1932

Abstract

Fuchs endothelial corneal dystrophy (FECD) is a bilateral corneal endothelial disorder and the most common cause of corneal transplantation worldwide. Professor Ernst Fuchs described the first 13 cases of FECD more than 100 years ago. Since then, we have seen far-reaching progress in its diagnosis and treatment. In the field of diagnostics, new technologies enable the development of more accurate classification systems and the more detailed breakdown of the genetic basis of FECD. Laboratory studies help in deciphering the molecular pathomechanisms. The development of minimally invasive surgical techniques leads to a continuous improvement of the postoperative result. This review highlights and discusses clinical, genetic, pathophysiologic, and therapeutic aspects of this common and important corneal disorder.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014852
2019-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014852.html?itemId=/content/journals/10.1146/annurev-vision-091718-014852&mimeType=html&fmt=ahah

Literature Cited

  1. Adamis AP, Filatov V, Tripathi BJ, Tripathi RC 1993. Fuchs' endothelial dystrophy of the cornea. Surv. Ophthalmol. 38:149–68
    [Google Scholar]
  2. Afshari NA, Igo RP Jr., Morris NJ, Stambolian D, Sharma S et al. 2017. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat. Commun. 8:14898
    [Google Scholar]
  3. Afshari NA, Li YJ, Pericak-Vance MA, Gregory S, Klintworth GK 2009. Genome-wide linkage scan in Fuchs endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 50:1093–97
    [Google Scholar]
  4. Afshari NA, Pittard AB, Siddiqui A, Klintworth GK 2006. Clinical study of Fuchs corneal endothelial dystrophy leading to penetrating keratoplasty: a 30-year experience. Arch. Ophthalmol. 124:777–80
    [Google Scholar]
  5. Ahuja Y, Baratz KH, McLaren JW, Bourne WM, Patel SV 2012. Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial dystrophy. Cornea 31:1257–63
    [Google Scholar]
  6. Amin SR, Baratz KH, McLaren JW, Patel SV 2014. Corneal abnormalities early in the course of Fuchs' endothelial dystrophy. Ophthalmology 121:2325–33
    [Google Scholar]
  7. Arbelaez JG, Price MO, Price FW Jr 2014. Long-term follow-up and complications of stripping descemet membrane without placement of graft in eyes with Fuchs endothelial dystrophy. Cornea 33:1295–99
    [Google Scholar]
  8. Balachandran C, Ham L, Verschoor CA, Ong TS, van der Wees J, Melles GR 2009. Spontaneous corneal clearance despite graft detachment in descemet membrane endothelial keratoplasty. Am. J. Ophthalmol. 148:227–34.e1
    [Google Scholar]
  9. Baydoun L, Dapena I, Melles G 2016. Evolution of posterior lamellar keratoplasty: PK - DLEK - DSEK/DSAEK - DMEK - DMET. Current Treatment Options for Fuchs Endothelial Dystrophy C Cursiefen, AS Jun 73–85 New York: Springer
    [Google Scholar]
  10. Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R et al. 2001. Missense mutations in COL8A2, the gene encoding the α2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum. Mol. Genet. 10:2415–23
    [Google Scholar]
  11. Bleyen I, Saelens IE, van Dooren BT, van Rij G 2013. Spontaneous corneal clearing after Descemet's stripping. Ophthalmology 120:215
    [Google Scholar]
  12. Borderie VM, Baudrimont M, Vallee A, Ereau TL, Gray F, Laroche L 2000. Corneal endothelial cell apoptosis in patients with Fuchs' dystrophy. Invest. Ophthalmol. Vis. Sci. 41:2501–5
    [Google Scholar]
  13. Borkar DS, Veldman P, Colby KA 2016. Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty. Cornea 35:1267–73
    [Google Scholar]
  14. Bourne WM, Johnson DH, Campbell RJ 1982. The ultrastructure of Descemet's membrane. III. Fuchs’ dystrophy. Arch. Ophthalmol. 100:1952–55
    [Google Scholar]
  15. Burkhart ZN, Feng MT, Price FW Jr., Price MO 2014. One-year outcomes in eyes remaining phakic after Descemet membrane endothelial keratoplasty. J. Cataract Refract. Surg. 40:430–34
    [Google Scholar]
  16. Busin M, Leon P, Scorcia V, Ponzin D 2016. Contact lens-assisted pull-through technique for delivery of tri-folded (Endothelium in) DMEK grafts minimizes surgical time and cell loss. Ophthalmology 123:476–83
    [Google Scholar]
  17. Calandra A, Chwa M, Kenney MC 1989. Characterization of stroma from Fuchs' endothelial dystrophy corneas. Cornea 8:90–97
    [Google Scholar]
  18. Chaurasia S, Price FW Jr., Gunderson L, Price MO 2014. Descemet's membrane endothelial keratoplasty: clinical results of single versus triple procedures (combined with cataract surgery). Ophthalmology 121:454–58
    [Google Scholar]
  19. Cheung AY, Hou JH, Bedard P, Grimes V, Buckman N et al. 2018. Technique for preparing ultrathin and nanothin Descemet stripping automated endothelial keratoplasty tissue. Cornea 37:661–66
    [Google Scholar]
  20. Chung DW, Frausto RF, Ann LB, Jang MS, Aldave AJ 2014. Functional impact of ZEB1 mutations associated with posterior polymorphous and Fuchs' endothelial corneal dystrophies. Invest. Ophthalmol. Vis. Sci. 55:6159–66
    [Google Scholar]
  21. Davies E, Jurkunas U, Pineda R 2nd 2018. Predictive factors for corneal clearance after Descemetorhexis without endothelial keratoplasty. Cornea 37:137–40
    [Google Scholar]
  22. Deng SX, Lee WB, Hammersmith KM, Kuo AN, Li JY et al. 2018. Descemet membrane endothelial keratoplasty: safety and outcomes: a report by the American academy of ophthalmology. Ophthalmology 125:295–310
    [Google Scholar]
  23. Dirisamer M, Yeh RY, van Dijk K, Ham L, Dapena I, Melles GR 2012. Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am. J. Ophthalmol. 154:290–96.e1
    [Google Scholar]
  24. Droutsas K, Lazaridis A, Papaconstantinou D, Brouzas D, Moschos MM et al. 2016. Visual outcomes after Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty-comparison of specific matched pairs. Cornea 35:765–71
    [Google Scholar]
  25. Du J, Aleff RA, Soragni E, Kalari K, Nie J et al. 2015. RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. J. Biol. Chem. 290:5979–90
    [Google Scholar]
  26. Eghrari AO, Daoud YJ, Gottsch JD 2010. Cataract surgery in Fuchs corneal dystrophy. Curr. Opin. Ophthalmol. 21:15–19
    [Google Scholar]
  27. Eghrari AO, Mumtaz AA, Garrett B, Rezaei M, Akhavan MS et al. 2017. Automated retroillumination photography analysis for objective assessment of Fuchs Corneal Dystrophy severity. Cornea 36:44–47
    [Google Scholar]
  28. Elhalis H, Azizi B, Jurkunas UV 2010. Fuchs endothelial corneal dystrophy. Ocul. Surf. 8:173–84
    [Google Scholar]
  29. Engler C, Kelliher C, Spitze AR, Speck CL, Eberhart CG, Jun AS 2010. Unfolded protein response in fuchs endothelial corneal dystrophy: a unifying pathogenic pathway?. Am. J. Ophthalmol. 149:194–202.e2
    [Google Scholar]
  30. Fuchs E. 1910. Dystrophia epithelialis corneae. Graefes Arch. Clin. Exp. Ophthalmol. 76:478–508
    [Google Scholar]
  31. Gain P, Jullienne R, He Z, Aldossary M, Acquart S et al. 2016. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol 134:167–73
    [Google Scholar]
  32. Gendron SP, Theriault M, Proulx S, Brunette I, Rochette PJ 2016. Restoration of mitochondrial integrity, telomere length, and sensitivity to oxidation by in vitro culture of Fuchs' endothelial corneal dystrophy cells. Invest. Ophthalmol. Vis. Sci. 57:5926–34
    [Google Scholar]
  33. Giasson CJ, Solomon LD, Polse KA 2007. Morphometry of corneal endothelium in patients with corneal guttata. Ophthalmology 114:1469–75
    [Google Scholar]
  34. Gibbons A, Leung EH, Yoo SH 2018. Cost-effectiveness analysis of descemet membrane endothelial keratoplasty compared to descemet stripping endothelial keratoplasty in the United States of America. Ophthalmology 126:207–13
    [Google Scholar]
  35. Gorovoy MS. 2006. Descemet-stripping automated endothelial keratoplasty. Cornea 25:886–89
    [Google Scholar]
  36. Gottsch JD, Sundin OH, Liu SH, Jun AS, Broman KW et al. 2005a. Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of Fuchs corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 46:1934–39
    [Google Scholar]
  37. Gottsch JD, Zhang C, Sundin OH, Bell WR, Stark WJ, Green WR 2005b. Fuchs corneal dystrophy: aberrant collagen distribution in an L450W mutant of the COL8A2 gene. Invest. Ophthalmol. Vis. Sci. 46:4504–11
    [Google Scholar]
  38. Halilovic A, Schmedt T, Benischke AS, Hamill C, Chen Y et al. 2016. Menadione-induced DNA damage leads to mitochondrial dysfunction and fragmentation during rosette formation in Fuchs endothelial corneal dystrophy. Antioxid. Redox Signal 24:1072–83
    [Google Scholar]
  39. Ham L, Dapena I, Moutsouris K, Melles GR 2011. Persistent corneal edema after Descemetorhexis without corneal graft implantation in a case of Fuchs endothelial dystrophy. Cornea 30:248–49
    [Google Scholar]
  40. Hamzaoglu EC, Straiko MD, Mayko ZM, Sales CS, Terry MA 2015. The first 100 eyes of standardized descemet stripping automated endothelial keratoplasty versus standardized Descemet membrane endothelial keratoplasty. Ophthalmology 122:2193–99
    [Google Scholar]
  41. Haydari MN, Perron MC, Laprise S, Roy O, Cameron JD et al. 2012. A short-term in vivo experimental model for Fuchs endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 53:6343–54
    [Google Scholar]
  42. Heindl LM, Riss S, Bachmann BO, Laaser K, Kruse FE, Cursiefen C 2011. Split cornea transplantation for 2 recipients: a new strategy to reduce corneal tissue cost and shortage. Ophthalmology 118:294–301
    [Google Scholar]
  43. Higa A, Sakai H, Sawaguchi S, Iwase A, Tomidokoro A et al. 2011. Prevalence of and risk factors for cornea guttata in a population-based study in a southwestern island of Japan: the Kumejima study. Arch. Ophthalmol. 129:332–36
    [Google Scholar]
  44. Hu J, Rong Z, Gong X, Zhou Z, Sharma VK et al. 2018. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs' dystrophy. Hum. Mol. Genet. 27:1015–26
    [Google Scholar]
  45. Iwamoto T, Devoe AG. 1971. Electron microscopic studies on Fuchs combined dystrophy. 1. Posterior portion of cornea. Invest. Ophthalmol. 10:9–28
    [Google Scholar]
  46. Jun AS, Meng H, Ramanan N, Matthaei M, Chakravarti S et al. 2012. An alpha 2 collagen VIII transgenic knock-in mouse model of Fuchs endothelial corneal dystrophy shows early endothelial cell unfolded protein response and apoptosis. Hum. Mol. Genet. 21:384–93
    [Google Scholar]
  47. Jurkunas UV, Bitar M, Rawe I 2009. Colocalization of increased transforming growth factor-beta-induced protein (TGFBIp) and Clusterin in Fuchs endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 50:1129–36
    [Google Scholar]
  48. Jurkunas UV, Bitar MS, Funaki T, Azizi B 2010. Evidence of oxidative stress in the pathogenesis of Fuchs endothelial corneal dystrophy. Am. J. Pathol. 177:2278–89
    [Google Scholar]
  49. Jurkunas UV, Rawe I, Bitar MS, Zhu C, Harris DL et al. 2008. Decreased expression of peroxiredoxins in Fuchs' endothelial dystrophy. Invest. Ophthalmol. Vis. Sci. 49:2956–63
    [Google Scholar]
  50. Katikireddy KR, White TL, Miyajima T, Vasanth S, Raoof D et al. 2018. NQO1 downregulation potentiates menadione-induced endothelial-mesenchymal transition during rosette formation in Fuchs endothelial corneal dystrophy. Free Radic. Biol. Med. 116:19–30
    [Google Scholar]
  51. Kelliher C, Chakravarti S, Vij N, Mazur S, Stahl PJ et al. 2011. A cellular model for the investigation of Fuchs' endothelial corneal dystrophy. Exp. Eye Res. 93:880–88
    [Google Scholar]
  52. Kim EC, Meng H, Jun AS 2013. Lithium treatment increases endothelial cell survival and autophagy in a mouse model of Fuchs endothelial corneal dystrophy. Br. J. Ophthalmol. 97:1068–73
    [Google Scholar]
  53. Kim EC, Meng H, Jun AS 2014. N-Acetylcysteine increases corneal endothelial cell survival in a mouse model of Fuchs endothelial corneal dystrophy. Exp. Eye Res. 127:20–25
    [Google Scholar]
  54. Kim EC, Toyono T, Berlinicke CA, Zack DJ, Jurkunas U et al. 2017. Screening and characterization of drugs that protect corneal endothelial cells against unfolded protein response and oxidative stress. Invest. Ophthalmol. Vis. Sci. 58:892–900
    [Google Scholar]
  55. Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K et al. 2018. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N. Engl. J. Med. 378:995–1003
    [Google Scholar]
  56. Kocaba V, Katikireddy KR, Gipson I, Price MO, Price FW, Jurkunas UV 2018. Association of the gutta-induced microenvironment with corneal endothelial cell behavior and demise in Fuchs endothelial corneal dystrophy. JAMA Ophthalmol 136:886–92
    [Google Scholar]
  57. Koenig SB. 2015. Planned Descemetorhexis without endothelial keratoplasty in eyes with Fuchs corneal endothelial dystrophy. Cornea 34:1149–51
    [Google Scholar]
  58. Krachmer JH. 1985. Posterior polymorphous corneal dystrophy: a disease characterized by epithelial-like endothelial cells which influence management and prognosis. Trans. Am. Ophthalmol. Soc. 83:413–75
    [Google Scholar]
  59. Krachmer JH, Purcell JJ Jr., Young CW, Bucher KD 1978. Corneal endothelial dystrophy. A study of 64 families. Arch. Ophthalmol 96:2036–39
    [Google Scholar]
  60. Kruse FE, Laaser K, Cursiefen C, Heindl LM, Schlotzer-Schrehardt U et al. 2011. A stepwise approach to donor preparation and insertion increases safety and outcome of Descemet membrane endothelial keratoplasty. Cornea 30:580–87
    [Google Scholar]
  61. Kuot A, Hewitt AW, Griggs K, Klebe S, Mills R et al. 2012. Association of TCF4 and CLU polymorphisms with Fuchs' endothelial dystrophy and implication of CLU and TGFBI proteins in the disease process. Eur. J. Hum. Genet. 20:632–38
    [Google Scholar]
  62. Levy SG, Moss J, Sawada H, Dopping-Hepenstal PJ, McCartney AC 1996. The composition of wide-spaced collagen in normal and diseased Descemet's membrane. Curr. Eye Res. 15:45–52
    [Google Scholar]
  63. Li QJ, Ashraf MF, Shen DF, Green WR, Stark WJ et al. 2001. The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea. Arch. Ophthalmol. 119:1597–604
    [Google Scholar]
  64. Lipman RM, Rubenstein JB, Torczynski E 1990. Keratoconus and Fuchs' corneal endothelial dystrophy in a patient and her family. Arch. Ophthalmol. 108:993–94
    [Google Scholar]
  65. Loganathan SK, Casey JR. 2014. Corneal dystrophy-causing SLC4A11 mutants: suitability for folding-correction therapy. Hum. Mutat. 35:1082–91
    [Google Scholar]
  66. Lorenzetti DW, Uotila MH, Parikh N, Kaufman HE 1967. Central cornea guttata. Incidence in the general population. Am. J. Ophthalmol. 64:1155–58
    [Google Scholar]
  67. Matthaei M, Gillessen J, Muether PS, Hoerster R, Bachmann BO et al. 2015. Epithelial-mesenchymal transition (EMT)-related cytokines in the aqueous humor of phakic and pseudophakic Fuchs' dystrophy eyes. Invest. Ophthalmol. Vis. Sci. 56:2749–54
    [Google Scholar]
  68. Matthaei M, Hu J, Kallay L, Eberhart CG, Cursiefen C et al. 2014a. Endothelial cell microRNA expression in human late-onset Fuchs' dystrophy. Invest. Ophthalmol. Vis. Sci. 55:216–25
    [Google Scholar]
  69. Matthaei M, Meng H, Meeker AK, Eberhart CG, Jun AS 2012. Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 53:6718–27
    [Google Scholar]
  70. Matthaei M, Sandhaeger H, Hermel M, Adler W, Jun AS et al. 2017. Changing indications in penetrating keratoplasty: a systematic review of 34 years of global reporting. Transplantation 101:1387–99
    [Google Scholar]
  71. Matthaei M, Zhu AY, Kallay L, Eberhart CG, Cursiefen C, Jun AS 2014b. Transcript profile of cellular senescence-related genes in Fuchs endothelial corneal dystrophy. Exp. Eye Res. 129:13–17
    [Google Scholar]
  72. McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R 2015. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLOS ONE 10:e0145266
    [Google Scholar]
  73. McCartney MD, Wood TO, McLaughlin BJ 1989. Moderate Fuchs' endothelial dystrophy ATPase pump site density. Invest. Ophthalmol. Vis. Sci. 30:1560–64
    [Google Scholar]
  74. Mehta JS, Vithana EN, Tan DT, Yong VH, Yam GH et al. 2008. Analysis of the posterior polymorphous corneal dystrophy 3 gene, TCF8, in late-onset Fuchs endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 49:184–88
    [Google Scholar]
  75. Melles GR, Wijdh RH, Nieuwendaal CP 2004. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea 23:286–88
    [Google Scholar]
  76. Melles GRJ, Ong TS, Ververs B, van der Wees J 2006. Descemet membrane endothelial keratoplasty (DMEK). Cornea 25:987–90
    [Google Scholar]
  77. Meng H, Matthaei M, Ramanan N, Grebe R, Chakravarti S et al. 2013. L450W and Q455K Col8a2 knock-in mouse models of Fuchs endothelial corneal dystrophy show distinct phenotypes and evidence for altered autophagy. Invest. Ophthalmol. Vis. Sci. 54:1887–97
    [Google Scholar]
  78. Mok JW, Kim HS, Joo CK 2009. Q455V mutation in COL8A2 is associated with Fuchs' corneal dystrophy in Korean patients. Eye 23:895–903
    [Google Scholar]
  79. Moloney G, Petsoglou C, Ball M, Kerdraon Y, Hollhumer R et al. 2017. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil. Cornea 36:642–48
    [Google Scholar]
  80. Mootha VV, Hansen B, Rong Z, Mammen PP, Zhou Z et al. 2017. Fuchs' Endothelial Corneal Dystrophy and RNA foci in patients with myotonic dystrophy. Invest. Ophthalmol. Vis. Sci. 58:4579–85
    [Google Scholar]
  81. Nagarsheth M, Singh A, Schmotzer B, Babineau DC, Sugar J et al. 2012. Relationship between Fuchs endothelial corneal dystrophy severity and glaucoma and/or ocular hypertension. Arch. Ophthalmol. 130:1384–88
    [Google Scholar]
  82. Nakano M, Okumura N, Nakagawa H, Koizumi N, Ikeda Y et al. 2015. Trinucleotide repeat expansion in the TCF4 gene in Fuchs' endothelial corneal dystrophy in Japanese. Invest. Ophthalmol. Vis. Sci. 56:4865–69
    [Google Scholar]
  83. Nanda GG, Padhy B, Samal S, Das S, Alone DP 2014. Genetic association of TCF4 intronic polymorphisms, CTG18.1 and rs17089887, with Fuchs' endothelial corneal dystrophy in an Indian population. Invest. Ophthalmol. Vis. Sci. 55:7674–80
    [Google Scholar]
  84. Naumann GO, Schlotzer-Schrehardt U. 2000. Keratopathy in pseudoexfoliation syndrome as a cause of corneal endothelial decompensation: a clinicopathologic study. Ophthalmology 107:1111–24
    [Google Scholar]
  85. Okumura N, Hashimoto K, Kitahara M, Okuda H, Ueda E et al. 2017a. Activation of TGF-beta signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy. Sci. Rep. 7:6801
    [Google Scholar]
  86. Okumura N, Kinoshita S, Koizumi N 2017b. Application of Rho kinase inhibitors for the treatment of corneal endothelial diseases. J. Ophthalmol. 2017:2646904
    [Google Scholar]
  87. Okumura N, Kitahara M, Okuda H, Hashimoto K, Ueda E et al. 2017c. Sustained activation of the unfolded protein response induces cell death in Fuchs' endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 58:3697–707
    [Google Scholar]
  88. Okumura N, Koizumi N, Kay EP, Ueno M, Sakamoto Y et al. 2013. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest. Ophthalmol. Vis. Sci. 54:2493–502
    [Google Scholar]
  89. Okumura N, Minamiyama R, Ho LT, Kay EP, Kawasaki S et al. 2015. Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. Lab. Invest. 95:1291–304
    [Google Scholar]
  90. Okumura N, Nakano S, Kay EP, Numata R, Ota A et al. 2014. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest. Ophthalmol. Vis. Sci. 55:318–29
    [Google Scholar]
  91. Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K et al. 2009. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest. Ophthalmol. Vis. Sci. 50:3680–87
    [Google Scholar]
  92. Olsen T. 1984. Is there an association between Fuchs' endothelial dystrophy and cardiovascular disease?. Graefes Arch. Clin. Exp. Ophthalmol. 221:239–40
    [Google Scholar]
  93. Pitts JF, Jay JL. 1990. The association of Fuchs's corneal endothelial dystrophy with axial hypermetropia, shallow anterior chamber, and angle closure glaucoma. Br. J. Ophthalmol. 74:601–4
    [Google Scholar]
  94. Polse KA, Brand R, Mandell R, Vastine D, Demartini D, Flom R 1989. Age differences in corneal hydration control. Invest. Ophthalmol. Vis. Sci. 30:392–99
    [Google Scholar]
  95. Poulsen ET, Dyrlund TF, Runager K, Scavenius C, Krogager TP et al. 2014. Proteomics of Fuchs' endothelial corneal dystrophy support that the extracellular matrix of Descemet's membrane is disordered. J. Proteome Res. 13:4659–67
    [Google Scholar]
  96. Price DA, Kelley M, Price FW Jr., Price MO 2018. Five-year graft survival of Descemet membrane endothelial keratoplasty (EK) versus Descemet stripping EK and the effect of donor sex matching. Ophthalmology 125:1508–14
    [Google Scholar]
  97. Price FW Jr., Price MO. 2005. Descemet's stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant. J. Refract. Surg. 21:339–45
    [Google Scholar]
  98. Price FW Jr., Price MO. 2017. Combined Cataract/DSEK/DMEK: changing expectations. Asia. Pac. J. Ophthalmol. 6:388–92
    [Google Scholar]
  99. Price MO, Gupta P, Lass J, Price FW Jr 2017. EK (DLEK, DSEK, DMEK): new frontier in cornea surgery. Annu. Rev. Vis. Sci. 3:69–90
    [Google Scholar]
  100. Rao GP, Kaye SB, Agius-Fernandez A 1998. Central corneal endothelial guttae and age-related macular degeneration: Is there an association?. Indian J. Ophthalmol. 46:145–47
    [Google Scholar]
  101. Raphael B, Lange T, Wood TO, McLaughlin BJ 1992. Growth of human corneal endothelium on altered Descemet's membrane. Cornea 11:242–49
    [Google Scholar]
  102. Repp DJ, Hodge DO, Baratz KH, McLaren JW, Patel SV 2013. Fuchs' endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio. Ophthalmology 120:687–94
    [Google Scholar]
  103. Riazuddin SA, Eghrari AO, Al-Saif A, Davey L, Meadows DN et al. 2009. Linkage of a mild late-onset phenotype of Fuchs corneal dystrophy to a novel locus at 5q33.1-q35.2. Invest. Ophthalmol. Vis. Sci. 50:5667–71
    [Google Scholar]
  104. Riazuddin SA, Parker DS, McGlumphy EJ, Oh EC, Iliff BW et al. 2012. Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am. J. Hum. Genet. 90:533–39
    [Google Scholar]
  105. Riazuddin SA, Vasanth S, Katsanis N, Gottsch JD 2013. Mutations in AGBL1 cause dominant late-onset Fuchs corneal dystrophy and alter protein-protein interaction with TCF4. Am. J. Hum. Genet. 93:758–64
    [Google Scholar]
  106. Riazuddin SA, Zaghloul NA, Al-Saif A, Davey L, Diplas BH et al. 2010. Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. Am. J. Hum. Genet. 86:45–53
    [Google Scholar]
  107. Rio-Cristobal A, Martin R. 2014. Corneal assessment technologies: current status. Surv. Ophthalmol. 59:599–614
    [Google Scholar]
  108. Rodriguez-Calvo-de-Mora M, Quilendrino R, Ham L, Liarakos VS, van Dijk K et al. 2015. Clinical outcome of 500 consecutive cases undergoing Descemet's membrane endothelial keratoplasty. Ophthalmology 122:464–70
    [Google Scholar]
  109. Schrems-Hoesl LM, Schrems WA, Cruzat A, Shahatit BM, Bayhan HA et al. 2013. Cellular and subbasal nerve alterations in early stage Fuchs' endothelial corneal dystrophy: an in vivo confocal microscopy study. Eye 27:42–49
    [Google Scholar]
  110. Seitz B, Hager T. 2016. Clinical phenotypes of Fuchs endothelial corneal dystrophy (FECD), disease progression, differential diagnosis, and medical therapy. Current Treatment Options for Fuchs Endothelial Dystrophy C Cursiefen, AS Jun 25–50 New York: Springer
    [Google Scholar]
  111. Seitzman GD, Gottsch JD, Stark WJ 2005. Cataract surgery in patients with Fuchs' corneal dystrophy: expanding recommendations for cataract surgery without simultaneous keratoplasty. Ophthalmology 112:441–46
    [Google Scholar]
  112. Shah RD, Randleman JB, Grossniklaus HE 2012. Spontaneous corneal clearing after Descemet's stripping without endothelial replacement. Ophthalmology 119:256–60
    [Google Scholar]
  113. Soliman AZ, Xing C, Radwan SH, Gong X, Mootha VV 2015. Correlation of severity of Fuchs endothelial corneal dystrophy with triplet repeat expansion in TCF4. . JAMA Ophthalmol 133:1386–91
    [Google Scholar]
  114. Soragni E, Petrosyan L, Rinkoski TA, Wieben ED, Baratz KH et al. 2018. Repeat-associated non-ATG (RAN) translation in Fuchs' endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 59:1888–96
    [Google Scholar]
  115. Stuart AJ, Romano V, Virgili G, Shortt AJ 2018. Descemet's membrane endothelial keratoplasty (DMEK) versus Descemet's stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure. Cochrane Database Syst. Rev. 6:CD012097
    [Google Scholar]
  116. Sundin OH, Broman KW, Chang HH, Vito EC, Stark WJ, Gottsch JD 2006a. A common locus for late-onset Fuchs corneal dystrophy maps to 18q21.2-q21.32. Invest. Ophthalmol. Vis. Sci. 47:3919–26
    [Google Scholar]
  117. Sundin OH, Jun AS, Broman KW, Liu SH, Sheehan SE et al. 2006b. Linkage of late-onset Fuchs corneal dystrophy to a novel locus at 13pTel-13q12.13. Invest. Ophthalmol. Vis. Sci. 47:140–45
    [Google Scholar]
  118. Szurman P, Januschowski K, Rickmann A, Damm LJ, Boden KT, Opitz N 2016. Novel liquid bubble dissection technique for DMEK lenticule preparation. Graefes Arch. Clin. Exp. Ophthalmol. 254:1819–23
    [Google Scholar]
  119. Tarnawska D, Wylegala E. 2007. Effectiveness of the soft-shell technique in patients with Fuchs' endothelial dystrophy. J. Cataract Refract. Surg. 33:1907–12
    [Google Scholar]
  120. Theriault M, Gendron SP, Brunette I, Rochette PJ, Proulx S 2018. Function-related protein expression in Fuchs endothelial corneal dystrophy cells and tissue models. Am. J. Pathol. 188:1703–12
    [Google Scholar]
  121. Tourtas T, Laaser K, Bachmann BO, Cursiefen C, Kruse FE 2012. Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty. Am. J. Ophthalmol. 153:1082–90.e2
    [Google Scholar]
  122. Toyono T, Usui T, Villarreal G Jr., Kallay L, Matthaei M et al. 2016. MicroRNA-29b overexpression decreases extracellular matrix mRNA and protein production in human corneal endothelial cells. Cornea 35:1466–70
    [Google Scholar]
  123. Vedana G, Villarreal G Jr., Jun AS 2016. Fuchs endothelial corneal dystrophy: current perspectives. Clin. Ophthalmol. 10:321–30
    [Google Scholar]
  124. Venzano D, Pagani P, Randazzo N, Cabiddu F, Traverso CE 2010. Descemet membrane air-bubble separation in donor corneas. J. Cataract Refract. Surg. 36:2022–27
    [Google Scholar]
  125. Vilas GL, Loganathan SK, Quon A, Sundaresan P, Vithana EN, Casey J 2012. Oligomerization of SLC4A11 protein and the severity of FECD and CHED2 corneal dystrophies caused by SLC4A11 mutations. Hum. Mutat. 33:419–28
    [Google Scholar]
  126. Vithana EN, Morgan PE, Ramprasad V, Tan DT, Yong VH et al. 2008. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum. Mol. Genet. 17:656–66
    [Google Scholar]
  127. Wacker K, Baratz KH, Bourne WM, Patel SV 2018. Patient-reported visual disability in Fuchs' endothelial corneal dystrophy measured by the visual function and corneal health status instrument. Ophthalmology 125:1854–61
    [Google Scholar]
  128. Wacker K, McLaren JW, Kane KM, Baratz KH, Patel SV 2016. Corneal hydration control in Fuchs' endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 57:5060–65
    [Google Scholar]
  129. Waring GO 3rd 1982. Posterior collagenous layer of the cornea. Ultrastructural classification of abnormal collagenous tissue posterior to Descemet's membrane in 30 cases. Arch. Ophthalmol. 100:122–34
    [Google Scholar]
  130. Waring GO 3rd, Bourne WM, Edelhauser HF, Kenyon KR 1982. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 89:531–90
    [Google Scholar]
  131. Watanabe S, Oie Y, Fujimoto H, Soma T, Koh S et al. 2015. Relationship between corneal Guttae and quality of vision in patients with mild Fuchs' endothelial corneal dystrophy. Ophthalmology 122:2103–9
    [Google Scholar]
  132. Weiss JS, Moller HU, Aldave AJ, Seitz B, Bredrup C et al. 2015. IC3D classification of corneal dystrophies—edition 2. Cornea 34:117–59
    [Google Scholar]
  133. Weller JM, Zenkel M, Schlotzer-Schrehardt U, Bachmann BO, Tourtas T, Kruse FE 2014. Extracellular matrix alterations in late-onset Fuchs' corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 55:3700–8
    [Google Scholar]
  134. Wieben ED, Aleff RA, Tang X, Butz ML, Kalari KR et al. 2017. Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene leads to widespread mRNA splicing changes in Fuchs' endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 58:343–52
    [Google Scholar]
  135. Wieben ED, Aleff RA, Tang X, Kalari KR, Maguire LJ et al. 2018. Gene expression in the corneal endothelium of Fuchs endothelial corneal dystrophy patients with and without expansion of a trinucleotide repeat in TCF4. PLOS ONE 13:e0200005
    [Google Scholar]
  136. Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE et al. 2012. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2–2) gene predicts Fuchs corneal dystrophy. PLOS ONE 7:e49083
    [Google Scholar]
  137. Wilson SE, Bourne WM. 1988. Fuchs' dystrophy. Cornea 7:2–18
    [Google Scholar]
  138. Wilson SE, Bourne WM, Brubaker RF 1988. Effect of dexamethasone on corneal endothelial function in Fuchs' dystrophy. Invest. Ophthalmol. Vis. Sci. 29:357–61
    [Google Scholar]
  139. Xia D, Zhang S, Nielsen E, Ivarsen AR, Liang C et al. 2016. The ultrastructures and mechanical properties of the Descement's membrane in Fuchs endothelial corneal dystrophy. Sci. Rep. 6:23096
    [Google Scholar]
  140. Xing C, Gong X, Hussain I, Khor CC, Tan DT et al. 2014. Transethnic replication of association of CTG18.1 repeat expansion of TCF4 gene with Fuchs' corneal dystrophy in Chinese implies common causal variant. Invest. Ophthalmol. Vis. Sci. 55:7073–78
    [Google Scholar]
  141. Yee RW, Matsuda M, Schultz RO, Edelhauser HF 1985. Changes in the normal corneal endothelial cellular-pattern as a function of age. Curr. Eye Res. 4:671–78
    [Google Scholar]
  142. Yoeruek E, Bayyoud T, Hofmann J, Bartz-Schmidt KU 2013. Novel maneuver facilitating Descemet membrane unfolding in the anterior chamber. Cornea 32:370–73
    [Google Scholar]
  143. Yong WWD, Chai H-C, Shen L, Manotosh R, Anna Tan WT 2018. Comparing outcomes of phacoemulsification with femtosecond laser-assisted cataract surgery in patients with Fuchs endothelial dystrophy. Am. J. Ophthalmol. 196:170–80
    [Google Scholar]
  144. Zarouchlioti C, Sanchez-Pintado B, Hafford Tear NJ, Klein P, Liskova P et al. 2018. Antisense therapy for a common corneal dystrophy ameliorates TCF4 repeat expansion-mediated toxicity. Am. J. Hum. Genet. 102:528–39
    [Google Scholar]
  145. Zhang C, Bell WR, Sundin OH, De La Cruz Z, Stark WJ et al. 2006. Immunohistochemistry and electron microscopy of early-onset Fuchs corneal dystrophy in three cases with the same L450W COL8A2 mutation. Trans. Am. Ophthalmol. Soc. 104:85–97
    [Google Scholar]
  146. Zhao JJ, Afshari NA. 2016. Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest. Ophthalmol. Vis. Sci. 57:6878–84
    [Google Scholar]
  147. Zhu AY, Jaskula-Ranga V, Jun AS 2018a. Gene editing as a potential therapeutic solution for Fuchs endothelial corneal dystrophy: The future is clearer. JAMA Ophthalmol 136:969–70
    [Google Scholar]
  148. Zhu DC, Shah P, Feuer WJ, Shi W, Koo EH 2018b. Outcomes of conventional phacoemulsification versus femtosecond laser–assisted cataract surgery in eyes with Fuchs endothelial corneal dystrophy. J. Cataract. Refract. Surg. 44:534–40
    [Google Scholar]
  149. Ziaei A, Schmedt T, Chen Y, Jurkunas UV 2013. Sulforaphane decreases endothelial cell apoptosis in Fuchs endothelial corneal dystrophy: a novel treatment. Invest. Ophthalmol. Vis. Sci. 54:6724–34
    [Google Scholar]
  150. Zoega GM, Fujisawa A, Sasaki H, Kubota A, Sasaki K et al. 2006. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology 113:565–69
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014852
Loading
/content/journals/10.1146/annurev-vision-091718-014852
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error