1932

Abstract

In healthy vision, the fovea provides high acuity and serves as the locus for fixation achieved through saccadic eye movements. Bilateral loss of the foveal regions in both eyes causes individuals to adopt an eccentric locus for fixation. This review deals with the eye movement consequences of the loss of the foveal oculomotor reference and the ability of individuals to use an eccentric fixation locus as the new oculomotor reference. Eye movements are an integral part of everyday activities, such as reading, searching for an item of interest, eye–hand coordination, navigation, or tracking an approaching car. We consider how these tasks are impacted by the need to use an eccentric locus for fixation and as a reference for eye movements, specifically saccadic and smooth pursuit eye movements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100119-125555
2021-09-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100119-125555.html?itemId=/content/journals/10.1146/annurev-vision-100119-125555&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerley R, Barnes GR. 2011a. Extraction of visual motion information for the control of eye and head movement during head-free pursuit. Exp. Brain Res. 210:3–4569–82
    [Google Scholar]
  2. Ackerley R, Barnes GR. 2011b. The interaction of visual, vestibular and extra-retinal mechanisms in the control of head and gaze during head-free pursuit. J. Physiol. 589:Pt. 71627–42
    [Google Scholar]
  3. Alexander MF, Maguire MG, Lietman TM, Snyder JR, Elman MJ, Fine SL. 1988. Assessment of visual function in patients with age-related macular degeneration and low visual acuity. Arch. Ophthalmol. 106:111543–47
    [Google Scholar]
  4. Altschwager P, Ambrosio L, Swanson EA, Moskowitz A, Fulton AB 2017. Juvenile macular degenerations. Semin. Pediatr. Neurol. 24:2104–9
    [Google Scholar]
  5. Barnes GR. 1993. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms. Prog. Neurobiol. 41:4435–72
    [Google Scholar]
  6. Barnes GR, Grealy MA. 1992. Predictive mechanisms of head-eye coordination and vestibulo-ocular reflex suppression in humans. J. Vestib. Res. 2:3193–212
    [Google Scholar]
  7. Bernard J-B, Chung STL. 2016. The role of external features in face recognition with central vision loss: a pilot study. Optom. Vis. Sci. 93:5510–20
    [Google Scholar]
  8. Boucart M, Delerue C, Thibaut M, Szaffarczyk S, Hayhoe M, Tran THC. 2015. Impact of wet macular degeneration on the execution of natural actions. Investig. Ophthalmol. Vis. Sci. 56:116832–38
    [Google Scholar]
  9. Brockmole JR, Henderson JM. 2006. Using real-world scenes as contextual cues for search. Vis. Cogn. 13:199–108
    [Google Scholar]
  10. Bullimore M, Bailey IL. 1995. Reading and eye movements in age-related maculopathy. Optom. Vis. Sci. 72:2125–38
    [Google Scholar]
  11. Bullimore MA, Bailey IL, Wacker RT. 1991. Face recognition in age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 32:72020–29
    [Google Scholar]
  12. Chen N, Shin K, Millin R, Song Y, Kwon MY, Tjan BS. 2019. Cortical reorganization of peripheral vision induced by simulated central vision loss. J. Neurosci. 39:183529–36
    [Google Scholar]
  13. Cheong AMY, Legge GE, Lawrence MG, Cheung SH, Ruff MA. 2007. Relationship between slow visual processing and reading speed in people with macular degeneration. Vis. Res. 47:232943–55
    [Google Scholar]
  14. Cheong AMY, Legge GE, Lawrence MG, Cheung SH, Ruff MA. 2008. Relationship between visual span and reading performance in age-related macular degeneration. Vis. Res. 48:4577–88
    [Google Scholar]
  15. Cheung S, Legge GE. 2005. Functional and cortical adaptations to central vision loss. Vis. Neurosci. 22:2187–201
    [Google Scholar]
  16. Chung STL. 2011. Improving reading speed for people with central vision loss through perceptual learning. Investig. Ophthalmol. Vis. Sci. 52:21164–70
    [Google Scholar]
  17. Chung STL. 2020. Reading in the presence of macular disease: a mini-review. Ophthalmic Physiol. Opt. 40:2171–86
    [Google Scholar]
  18. Churchland AK, Lisberger SG. 2002. Gain control in human smooth-pursuit eye movements. J. Neurophysiol. 87:62936–45
    [Google Scholar]
  19. Crossland MD, Crabb DP, Rubin GS. 2011. Task-specific fixation behavior in macular disease. Investig. Ophthalmol. Vis. Sci. 52:1411–16
    [Google Scholar]
  20. Crossland MD, Culham LE, Kabanarou SA, Rubin GS. 2005. Preferred retinal locus development in patients with macular disease. Ophthalmology 112:91579–85
    [Google Scholar]
  21. Crossland MD, Culham LE, Rubin GS. 2004. Fixation stability and reading speed in patients with newly developed macular disease. Ophthalmic Physiol. Opt. 24:4327–33
    [Google Scholar]
  22. Duret F, Issenhuth M, Safran AB. 1999. Combined use of several preferred retinal loci in patients with macular disorders when reading single words. Vis. Res. 39:4873–79
    [Google Scholar]
  23. Eisenbarth W, MacKeben M, Poggel DA, Strasburger H. 2008. Characteristics of dynamic processing in the visual field of patients with age-related maculopathy. Graefe's Arch. . Clin. Exp. Ophthalmol. 246:127–37
    [Google Scholar]
  24. Fine EM, Peli E. 1995. Scrolled and rapid serial visual presentation texts are read at similar rates by the visually impaired. J. Opt. Soc. Am. A 12:102286–92
    [Google Scholar]
  25. Fletcher DC, Schuchard RA. 1997. Preferred retinal loci relationship to macular scotomas in a low-vision population. Ophthalmology 104:4632–38
    [Google Scholar]
  26. Fletcher DC, Schuchard RA, Renninger LW. 2012. Patient awareness of binocular central scotoma in age-related macular degeneration. Optom. Vis. Sci. 89:91395–98
    [Google Scholar]
  27. Fletcher DC, Schuchard RA, Watson G. 1999. Relative locations of macular scotomas near the PRL: effect on low vision reading. J. Rehabil. Res. Dev. 36:4356–64
    [Google Scholar]
  28. Geringswald F, Herbik A, Hoffmann MB, Pollmann S. 2013. Contextual cueing impairment in patients with age-related macular degeneration. J. Vis. 13:328
    [Google Scholar]
  29. González EG, Liu H, Tarita-Nistor L, Mandelcorn E, Mandelcorn M. 2018a. Smooth pursuit of amodally completed images. Exp. Eye Res. 183:3–8
    [Google Scholar]
  30. González EG, Shi R, Tarita-Nistor L, Mandelcorn ED, Mandelcorn MS, Steinbach MJ. 2018b. Image stabilization in central vision loss: the horizontal vestibulo-ocular reflex. Vision 2:219
    [Google Scholar]
  31. González EG, Tarita-Nistor L, Mandelcorn E, Mandelcorn M, Steinbach MJ. 2018c. Mechanisms of image stabilization in central vision loss: smooth pursuit. Optom. Vis. Sci. 95:160–69
    [Google Scholar]
  32. Heinen SJ, Badler JB, Watamaniuk SNJ. 2018. Choosing a foveal goal recruits the saccadic system during smooth pursuit. J. Neurophysiol. 120:2489–96
    [Google Scholar]
  33. Heinen SJ, Potapchuk E, Watamaniuk SNJ. 2016. A foveal target increases catch-up saccade frequency during smooth pursuit. J. Neurophysiol. 115:31220–27
    [Google Scholar]
  34. Heinen SJ, Skavenski AA. 1992. Adaptation of saccades and fixation to bilateral foveal lesions in adult monkey. Vis. Res. 32:2365–73
    [Google Scholar]
  35. Heinen SJ, Watamaniuk SNJ. 1998. Spatial integration in human smooth pursuit. Vis. Res. 38:233785–94
    [Google Scholar]
  36. Hubschman JP, Reddy S, Schwartz SD. 2009. Age-related macular degeneration: current treatments. Clin. Ophthalmol. 3:1155–66
    [Google Scholar]
  37. Janssen CP, Verghese P. 2016. Training eye movements for visual search in individuals with macular degeneration. J. Vis. 16:1529
    [Google Scholar]
  38. Johnston JL, Sharpe JA. 1994. The initial vestibulo-ocular reflex and its visual enhancement and cancellation in humans. Exp. Brain Res. 99:2302–8
    [Google Scholar]
  39. Kabanarou SA, Crossland MD, Bellmann C, Rees A, Culham LE, Rubin GS. 2006. Gaze changes with binocular versus monocular viewing in age-related macular degeneration. Ophthalmology 113:122251–58
    [Google Scholar]
  40. Krauzlis RJ. 2004. Recasting the smooth pursuit eye movement system. J. Neurophysiol. 91:2591–603
    [Google Scholar]
  41. Kumar G, Chung ST. 2014. Characteristics of fixational eye movements in people with macular disease. Investig. Ophthalmol. Vis. Sci. 55:85125–33
    [Google Scholar]
  42. Kwon M, Nandy AS, Tjan BS. 2013. Rapid and persistent adaptability of human oculomotor control in response to simulated central vision loss. Curr. Biol. 23:171663–69
    [Google Scholar]
  43. Land MF. 1999. Motion and vision: why animals move their eyes. J. Comp. Physiol. A 185:4341–52
    [Google Scholar]
  44. Legge GE, Mansfield JS, Chung ST. 2001. Psychophysics of reading: clinical predictors of low-vision reading speed. Vis. Res. 41:6725–43
    [Google Scholar]
  45. Little DM, Thulborn KR, Szlyk JP. 2008. An fMRI study of saccadic and smooth-pursuit eye movement control in patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 49:41728–35
    [Google Scholar]
  46. Liu R, Kwon MY. 2016. Integrating oculomotor and perceptual training to induce a pseudofovea: a model system for studying central vision loss. J. Vis. 16:610
    [Google Scholar]
  47. Logan AJ, Gordon GE, Loffler G. 2020. The effect of age-related macular degeneration on components of face perception. Investig. Ophthalmol. Vis. Sci. 61:638
    [Google Scholar]
  48. MacKeben M, Fletcher DC. 2011. Target search and identification performance in low vision patients. Investig. Ophthalmol. Vis. Sci. 52:107603–9
    [Google Scholar]
  49. Madelain L, Krauzlis RJ, Wallman J. 2005. Spatial deployment of attention influences both saccadic and pursuit tracking. Vis. Res. 45:2685–703
    [Google Scholar]
  50. McIlreavy L, Fiser J, Bex PJ. 2012. Impact of simulated central scotomas on visual search in natural scenes. Optom. Vis. Sci. 89:91385–94
    [Google Scholar]
  51. Mckee SP, Nakayama K. 1984. The detection of motion in the peripheral visual field. Vis. Res. 24:125–32
    [Google Scholar]
  52. Nguyen NX, Stockum A, Hahn GA, Trauzettel-Klosinski S. 2011. Training to improve reading speed in patients with juvenile macular dystrophy: a randomized study comparing two training methods. Acta Ophthalmol 89:182–88
    [Google Scholar]
  53. Orban De Xivry JJ, Bennett SJ, Lefèvre P, Barnes GR. 2006. Evidence for synergy between saccades and smooth pursuit during transient target disappearance. J. Neurophysiol. 95:1418–27
    [Google Scholar]
  54. Pidcoe PE, Wetzel PA. 2006. Oculomotor tracking strategy in normal subjects with and without simulated scotoma. Investig. Ophthalmol. Vis. Sci. 47:1169–78
    [Google Scholar]
  55. Rashbass C. 1961. The relationship between saccadic and smooth tracking eye movements. J. Physiol. 159:326–38
    [Google Scholar]
  56. Renninger L, Dang L, Verghese P, Fletcher DC. 2008. Effect of central scotoma on eye movement behavior. J. Vis. 8:6641
    [Google Scholar]
  57. Renninger L, Ma-Wyatt A. 2011. Recalibration of eye and hand reference frames in age-related macular degeneration. J. Vis. 11:954
    [Google Scholar]
  58. Renninger LW, Verghese P, Coughlan J. 2007. Where to look next? Eye movements reduce local uncertainty. J. Vis. 7:36
    [Google Scholar]
  59. Rubin GS, Feely M. 2009. The role of eye movements during reading in patients with age-related macular degeneration (AMD). Neuro-Ophthalmology 33:3120–26
    [Google Scholar]
  60. Rubin GS, Turano K. 1994. Low vision reading with sequential word presentation. Vis. Res. 34:131723–33
    [Google Scholar]
  61. Safi M, Verghese P, Shanidze N. 2020. Effects of task demands on smooth pursuit gain in macular degeneration. Investig. Ophthalmol. Vis. Sci. 61:1045
    [Google Scholar]
  62. Safran AB, Landis T. 1999. From cortical plasticity to unawareness of visual field defects. J. Neuro-Ophthalmol. 19:284–88
    [Google Scholar]
  63. Schuchard RA, Naseer S, de Castro K. 1999. Characteristics of AMD patients with low vision receiving visual rehabilitation. J. Rehabil. Res. Dev. 36:4294–302
    [Google Scholar]
  64. Seiple W, Grant P, Szlyk JP. 2011. Reading rehabilitation of individuals with AMD: relative effectiveness of training approaches. Investig. Ophthalmol. Vis. Sci. 52:62938–44
    [Google Scholar]
  65. Seiple W, Rosen RB, Garcia PMT. 2013. Abnormal fixation in individuals with viewing an image of a face. Optom. Vis. Sci. 90:145–56
    [Google Scholar]
  66. Shanidze N, Ghahghaei S, Verghese P. 2016a. Accuracy of eye position for saccades and smooth pursuit. J. Vis. 16:1523
    [Google Scholar]
  67. Shanidze N, Heinen S, Verghese P. 2017. Monocular and binocular smooth pursuit in central field loss. Vis. Res. 141:181–90
    [Google Scholar]
  68. Shanidze N, Verghese P. 2019. Motion perception in central field loss. J. Vis. 19:1420
    [Google Scholar]
  69. Shanidze NM, Fusco G, Potapchuk E, Heinen S, Verghese P. 2016b. Smooth pursuit eye movements in patients with macular degeneration. J. Vis. 16:31
    [Google Scholar]
  70. Shanidze NM, Velisar A. 2020. Eye, head, and gaze contributions to smooth pursuit in macular degeneration. J. Neurophysiol. 124:1134–44
    [Google Scholar]
  71. Sharpe JA, Sylvester TO. 1978. Effect of aging on horizontal smooth pursuit. Investig. Ophthalmol. Vis. Sci. 17:5465–68
    [Google Scholar]
  72. Sheldon S, Quint J, Hecht H, Bowers AR. 2014. The effect of central vision loss on perception of mutual gaze. Optom. Vis. Sci. 91:81000–11
    [Google Scholar]
  73. Sullivan B, Jovancevic-Misic J, Hayhoe M, Sterns G. 2008. Use of multiple preferred retinal loci in Stargardt's disease during natural tasks: a case study. Ophthalmic Physiol. Opt. 28:2168–77
    [Google Scholar]
  74. Taylor DJ, Smith ND, Binns AM, Crabb DP. 2018. The effect of non-neovascular age-related macular degeneration on face recognition performance. Graefe's Arch. . Clin. Exp. Ophthalmol. 256:4815–21
    [Google Scholar]
  75. Tejeria L, Harper RA, Artes PH, Dickinson CM. 2002. Face recognition in age related macular degeneration: perceived disability, measured disability, and performance with a bioptic device. Br. J. Ophthalmol. 86:91019–26
    [Google Scholar]
  76. Thibaut M, Boucart M, Tran THC. 2020. Object search in neovascular age-related macular degeneration: the crowding effect. Clin. Exp. Optom. 103:5648–55
    [Google Scholar]
  77. Thibaut M, Delerue C, Boucart M, Tran THC. 2016. Visual exploration of objects and scenes in patients with age-related macular degeneration. J. Fr. Ophtalmol. 39:182–89
    [Google Scholar]
  78. Tsank Y, Eckstein MP. 2017. Domain specificity of oculomotor learning after changes in sensory processing. J. Neurosci. 37:4711469–84
    [Google Scholar]
  79. Valberg A, Fosse P. 2002. Binocular contrast inhibition in subjects with age-related macular degeneration. J. Opt. Soc. Am. A 19:1223–28
    [Google Scholar]
  80. Van der Stigchel S, Bethlehem RAI, Klein BP, Berendschot TTJM, Nijboer TCW, Dumoulin SO. 2013. Macular degeneration affects eye movement behavior during visual search. Front. Psychol. 4:579
    [Google Scholar]
  81. Verghese P, Ghahghaei S. 2020. Predicting stereopsis in macular degeneration. J. Neurosci. 40:285465–70
    [Google Scholar]
  82. Vullings C, Verghese P. 2021. Mapping the binocular scotoma in macular degeneration. J. Vis. 21:39
    [Google Scholar]
  83. Wallace JM, Chung STL, Tjan BS. 2017. Object crowding in age-related macular degeneration. J. Vis. 17:133
    [Google Scholar]
  84. Walsh DV, Liu L. 2014. Adaptation to a simulated central scotoma during visual search training. Vis. Res. 96:75–86
    [Google Scholar]
  85. White JM, Bedell HE. 1990. The oculomotor reference in humans with bilateral macular disease. Investig. Ophthalmol. Vis. Sci. 31:61149–61
    [Google Scholar]
  86. Whittaker SG, Budd J, Cummings RW. 1988. Eccentric fixation with macular scotoma. Investig. Ophthalmol. Vis. Sci. 29:2268–78
    [Google Scholar]
  87. Wiecek E, Jackson ML, Dakin SC, Bex P. 2012. Visual search with image modification in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 53:106600–9
    [Google Scholar]
  88. Winterson BJ, Steinman RM. 1978. The effect of luminance on human smooth pursuit of perifoveal and foveal targets. Vis. Res. 18:91165–72
    [Google Scholar]
  89. Zur D, Ullman S. 2003. Filling-in of retinal scotomas. Vis. Res. 43:9971–82
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100119-125555
Loading
/content/journals/10.1146/annurev-vision-100119-125555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error