1932

Abstract

The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100419-115801
2021-09-15
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100419-115801.html?itemId=/content/journals/10.1146/annurev-vision-100419-115801&mimeType=html&fmt=ahah

Literature Cited

  1. Appleby TR, Manookin MB 2020. Selectivity to approaching motion in retinal inputs to the dorsal visual pathway. eLife 9:e51144
    [Google Scholar]
  2. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–50
    [Google Scholar]
  3. Bordt AS, Patterson SS, Girresch RJ, Perez D, Tseng L et al. 2021. Synaptic inputs to broad thorny ganglion cells in macaque retina. J. Comp. Neurol. 529:3098–111
    [Google Scholar]
  4. Boycott BB, Wässle H. 1991. Morphological classification of bipolar cells of the primate retina. Eur. J. Neurosci. 3:1069–88
    [Google Scholar]
  5. Calkins DJ, Schein SJ, Tsukamoto Y, Sterling P. 1994. M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371:70–72
    [Google Scholar]
  6. Calkins DJ, Sterling P. 2007. Microcircuitry for two types of achromatic ganglion cell in primate fovea. J. Neurosci. 27:2646–53
    [Google Scholar]
  7. Calkins DJ, Tsukamoto Y, Sterling P. 1998. Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J. Neurosci. 18:3373–85
    [Google Scholar]
  8. Chan TL, Martin PR, Clunas N, Grünert U. 2001. Bipolar cell diversity in the primate retina: morphologic and immunocytochemical analysis of a New World monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 437:219–39
    [Google Scholar]
  9. Chandra AJ, Lee SCS, Grünert U. 2017. Thorny ganglion cells in marmoset retina: morphological and neurochemical characterization with antibodies against calretinin. J. Comp. Neurol. 525:3962–74
    [Google Scholar]
  10. Chandra AJ, Lee SCS, Grünert U. 2019. Melanopsin and calbindin immunoreactivity in the inner retina of humans and marmosets. Vis. Neurosci. 36:E009
    [Google Scholar]
  11. Chichilnisky EJ, Baylor DA. 1999. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat. Neurosci. 2:889–93
    [Google Scholar]
  12. Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D et al. 2020. Cell types of the human retina and its organoids at single-cell resolution. Cell 182:1623–40.e34
    [Google Scholar]
  13. Crook JD, Davenport CM, Peterson BB, Packer OS, Detwiler PB, Dacey DM. 2009. Parallel ON and OFF cone bipolar inputs establish spatially-coextensive receptive field structure of blue-yellow ganglion cells in primate retina. J. Neurosci. 29:8372–87
    [Google Scholar]
  14. Crook JD, Manookin MB, Packer OS, Dacey DM. 2011. Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. J. Neurosci. 31:1762–72
    [Google Scholar]
  15. Crook JD, Packer OS, Dacey DM. 2014a. A synaptic signature for ON- and OFF-center parasol ganglion cells of the primate retina. Vis. Neurosci. 31:57–84
    [Google Scholar]
  16. Crook JD, Packer OS, Troy JB, Dacey DM 2014b. Synaptic mechanisms of color and luminance coding: rediscovering the X-Y-cell dichotomy in primate retinal ganglion cells. The New Visual Neurosciences JS Werner, LM Chalupa 123–43 Cambridge, MA: MIT Press
    [Google Scholar]
  17. Crook JD, Peterson BB, Packer OS, Robinson FR, Gamlin PD et al. 2008a. The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. J. Neurosci. 28:12654–71
    [Google Scholar]
  18. Crook JD, Peterson BB, Packer OS, Robinson FR, Troy JB, Dacey DM. 2008b. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J. Neurosci. 28:11277–91
    [Google Scholar]
  19. Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:5–25
    [Google Scholar]
  20. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE 1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523
    [Google Scholar]
  21. Dacey DM. 1993a. Morphology of a small-field bistratified ganglion cell type in the macaque and human retina. Vis. Neurosci. 10:1081–98
    [Google Scholar]
  22. Dacey DM. 1993b. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13:5334–55
    [Google Scholar]
  23. Dacey DM. 2004. Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways. The Cognitive Neurosciences MS Gazzaniga 281–301 Cambridge, MA: MIT Press
    [Google Scholar]
  24. Dacey DM, Lee BB. 1994. The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:731–35
    [Google Scholar]
  25. Dacey DM, Liao H-W, Peterson BB, Robinson FR, Smith VC et al. 2005. Melanopsin-expressing ganglion cells in primate retina signal colour irradiance and project to the LGN. Nature 433:749–54
    [Google Scholar]
  26. Dacey DM, Petersen MR 1992. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. PNAS 89:9666–70
    [Google Scholar]
  27. Dacey DM, Peterson BB, Robinson FR, Gamlin PD. 2003. Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37:15–27
    [Google Scholar]
  28. Detwiler PB, Crook DK, Packer O, Robinson F, Dacey DM 2019. The recursive bistratified ganglion cell type of the macaque monkey retina is ON-OFF direction selective. Investig. Ophthalmol. Vis. Sci. 60:3884
    [Google Scholar]
  29. Dhande OS, Stafford BK, Franke K, El-Danaf R, Percival KA et al. 2019. Molecular fingerprinting of On-Off direction-selective retinal ganglion cells across species and relevance to primate visual circuits. J. Neurosci. 39:78–95
    [Google Scholar]
  30. Diller L, Packer OS, Verweij J, McMahon MJ, Williams DR, Dacey DM. 2004. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J. Neurosci. 24:1079–88
    [Google Scholar]
  31. Do MTH. 2019. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104:205–26
    [Google Scholar]
  32. Dunn FA, Wong RO. 2014. Wiring patterns in the mouse retina: collecting evidence across the connectome, physiology and light microscopy. J. Physiol. 592:4809–23
    [Google Scholar]
  33. Field GD, Chichilnisky EJ. 2007. Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30:1–30
    [Google Scholar]
  34. Field GD, Gauthier JL, Sher A, Greschner M, Machado TA et al. 2010. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467:673–77
    [Google Scholar]
  35. Ghosh KK, Goodchild AK, Sefton AE, Martin PR. 1996. Morphology of retinal ganglion cells in a New World monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 366:76–92
    [Google Scholar]
  36. Ghosh KK, Martin PR, Grünert U. 1997. Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 379:211–25
    [Google Scholar]
  37. Girresch R. 2020. Comparative retinal circuitry of parasol and smooth monostratified ganglion cells in macaque central retina. MA Thesis St. Louis Univ MO:
    [Google Scholar]
  38. Goodchild AK, Martin PR. 1998. The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus. Vis. Neurosci. 15:625–42
    [Google Scholar]
  39. Gray DC, Wolfe R, Gee BP, Scoles D, Geng Y et al. 2008. In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 49:467–73
    [Google Scholar]
  40. Grünert U, Greferath U, Boycott BB, Wässle H. 1993. Parasol (Pα) ganglion cells of the primate fovea: immunocytochemical staining with antibodies against GABAA receptors. Vis. Res. 33:1–14
    [Google Scholar]
  41. Grünert U, Jusuf PR, Lee SCS, Nguyen DT. 2011. Bipolar input to melanopsin containing ganglion cells in primate retina. Vis. Neurosci. 28:39–50
    [Google Scholar]
  42. Grünert U, Lee SCS, Kwan W, Mundinano I, Bourne J, Martin PR. 2021. Retinal ganglion cell types projecting to superior colliculus and pulvinar in marmoset. Brain Struct. Funct. In press
    [Google Scholar]
  43. Grünert U, Martin PR. 2020. Cell types and cell circuits in human and non human primate retina. Prog. Retin. Eye Res. 78:100844
    [Google Scholar]
  44. Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF. 2017. Melanopsin expressing human retinal ganglion cells: subtypes, distribution, and intraretinal connectivity. J. Comp. Neurol. 525:1934–61
    [Google Scholar]
  45. Hannibal J, Hindersson P, Østergaard J, Georg B, Heegaard S et al. 2004. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Investig. Ophthalmol. Vis. Sci. 45:4202–9
    [Google Scholar]
  46. Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD 2014. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J. Comp. Neurol. 522:2231–48
    [Google Scholar]
  47. Hendrickson A, Yan YH, Erickson A, Possin D, Pow D. 2007. Expression patterns of calretinin, calbindin and parvalbumin and their colocalization in neurons during development of Macaca monkey retina. Exp. Eye Res. 85:587–601
    [Google Scholar]
  48. Hendry SH, Yoshioka T. 1994. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–77
    [Google Scholar]
  49. Hoshino A, Ratnapriya R, Brooks MJ, Chaitankar V, Wilken MS et al. 2017. Molecular anatomy of the developing human retina. Dev. Cell 43:763–79.e4
    [Google Scholar]
  50. Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA. 2009. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62:327–34
    [Google Scholar]
  51. Hughes TE, Carey RG, Vitorica J, de Blas AL, Karten HJ. 1989. Immunohistochemical localization of GABAA receptors in the retina of the New World primate Saimiri sciureus. Vis. Neurosci. 2:565–81
    [Google Scholar]
  52. Ivanova E, Hwang GS, Pan ZH, Troilo D. 2010. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Investig. Ophthalmol. Vis. Sci. 51:5288–96
    [Google Scholar]
  53. Jacoby RA, Marshak DW. 2000. Synaptic connections of DB3 diffuse bipolar cell axons in macaque retina. J. Comp. Neurol. 416:19–29
    [Google Scholar]
  54. Jacoby R, Stafford D, Kouyama N, Marshak D. 1996. Synaptic inputs to ON parasol ganglion cells in the primate retina. J. Neurosci. 16:8041–46
    [Google Scholar]
  55. Jacoby RA, Wiechmann AF, Amara SG, Leighton BH, Marshak DW. 2000. Diffuse bipolar cells provide input to OFF parasol ganglion cells in the macaque retina. J. Comp. Neurol. 416:6–18
    [Google Scholar]
  56. Jeon C-J, Strettoi E, Masland RH. 1998. The major cell populations of the mouse retina. J. Neurosci. 18:8936–46
    [Google Scholar]
  57. Johnson JK, Casagrande VA. 1995. Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus). J. Comp. Neurol. 356:238–60
    [Google Scholar]
  58. Jones EG. 2001. The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601
    [Google Scholar]
  59. Joo HR, Peterson BB, Haun TJ, Dacey DM. 2011. Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections. Vis. Neurosci. 28:29–37
    [Google Scholar]
  60. Jusuf PR, Lee SCS, Grünert U. 2004. Synaptic connectivity of the diffuse bipolar cell type DB6 in the inner plexiform layer of primate retina. J. Comp. Neurol. 469:494–506
    [Google Scholar]
  61. Jusuf PR, Lee SCS, Hannibal J, Grünert U 2007. Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur. J. Neurosci. 26:2906–21
    [Google Scholar]
  62. Jusuf PR, Martin PR, Grünert U. 2006a. Random wiring in the midget pathway of primate retina. J. Neurosci. 26:3908–17
    [Google Scholar]
  63. Jusuf PR, Martin PR, Grünert U. 2006b. Synaptic connectivity in the midget-parvocellular pathway of primate central retina. J. Comp. Neurol. 494:260–74
    [Google Scholar]
  64. Jüttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB et al. 2019. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat. Neurosci. 22:1345–56
    [Google Scholar]
  65. Kaas JH, Huerta MF, Weber JT, Harting JK. 1978. Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J. Comp. Neurol. 182:517–53
    [Google Scholar]
  66. Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S et al. 2016. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. eLife 5:e15392
    [Google Scholar]
  67. Kling A, Field GD, Brainard DH, Chichilnisky EJ. 2019. Probing computation in the primate visual system at single-cone resolution. Annu. Rev. Neurosci. 42:169–86
    [Google Scholar]
  68. Kling A, Gogliettino AR, Shah NP, Wu EG, Brackbill N et al. 2020. Functional organization of midget and parasol ganglion cells in the human retina. bioRxiv 240762. https://doi.org/10.1101/2020.08.07.240762
    [Crossref]
  69. Klug K, Herr S, Tran Ngo I, Sterling P, Schein S 2003. Macaque retina contains an S-cone OFF midget pathway. J. Neurosci. 23:9881–87
    [Google Scholar]
  70. Kolb H, DeKorver L. 1991. Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J. Comp. Neurol. 303:617–36
    [Google Scholar]
  71. Kolb H, Linberg KA, Fisher SK. 1992. Neurons of the human retina: a Golgi study. J. Comp. Neurol. 318:146–87
    [Google Scholar]
  72. Kwan WC, Mundinano IC, de Souza MJ, Lee SCS, Martin PR et al. 2019. Unravelling the subcortical and retinal circuitry of the primate inferior pulvinar. J. Comp. Neurol. 527:558–76
    [Google Scholar]
  73. Lee BB, Martin PR, Grünert U. 2010. Retinal connectivity and primate vision. Prog. Retin. Eye Res. 29:622–39
    [Google Scholar]
  74. Lee BB, Martin PR, Valberg A. 1989. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. J. Physiol. 414:223–43
    [Google Scholar]
  75. Lee SCS, Martin PR, Grünert U. 2019. Characterization of ganglion cells that express special AT-rich sequence binding protein 1 (SATB1) in primate retina. Investig. Ophthalmol. Vis. Sci. 60:5272
    [Google Scholar]
  76. Lee SCS, Weltzien F, Madigan MC, Martin PR, Grünert U. 2016. Identification of AII amacrine, displaced amacrine and bistratified ganglion cell types in human retina with antibodies against calretinin. J. Comp. Neurol. 524:39–53
    [Google Scholar]
  77. Leventhal AG, Rodieck RW, Dreher B. 1981. Retinal ganglion cell classes in the Old World monkey: morphology and central projections. Science 213:1139–42
    [Google Scholar]
  78. Li PH, Gauthier JL, Schiff M, Sher A, Ahn D et al. 2015. Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings. J. Neurosci. 35:4663–75
    [Google Scholar]
  79. Liao HW, Ren X, Peterson BB, Marshak DW, Yau KW et al. 2016. Melanopsin-expressing ganglion cells in macaque and human retinas form two morphologically distinct populations. J. Comp. Neurol. 524:2845–72
    [Google Scholar]
  80. Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT 2017. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. PNAS 114:12803–8
    [Google Scholar]
  81. Manookin MB, Patterson SS, Linehan CM. 2018. Neural mechanisms mediating motion sensitivity in parasol ganglion cells of the primate retina. Neuron 97:1327–40.e4
    [Google Scholar]
  82. Martin PR, Lee BB, White AJR, Solomon SG, Rüttiger L. 2001. Chromatic sensitivity of ganglion cells in the peripheral retina. Nature 410:933–36
    [Google Scholar]
  83. Martin PR, White AJR, Goodchild AK, Wilder HD, Sefton AE. 1997. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur. J. Neurosci. 9:1536–41
    [Google Scholar]
  84. Masri RA, Grünert U, Martin PR. 2020. Analysis of parvocellular and magnocellular visual pathways in human retina. J. Neurosci. 40:8132–48
    [Google Scholar]
  85. Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U. 2016. Connectivity between the OFF bipolar type DB3a and six types of ganglion cell in the marmoset retina. J. Comp. Neurol. 524:1839–58
    [Google Scholar]
  86. Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U. 2019. Survey of retinal ganglion cell morphology in marmoset. J. Comp. Neurol. 527:236–58
    [Google Scholar]
  87. McGregor JE, Godat T, Dhakal KR, Parkins K, Strazzeri JM et al. 2020. Optogenetic restoration of retinal ganglion cell activity in the living primate. Nat. Commun. 11:1703
    [Google Scholar]
  88. Moritoh S, Komatsu Y, Yamamori T, Koizumi A. 2013. Diversity of retinal ganglion cells identified by transient GFP transfection in organotypic tissue culture of adult marmoset monkey retina. PLOS ONE 8:e54667
    [Google Scholar]
  89. Nasir-Ahmad S, Lee SCS, Martin PR, Grünert U. 2019. Melanopsin-expressing ganglion cells in human retina: morphology, distribution, and synaptic connections. J. Comp. Neurol. 527:312–27
    [Google Scholar]
  90. Nasir-Ahmad S, Lee SCS, Martin PR, Grünert U. 2021. Identification of retinal ganglion cell types expressing the transcription factor Satb2 in three primate species. J. Comp. Neurol. 529:2727–49
    [Google Scholar]
  91. Patterson SS, Bordt AS, Girresch RJ, Linehan CM, Bauss J et al. 2020a. Wide-field amacrine cell inputs to ON parasol ganglion cells in macaque retina. J. Comp. Neurol. 528:1588–98
    [Google Scholar]
  92. Patterson SS, Kuchenbecker JA, Anderson JR, Bordt AS, Marshak DW et al. 2019a. An S-cone circuit for edge detection in the primate retina. Sci. Rep. 9:11913
    [Google Scholar]
  93. Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J 2020b. A color vision circuit for non-image-forming vision in the primate retina. Curr. Biol. 30:1269–74
    [Google Scholar]
  94. Patterson SS, Mazzaferri MA, Bordt AS, Chang J, Neitz M, Neitz J 2020c. Another blue-ON ganglion cell in the primate retina. Curr. Biol. 30:R1409–10
    [Google Scholar]
  95. Patterson SS, Neitz M, Neitz J. 2019b. Reconciling color vision models with midget ganglion cell receptive fields. Front. Neurosci. 13:865
    [Google Scholar]
  96. Peng YR, Shekhar K, Yan W, Herrmann D, Sappington A et al. 2019. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176:1222–37
    [Google Scholar]
  97. Percival KA, Jusuf PR, Martin PR, Grünert U. 2009. Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina. J. Comp. Neurol. 517:655–69
    [Google Scholar]
  98. Percival KA, Koizumi A, Masri RA, Buzás P, Martin PR, Grünert U. 2014. Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J. Neurosci. 34:3821–25
    [Google Scholar]
  99. Percival KA, Martin PR, Grünert U. 2011. Synaptic inputs to two types of koniocellular pathway ganglion cells in marmoset retina. J. Comp. Neurol. 519:2135–53
    [Google Scholar]
  100. Percival KA, Martin PR, Grünert U. 2013. Organisation of koniocellular-projecting ganglion cells and diffuse bipolar cells in the primate fovea. Eur. J. Neurosci. 37:1072–86
    [Google Scholar]
  101. Perry VH, Cowey A. 1984. Retinal ganglion cells that project to the superior colliculus and pretectum in macaque monkey. Neuroscience 12:1125–37
    [Google Scholar]
  102. Perry VH, Oehler R, Cowey A. 1984. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12:1101–23
    [Google Scholar]
  103. Peterson BB, Dacey DM. 2000. Morphology of wide-field bistratified and diffuse human retinal ganglion cells. Vis. Neurosci. 17:567–78
    [Google Scholar]
  104. Peterson BB, Dacey DM. 1999. Morphology of wide-field, monostratified ganglion cells of the human retina. Vis. Neurosci. 16:107–20
    [Google Scholar]
  105. Petrusca D, Grivich MI, Sher A, Field GD, Gauthier JL et al. 2007. Identification and characterization of a Y-like primate retinal ganglion cell type. J. Neurosci. 27:11019–27
    [Google Scholar]
  106. Picaud S, Dalkara D, Marazova K, Goureau O, Roska B, Sahel JA 2019. The primate model for understanding and restoring vision. PNAS 116:26280–87
    [Google Scholar]
  107. Polyak SL. 1941. The Retina Chicago: Univ. Chicago Press
  108. Puller C, Manookin MB, Neitz J, Rieke F, Neitz M. 2015. Broad thorny ganglion cells: a candidate for visual pursuit error signaling in the primate retina. J. Neurosci. 35:5397–408
    [Google Scholar]
  109. Puthussery T, Venkataramani S, Gayet-Primo J, Smith RG, Taylor WR. 2013. NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina. J. Neurosci. 33:16045–59
    [Google Scholar]
  110. Reinhard K, Münch TA 2021. Visual properties of human retinal ganglion cells. PLOS ONE 16:e0246952
    [Google Scholar]
  111. Rhoades CE, Shah NP, Manookin MB, Brackbill N, Kling A et al. 2019. Unusual physiological properties of smooth monostratified ganglion cell types in primate retina. Neuron 103:658–72.e6
    [Google Scholar]
  112. Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH. 2002. The diversity of ganglion cells in a mammalian retina. J. Neurosci. 22:3831–43
    [Google Scholar]
  113. Rodieck RW 1991. Which cells code for color?. From Pigments to Perception: Advances in Understanding Visual Processes A Valberg, BB Lee 83–93 New York: Plenum Press
    [Google Scholar]
  114. Rodieck RW, Watanabe M. 1993. Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvocellular laminae of the lateral geniculate nucleus. J. Comp. Neurol. 338:289–303
    [Google Scholar]
  115. Roy S, Jayakumar J, Martin PR, Dreher B, Saalmann YB et al. 2009. Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus. Eur. J. Neurosci. 30:1517–26
    [Google Scholar]
  116. Schein SJ. 1988. Anatomy of macaque fovea and spatial densities of neurons in foveal representation. J. Comp. Neurol. 269:479–505
    [Google Scholar]
  117. Silveira LC, Lee BB, Yamada ES, Kremers J, Hunt DM et al. 1999. Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology. Vis. Neurosci. 16:333–43
    [Google Scholar]
  118. Silveira LC, Perry VH. 1991. The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience 40:217–37
    [Google Scholar]
  119. Silveira LC, Saito CA, Lee BB, Kremers J, da Silva, Filho M et al. 2004. Morphology and physiology of primate M- and P-cells. Prog. Brain Res. 144:21–46
    [Google Scholar]
  120. Sincich LC, Park KF, Wohlgemuth MJ, Horton JC. 2004. Bypassing V1: a direct geniculate input to area MT. Nat. Neurosci. 7:1123–28
    [Google Scholar]
  121. Sinha R, Hoon M, Baudin J, Okawa H, Wong RO, Rieke F. 2017. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168:413–26.e12
    [Google Scholar]
  122. Sivyer B, Venkataramani S, Taylor WR, Vaney DI. 2011. A novel type of complex ganglion cell in rabbit retina. J. Comp. Neurol. 519:3128–38
    [Google Scholar]
  123. Solomon SG, Martin PR, White AJR, Rüttiger L, Lee BB. 2002. Modulation sensitivity of ganglion cells in peripheral retina of macaque. Vis. Res. 42:2893–98
    [Google Scholar]
  124. Soto F, Hsiang JC, Rajagopal R, Piggott K, Harocopos GJ et al. 2020. Efficient coding by midget and parasol ganglion cells in the human retina. Neuron 107:656–66
    [Google Scholar]
  125. Sweeney NT, James KN, Nistorica A, Lorig-Roach RM, Feldheim DA. 2019. Expression of transcription factors divides retinal ganglion cells into distinct classes. J. Comp. Neurol. 527:225–35
    [Google Scholar]
  126. Szmajda BA, Buzás P, FitzGibbon T, Martin PR 2006. Geniculocortical relay of blue-off signals in the primate visual system. PNAS 103:19512–17
    [Google Scholar]
  127. Szmajda BA, Grünert U, Martin PR. 2008. Retinal ganglion cell inputs to the koniocellular pathway. J. Comp. Neurol. 510:251–68
    [Google Scholar]
  128. Telkes I, Lee SC, Jusuf PR, Grünert U. 2008. The midget-parvocellular pathway of marmoset retina: a quantitative light microscopic study. J. Comp. Neurol. 510:539–49
    [Google Scholar]
  129. Thoreson WB, Dacey DM. 2019. Diverse cell types, circuits, and mechanisms for color vision in the vertebrate retina. Physiol. Rev. 99:1527–73
    [Google Scholar]
  130. Tsukamoto Y, Omi N. 2015. OFF bipolar cells in macaque retina: type-specific connectivity in the outer and inner synaptic layers. Front. Neuroanat. 9:122
    [Google Scholar]
  131. Tsukamoto Y, Omi N. 2016. ON bipolar cells in macaque retina: type-specific synaptic connectivity with special reference to OFF counterparts. Front. Neuroanat. 10:104
    [Google Scholar]
  132. Turner MH, Rieke F. 2016. Synaptic rectification controls nonlinear spatial integration of natural visual inputs. Neuron 90:1257–71
    [Google Scholar]
  133. van Wyk M, Taylor WR, Vaney DI. 2006. Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina. J. Neurosci. 26:13250–63
    [Google Scholar]
  134. Vaney DI. 1980. A quantitative comparison between the ganglion cell populations and axonal outflows of the visual streak and periphery of the rabbit retina. J. Comp. Neurol. 189:215–33
    [Google Scholar]
  135. Vaney DI, Sivyer B, Taylor WR. 2012. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 13:194–208
    [Google Scholar]
  136. Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:747–57
    [Google Scholar]
  137. Wässle H, Grünert U, Martin PR, Boycott BB. 1994. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vis. Res. 34:561–79
    [Google Scholar]
  138. Wässle H, Grünert U, Röhrenbeck J, Boycott BB. 1989. Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341:643–46
    [Google Scholar]
  139. Wässle H, Peichl L, Boycott BB. 1981. Dendritic territories of cat retinal ganglion cells. Nature 292:344–45
    [Google Scholar]
  140. Watanabe M, Rodieck RW. 1989. Parasol and midget ganglion cells of the primate retina. J. Comp. Neurol. 289:434–54
    [Google Scholar]
  141. Weltzien F, Percival KA, Martin PR, Grünert U. 2015. Analysis of bipolar and amacrine populations in marmoset retina. J. Comp. Neurol. 523:313–34
    [Google Scholar]
  142. Wilder HD, Grünert U, Lee BB, Martin PR. 1996. Topography of ganglion cells and photoreceptors in the retina of a New World monkey: the marmoset Callithrix jacchus. Vis. Neurosci. 13:335–52
    [Google Scholar]
  143. Wool LE, Crook JD, Troy JB, Packer OS, Zaidi Q, Dacey DM. 2018. Nonselective wiring accounts for red-green opponency in midget ganglion cells of the primate retina. J. Neurosci. 39:1520–40
    [Google Scholar]
  144. Wool LE, Packer OS, Zaidi Q, Dacey DM. 2019. Connectomic identification and three-dimensional color tuning of S-OFF midget ganglion cells in the primate retina. J. Neurosci. 39:7893–909
    [Google Scholar]
  145. Yamada ES, Bordt AS, Marshak DW. 2005. Wide-field ganglion cells in macaque retinas. Vis. Neurosci. 22:383–93
    [Google Scholar]
  146. Yamada ES, Marshak DW, Silveira LCL, Casagrande VA. 1998. Morphology of P and M retinal ganglion cells of the bush baby. Vis. Res. 38:3345–52
    [Google Scholar]
  147. Yan W, Peng YR, van Zyl T, Regev A, Shekhar K et al. 2020. Cell atlas of the human fovea and peripheral retina. Sci. Rep. 10:9802
    [Google Scholar]
  148. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD et al. 2011. Intravitreal injection of AAV2 transduces macaque inner retina. Investig. Ophthalmol. Vis. Sci. 52:2775–83
    [Google Scholar]
  149. Yin L, Masella B, Dalkara D, Zhang J, Flannery JG et al. 2014. Imaging light responses of foveal ganglion cells in the living macaque eye. J. Neurosci. 34:6596–605
    [Google Scholar]
  150. Zhang C, Kim YJ, Silverstein AR, Hoshino A, Reh TA et al. 2020. Circuit reorganization shapes the developing human foveal midget connectome toward single-cone resolution. Neuron 108:P906–18.E3
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100419-115801
Loading
/content/journals/10.1146/annurev-vision-100419-115801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error