1932

Abstract

I was drawn into research in George Wald's laboratory at Harvard, where as an undergraduate and graduate student, I studied vitamin A deficiency and dark adaptation. A chance observation while an assistant professor at Harvard led to the major research of my career—to understand the functional organization of vertebrate retinas. I started with a retinal circuit analysis of the primate retina with Brian Boycott and intracellular retinal cell recordings in mudpuppies with Frank Werblin. Subsequent pharmacology studies with Berndt Ehinger primarily with fish focused on dopamine and neuromodulation. Using zebrafish, we studied retinal development, neuronal connectivity, and the effects of genetic mutations on retinal structure and function. Now semi-retired, I have returned to primate retinal circuitry, undertaking a connectomic analysis of the human fovea in Jeffrey Lichtman's laboratory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034222
2018-09-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034222.html?itemId=/content/journals/10.1146/annurev-vision-091517-034222&mimeType=html&fmt=ahah

Literature Cited

  1. Allwardt B, Lall AB, Brockerhoff SE, Dowling JE 2001. Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant. J. Neurosci. 21:2330–42
    [Google Scholar]
  2. Ariel M, Lasater EM, Mangel SC, Dowling JE 1984. On the sensitivity of H1 horizontal cells of the carp retina to glutamate, aspartate and their agonists. Brain Res 295:179–83
    [Google Scholar]
  3. Baldridge WH, Weiler R, Dowling JE 1995. Dark-suppression and light-sensitization of horizontal cell responses in the hybrid bass retina. Visual Neurosci 12:611–20
    [Google Scholar]
  4. Barlow H 1953. Summation and inhibition in the frog's retina. J. Physiol. 119:69–88
    [Google Scholar]
  5. Berson EL 1993. Retinitis pigmentosa. The Friedenwald Lecture. Investig. Ophthalmol. Vis. Sci. 34:1659–76
    [Google Scholar]
  6. Bloomfield SA, Dowling JE 1985.a The roles of aspartate and glutamate in synaptic transmission in the rabbit retina. I. Outer plexiform layer. J. Neurophysiol. 53:699–713
    [Google Scholar]
  7. Bloomfield SA, Dowling JE 1985.b The roles of aspartate and glutamate in synaptic transmission in the rabbit retina. II. Inner plexiform layer. J. Neurophysiol. 53:714–25
    [Google Scholar]
  8. Bortoff A 1964. Localization of slow potential responses in the Necturus retina. Vis. Res. 4:626–27
    [Google Scholar]
  9. Boycott BB, Dowling JE 1969. Organization of the primate retina: light microscopy. Philos. Trans. R. Soc. B 255:109–84
    [Google Scholar]
  10. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE 1995. A behavioral screen for isolating zebrafish mutants with visual system defects. PNAS 92:10545–49
    [Google Scholar]
  11. Brockerhoff SE, Hurley JB, Niemi GA, Dowling JE 1997. A new form of inherited red-blindness in zebrafish. J. Neurosci. 17:4236–42
    [Google Scholar]
  12. Brown PK, Gibbons IR, Wald G 1963. The visual cells and visual pigment of the mudpuppy, Necturus. J. Cell Biol. 19:79–106
    [Google Scholar]
  13. Burkhardt DA 1969. Distinction between a proximal negative response and the local b-wave in the retina. Nature 221:879–80
    [Google Scholar]
  14. Burkhardt DA 1970. Proximal negative response of frog retina. J. Neurophysiol. 33:405–20
    [Google Scholar]
  15. Chappell RL, Dowling JE 1972. Neural organization of the ocellus of the dragonfly. I. Intracellular electrical activity. J. Gen. Physiol. 60:121–47
    [Google Scholar]
  16. Dowling JE 1960. Chemistry of visual adaptation in the rat. Nature 188:114–18
    [Google Scholar]
  17. Dowling JE 1963. Neural and photochemical mechanisms of visual adaptation in the rat. J. Gen. Physiol. 46:1287–301
    [Google Scholar]
  18. Dowling JE 1964. Structure and function in the all-cone retina of the ground squirrel. Proceedings of Form Discrimination Symposium L Riggs 17–23 Providence, RI: Brown Univ. Press
    [Google Scholar]
  19. Dowling JE 1965. Foveal receptors of the monkey retina: fine structure. Science 147:57–59
    [Google Scholar]
  20. Dowling JE 1968.a Discrete potentials in the dark-adapted eye of Limulus. . Nature 217:28–31
    [Google Scholar]
  21. Dowling JE 1968.b Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proc. R. Soc. B 170:205–28
    [Google Scholar]
  22. Dowling JE 1970. Organization of vertebrate retinas. Investig. Ophthalmol. 9:655–80
    [Google Scholar]
  23. Dowling JE 1987. The Retina: An Approachable Part of the Brain. Cambridge, MA: Harvard Univ. Press
  24. Dowling JE 1992. Neurons and Networks: An Introduction to Neuroscience Cambridge, MA: Harvard Univ. Press
  25. Dowling JE 1998. Creating Mind: How the Brain Works New York: W.W. Norton & Co.
  26. Dowling JE 2001. Neurons and Networks: An Introduction to Neuroscience Cambridge, MA: Harvard Univ. Press, 2nd ed..
  27. Dowling JE 2004.a John E. Dowling. The History of Neuroscience in Autobiography LR Squire 210–39 San Diego, CA: Academic
    [Google Scholar]
  28. Dowling JE 2004.b The Great Brain Debate: Nature or Nurture Washington, DC: Joseph Henry Press
  29. Dowling JE 2012. The Retina: An Approachable Part of the Brain Cambridge, MA: Harvard Univ. Press, 2nd ed..
  30. Dowling JE, Boycott BB 1965. Neural connections of the retina: fine structure of the inner plexiform layer. Cold Spring Harb. Symp. Quant. Biol. 30:393–402
    [Google Scholar]
  31. Dowling JE, Boycott BB 1966. Organization of the primate retina: electron microscopy. Proc. R. Soc. B 166:80–111
    [Google Scholar]
  32. Dowling JE, Chappell RL 1972. Neural organization of the dragonfly ocellus. II. Synaptic structure. J. Gen. Physiol. 60:148–65
    [Google Scholar]
  33. Dowling JE, Dowling JL Jr. 2016. Vision: How It Works and What Can Go Wrong Cambridge, MA: MIT Press
  34. Dowling JE, Ehinger B 1975. Synaptic organization of the amine-containing interplexiform cells of the goldfish and Cebus monkey retinas. Science 188:270–73
    [Google Scholar]
  35. Dowling JE, Ehinger B 1978. The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proc. R. Soc. B 201:7–26
    [Google Scholar]
  36. Dowling JE, Gibbons IR 1961. The effect of vitamin A deficiency on the fine structure of the retina. The Structure of the Eye GK Smelser 85–99 New York: Academic
    [Google Scholar]
  37. Dowling JE, Gibbons IR 1962. The fine structure of the pigment epithelium in the albino rat. J. Cell Biol. 14:459–74
    [Google Scholar]
  38. Dowling JE, Hubbard R 1963. Effects of brilliant flashes on light and dark adaptation. Nature 199:972–75
    [Google Scholar]
  39. Dowling JE, Pak MW, Lasater EM 1985. White perch horizontal cells in culture: methods, morphology and process growth. Brain Res 360:331–38
    [Google Scholar]
  40. Dowling JE, Ripps H 1970. Visual adaptation in the retina of the skate. J. Gen. Physiol. 56:491–520
    [Google Scholar]
  41. Dowling JE, Ripps H 1971. S-potentials in the skate retina. Intracellular recordings during light and dark adaptation. J. Gen. Physiol. 58:163–89
    [Google Scholar]
  42. Dowling JE, Ripps H 1972. Adaptation in skate photoreceptors. J. Gen. Physiol. 60:698–719
    [Google Scholar]
  43. Dowling JE, Ripps H 1973. Effect of magnesium on horizontal cell activity in the skate retina. Nature 242:101–3
    [Google Scholar]
  44. Dowling JE, Ripps H 1976. From sea to sight. Oceanus 19:28–33
    [Google Scholar]
  45. Dowling JE, Ripps H 1977. The proximal negative response and visual adaptation in the skate retina. J. Gen. Physiol. 69:57–74
    [Google Scholar]
  46. Dowling JE, Sidman RL 1962. Inherited retinal dystrophy in the rat. J. Cell Biol. 14:73–109
    [Google Scholar]
  47. Dowling JE, Wald G 1958. Vitamin A deficiency and night blindness. PNAS 44:648–61
    [Google Scholar]
  48. Dowling JE, Wald G 1960. The biological function of vitamin A acid. PNAS 46:587–608
    [Google Scholar]
  49. Dowling JE, Watling KJ 1981. Dopaminergic mechanisms in the teleost retina. II. Factors affecting the accumulation of cyclic AMP in pieces of intact carp retina. J. Neurochem. 36:569–79
    [Google Scholar]
  50. Dowling JE, Werblin FS 1969. Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J. Neurophysiol. 32:315–38
    [Google Scholar]
  51. Dubin MW 1970. The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis. J. Comp. Neurol. 140:479–505
    [Google Scholar]
  52. Ehinger B, Otterson OP, Storm-Mathisen J, Dowling JE 1988. Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. PNAS 85:8321–25
    [Google Scholar]
  53. Emran F, Rihel J, Adolph A, Wong KY, Kraves S, Dowling JE 2007. OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. PNAS 104:19126–31
    [Google Scholar]
  54. Fadool JM, Brockerhoff SE, Hyatt GA, Dowling JE 1997. Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev. Genet. 20:288–95
    [Google Scholar]
  55. Fain GL 1975. Quantum sensitivity of rods in the toad retina. Science 187:838–41
    [Google Scholar]
  56. Fain GL, Dowling JE 1973. Intracellular recordings from single rods and cones in the mudpuppy retina. Science 180:1178–81
    [Google Scholar]
  57. Fisher LJ 1972. Changes during maturation and metamorphosis in the synaptic organization of the tadpole retina inner plexiform layer. Nature 242:391–93
    [Google Scholar]
  58. Fisher SK 1972. A somato-somatic synapse between amacrine and bipolar cells in the cat retina. Brain Res 43:587–90
    [Google Scholar]
  59. Frank RN, Dowling JE 1968. Rhodopsin photoproducts: effects on electroretinogram sensitivity in isolated perfused rat retina. Science 161:487–89
    [Google Scholar]
  60. Glickman RD, Adolph AR, Dowling JE 1982. Inner plexiform circuits in the carp retina: effects of cholinergic agonists, GABA, and substance P on the ganglion cells. Brain Res 234:81–99
    [Google Scholar]
  61. Gold GH 1979. Photoreceptor coupling in the toad, Bufo marinus. II. Physiology. J. Neurophysiol. 42:311–28
    [Google Scholar]
  62. Gold GH, Dowling JE 1979. Photoreceptor coupling in the retina of the toad, Bufo marinus. I. Anatomy. J. Neurophysiol. 42:292–310
    [Google Scholar]
  63. Grant G, Dowling JE 1995. A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina. J. Neurosci. 15:3852–62
    [Google Scholar]
  64. Grant G, Dowling JE 1996. On bipolar cell responses in the teleost retina are generated by two distinct mechanisms. J. Neurophysiol. 76:3842–49
    [Google Scholar]
  65. Green DG, Dowling JE 1975. Electrophysiological evidence for rod-like receptors in the gray squirrel, ground squirrel and prairie dog retinas. J. Comp. Neurol. 159:461–72
    [Google Scholar]
  66. Green DG, Dowling JE, Siegel IM, Ripps H 1975. Retinal mechanisms of visual adaptation in the skate. J. Gen. Physiol. 65:483–502
    [Google Scholar]
  67. Gross JM, Perkins BD, Amsterdam A, Egana A, Darland T et al. 2005. Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170:245–61
    [Google Scholar]
  68. Hedden WL, Dowling JE 1978. The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurons. Proc. R. Soc. B 201:27–55
    [Google Scholar]
  69. Hidaka S, Shingai R, Dowling JE, Naka K-I 1989. Junctions form between catfish horizontal cells in culture. Brain Res. 498:53–65
    [Google Scholar]
  70. Hubbard R 1958. The thermal stability of rhodopsin and opsin. J. Gen. Physiol. 42:259–80
    [Google Scholar]
  71. Hubbard R, Dowling JE 1962. Formation and utilization of 11-cis vitamin A by the eye tissues during light and dark adaptation. Nature 193:341–43
    [Google Scholar]
  72. Hyatt GA, Schmitt EA, Marsh-Armstrong NR, Dowling JE 1992. Retinoic acid–induced duplication of the zebrafish retina. PNAS 89:8293–97
    [Google Scholar]
  73. Hyatt GA, Schmitt EA, Marsh-Armstrong N, McCaffery P, Dräger U, Dowling JE 1996. Retinoic acid establishes ventral retinal characteristics. Development 122:195–204
    [Google Scholar]
  74. Kainz PM, Adolph AR, Wong KY, Dowling JE 2003. The lazy eye zebrafish mutation affects Müller glial cells, compromising photoreceptor function and causing partial blindness. J. Comp. Neurol. 463:265–80
    [Google Scholar]
  75. Kasthuri N, Hayworth KJ, Berger DR, Schalek RK, Conchello JA et al. 2015. Saturated reconstruction of a volume of neocortex. Cell 162:648–61
    [Google Scholar]
  76. Kleinschmidt J, Dowling JE 1975. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J. Gen. Physiol. 66:617–48
    [Google Scholar]
  77. Knapp AG, Dowling JE 1987. Dopamine enhances excitatory amino acid–gated conductances in cultured retinal horizontal cells. Nature 325:437–39
    [Google Scholar]
  78. Knapp AG, Schmidt KF, Dowling JE 1990. Dopamine modulates the kinetics of ion channels gated by excitatory amino acids in retinal horizontal cells. PNAS 87:767–71
    [Google Scholar]
  79. Kojima D, Torii M, Fukada Y, Dowling JE 2008. Differential expression of duplicated VAL-opsin genes in the developing zebrafish. J. Neurochem. 104:1364–71
    [Google Scholar]
  80. Kolb H 1970. Organization of the outer plexiform layer of the primate retina. Electron microscopy of Golgi-impregnated cells. Philos. Trans. R. Soc. B 258:261–83
    [Google Scholar]
  81. Kolb H, Boycott BB, Dowling JE 1969. A second type of midget bipolar cell in the primate retina. Philos. Trans. R. Soc. B 255:176–84
    [Google Scholar]
  82. Lasater EM, Dowling JE 1982. Carp horizontal cells in culture respond selectively to l-glutamate and its agonists. PNAS 79:936–40
    [Google Scholar]
  83. Lasater EM, Dowling JE 1985. Dopamine decreases the conductance of the electrical junctions between cultured retinal horizontal cells. PNAS 82:3025–29
    [Google Scholar]
  84. Lasater EM, Dowling JE, Ripps H 1984. Pharmacological properties of isolated horizontal and bipolar cells from the skate retina. J. Neurosci. 4:1966–75
    [Google Scholar]
  85. Lasater EM, Watling KJ, Dowling JE 1983. Vasoactive intestinal peptide induces cAMP accumulation and membrane potential changes in isolated carp horizontal cells. Science 221:1070–72
    [Google Scholar]
  86. Leung YF, Ma P, Link BA, Dowling JE 2008. Factorial microarray analysis of zebrafish retinal development. PNAS 105:12909–14
    [Google Scholar]
  87. Li L, Dowling JE 1997. A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. PNAS 94:11645–50
    [Google Scholar]
  88. Li L, Dowling JE 1998. Zebrafish visual sensitivity is regulated by a circadian clock. Visual Neurosci 15:851–57
    [Google Scholar]
  89. Li Y, Matsui JI, Dowling JE 2009. Specificity of the horizontal cell-photoreceptor connections in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 516:442–53
    [Google Scholar]
  90. Li Y, Tsujimura T, Kawamura S, Dowling JE 2012. Bipolar cell photoreceptor connectivity in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 520:3786–802
    [Google Scholar]
  91. Liman ER, Knapp AG, Dowling JE 1989. Enhancement of kainate-gated currents in retinal horizontal cells by cyclic AMP-dependent protein kinase. Brain Res 481:399–402
    [Google Scholar]
  92. Link BA, Darland T 2001. Genetic analysis of initial and ongoing retinogenesis in the zebrafish: comparing the central neuroepithelium and marginal zone. Prog. Brain Res. 131:565–77
    [Google Scholar]
  93. Link BA, Fadool JM, Malicki J, Dowling JE 2000. The zebrafish young mutation acts non-cell autonomously to uncouple differentiation from specifications for all retinal cells. Development 127:2177–88
    [Google Scholar]
  94. Link BA, Kainz PM, Ryou T, Dowling JE 2001. The perplexed and confused mutations affect distinct stages during the transition from proliferating to post-mitotic cells within the zebrafish retina. Dev. Biol. 236:436–53
    [Google Scholar]
  95. Lipton SA, Ostroy SE, Dowling JE 1977.a Electrical and adaptive properties of rod photoreceptors in Bufo marinus. I. Effects of altered extracellular Ca2+ levels. J. Gen. Physiol. 70:747–70
    [Google Scholar]
  96. Lipton SA, Rasmussen H, Dowling JE 1977.b Electrical and adaptive properties of rod photoreceptors in Bufo marinus. II. Effects of cyclic nucleotides and prostaglandins. J. Gen. Physiol. 70:771–91
    [Google Scholar]
  97. Mangel SC, Baldridge WH, Weiler R, Dowling JE 1994. Threshold and chromatic sensitivity changes in fish cone horizontal cells following prolonged darkness. Brain Res 659:55–61
    [Google Scholar]
  98. Mangel SC, Dowling JE 1985. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science 229:1107–9
    [Google Scholar]
  99. Marsh-Armstrong N, McCaffery P, Gilbert W, Dowling JE, Dräger UC 1994. Retinoic acid is necessary for development of the ventral retina in zebrafish. PNAS 91:7286–90
    [Google Scholar]
  100. Matsui JI, Egana AL, Sponholtz TR, Adolph AR, Dowling JE 2006. Effects of ethanol on photoreceptors and visual function in developing zebrafish. Investig. Ophthal. Vis. Sci. 47:4589–97
    [Google Scholar]
  101. Maturana HR, Lettvin JY, McCulloch WS, Pitts WH 1960. Anatomy and physiology of vision in the frog (Rana pipiens). J. Gen. Physiol. 43:129–75
    [Google Scholar]
  102. McMahon DG, Knapp AG, Dowling JE 1989. Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. PNAS 86:7639–43
    [Google Scholar]
  103. Miller RF, Dowling JE 1970. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to the b-wave of the electroretinogram. J. Neurophysiol. 33:323–41
    [Google Scholar]
  104. Moore T 1957. Vitamin A London: Elsevier
  105. Nelson R 1973. A comparison of electrical properties of neurons in Necturus retina. J. Neurophysiol. 36:519–35
    [Google Scholar]
  106. Pepperberg D, Lurie M, Brown PK, Dowling JE 1976. Visual adaptation: effects of externally applied retinal on the light-adapted, isolated skate retina. Science 191:394–96
    [Google Scholar]
  107. Perkins BD, Nicholas CS, Baye LM, Link BA, Dowling JE 2005. dazed gene is necessary for late cell type development and retinal cell maintenance in the zebrafish retina. Dev. Dyn. 233:680–94
    [Google Scholar]
  108. Perlman I, Knapp AG, Dowling JE 1989.a Local superfusion modifies the inward rectifying potassium conductance of isolated horizontal cells. J. Neurophysiol. 60:1322–32
    [Google Scholar]
  109. Perlman I, Knapp AG, Dowling JE 1989.b Responses of isolated white perch horizontal cells to changes in the concentration of photoreceptor transmitter agonists. Brain Res 487:l6–25
    [Google Scholar]
  110. Polyak SL 1941. The Retina Chicago: Univ. Chicago Press
  111. Qian H, Dowling JE 1993. Novel GABA responses from rod-driven retinal horizontal cells. Nature 361:162–64
    [Google Scholar]
  112. Qian H, Dowling JE 1995. GABAA and GABAC receptors in hybrid bass bipolar cells. J. Neurophysiol. 74:1920–28
    [Google Scholar]
  113. Qian H, Hyatt G, Schanzer A, Hazra R, Hackman AS et al. 1997. A comparison of GABAC and ρ subunit receptors from the white perch retina. Visual Neurosci 14:843–51
    [Google Scholar]
  114. Qian H, Ripps H, Dowling JE 1998. Molecular and pharmacological properties of GABA-ρ subunits from white perch retina. J. Neurobiol. 37:305–20
    [Google Scholar]
  115. Ribelayga C, Wang Y, Mangel SC 2002. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells. J. Physiol. 544:801–16
    [Google Scholar]
  116. Robinson JR, Schmitt EA, Harosi FI, Reece RJ, Dowling JE 1993. Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. PNAS 90:6009–12
    [Google Scholar]
  117. Sakai H, Naka K-I, Dowling JE 1986. Ganglion cell dendrites are presynaptic in the catfish retina. Nature 319:495–97
    [Google Scholar]
  118. Schmitt EA, Dowling JE 1994. Early eye morphogenesis in the zebrafish, Brachydanio rerio. J. Comp. Neurol. 344:532–42
    [Google Scholar]
  119. Schmitt EA, Dowling JE 1996. A comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. J. Comp. Neurol. 371:222–34
    [Google Scholar]
  120. Schmitt EA, Dowling JE 1999. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J. Comp. Neurol. 404:515–36
    [Google Scholar]
  121. Stell WK 1965. Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat. Rev. 153:389–97
    [Google Scholar]
  122. Tansley K 1933. Factors affecting the development and regeneration of visual purple in the mammalian retina. Proc. R. Soc. B 114:79–103
    [Google Scholar]
  123. Van Buskirk R, Dowling JE 1981. Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. PNAS 78:7825–29
    [Google Scholar]
  124. Watling KJ, Dowling JE 1981. Dopaminergic mechanisms in the teleost retina. I. Dopamine-sensitive adenylate cyclase in the homogenates of carp retina: effects of agonists, antagonists and ergots. J. Neurochem. 36:559–69
    [Google Scholar]
  125. Watling KJ, Dowling JE, Iversen LL 1979. Dopamine receptors in the retina may all be linked to adenylate cyclase. Nature 281:578–80
    [Google Scholar]
  126. Weinstein GW, Hobson RR, Dowling JE 1967. Light and dark adaptation in the isolated rat retina. Nature 215:134–38
    [Google Scholar]
  127. Werblin FS, Dowling JE 1969. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32:339–55
    [Google Scholar]
  128. West RW, Dowling JE 1972. Synapses onto different morphological types of retinal ganglion cells. Science 178:510–12
    [Google Scholar]
  129. West RW, Dowling JE 1975. Anatomical evidence for cone and rod-like receptors in the gray squirrel, ground squirrel and prairie dog retinas. J. Comp. Neurol. 159:439–60
    [Google Scholar]
  130. Witkovsky P, Dowling JE 1969. Synaptic relationships in the plexiform layers of carp retina. Z. Zellforsch. Mikrosk. Anat. 100:60–82
    [Google Scholar]
  131. Wong KY, Adolph AR, Dowling JE 2005.a Retinal bipolar cells input mechanisms in giant danio. I. Electroretinographic analysis. J. Neurophysiol. 93:84–93
    [Google Scholar]
  132. Wong KY, Cohen ED, Dowling JE 2005.b Retinal bipolar cell input mechanisms in giant danio. II. Patch-clamp analysis of ON bipolar cells. J. Neurophysiol. 93:94–107
    [Google Scholar]
  133. Wong KY, Dowling JE 2005. Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color opponent mechanisms. J. Neurophysiol. 94:265–72
    [Google Scholar]
  134. Wong KY, Gray J, Hayward CJC, Adolph AR, Dowling JE 2004. Glutamatergic mechanisms in the outer retina of larval zebrafish: analysis of electroretinogram b- and d-waves using a novel preparation. Zebrafish 1:121–31
    [Google Scholar]
  135. Wu SM, Dowling JE 1980. Effects of GABA and glycine on the distal cells of the cyprinid retina. Brain Res 199:401–14
    [Google Scholar]
  136. Yang X-L, Tornqvist K, Dowling JE 1988. Modulation of cone horizontal cell activity in the teleost fish retina. I. Effects of prolonged darkness and background illumination on light responsiveness. J. Neurosci. 8:2259–68
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034222
Loading
/content/journals/10.1146/annurev-vision-091517-034222
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error