci. 16:154–56
    [Google Scholar]
  149. Trudeau K, Molina AJ, Roy S 2012. Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome c release in retinal endothelial cells. Invest. Ophthalmol. Vis. Sci. 53:6675–81
    [Google Scholar]
  150. Vander S, Levkovitch-Verbin H 2012. Regulation of cell death and survival pathways in secondary degeneration of the optic nerve—a long-term study. Curr. Eye Res. 37:740–48
    [Google Scholar]
  151. Vaney DI 1994. Territorial organization of direction-selective ganglion cells in rabbit retina. J. Neurosci. 14:6301–16
    [Google Scholar]
  152. Vardi N, Smith RG 1996. The AII amacrine network: Coupling can increase correlated activity. Vis. Res. 36:3743–57
    [Google Scholar]
  153. Veruki ML, Hartveit E 2002. AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33:935–46
    [Google Scholar]
  154. Vila A, Whitaker CM, O'Brien J 2017. Membrane-associated guanylate kinase scaffolds organize a horizontal cell synaptic complex restricted to invaginating contacts with photoreceptors. J. Comp. Neurol. 525:850–67
    [Google Scholar]
  155. Völgyi B, Kovacs-Oller T, Atlasz T, Wilhelm M, Gabriel R 2013.a Gap junctional coupling in the vertebrate retina: variations on one theme. ? Prog. Retin. Eye Res. 34:1–18
    [Google Scholar]
  156. Völgyi B, Pan F, Paul DL, Wang JT, Huberman AD, Bloomfield SA 2013.b Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLOS ONE 8:e69426
    [Google Scholar]
  157. Wang Y, Denisova JV, Kang KS, Fontes JD, Zhu BT, Belousov AB 2010. Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J. Neurophysiol. 104:3551–56
    [Google Scholar]
  158. Wang Y, Mangel SC 1996. A circadian clock regulates rod and cone input to fish retinal cone horizontal cells. PNAS 93:4655–60
    [Google Scholar]
  159. Weiler R, Akopian A 1992. Effects of background illuminations on the receptive field size of horizontal cells in the turtle retina are mediated by dopamine. Neurosci. Lett. 140:121–24
    [Google Scholar]
  160. Xia X, Mills S 2004. Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina. Vis. Neurosci. 21:791–805
    [Google Scholar]
  161. Xin D, Bloomfield SA 1999. Dark- and light-induced changes in coupling between horizontal cells in mammalian retina. J. Comp. Neurol. 405:75–87
    [Google Scholar]
  162. Yamada E, Ishikawa T 1965. The fine structure of the horizontal cells in some vertebrate retinae. Cold Spring Harb. Symp. Quant. Biol. 30:383–92
    [Google Scholar]
  163. Zhang J, Wu SM 2004. Connexin35/36 gap junction proteins are expressed in photoreceptors of the tiger salamander retina. J. Comp. Neurol. 470:1–12
    [Google Scholar]
  164. Zhou ZY, Ohkawa M, Muramoto K, Homma K, Mawatari K et al. 1999. Glutathione depletion causes an uncoupling effect on retinal horizontal cells through oxidative stress. Neuroscience 90:1493–99
    [Google Scholar]
  165. Zhou ZY, Sugawara K, Hashi R, Muramoto K, Mawatari K et al. 2001. Reactive oxygen species uncouple external horizontal cells in the carp retina and glutathione couples them again. Neuroscience 102:959–67
    [Google Scholar]
  166. Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C et al. 2004. Molecular cloning and functional expression of ZfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J. Biol. Chem. 279:2913–21
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034133
Loading
/content/journals/10.1146/annurev-vision-091517-034133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error