1932

Abstract

Our brains devote substantial resources to creating a singular, coherent view from the two images in our eyes. Both anatomical and functional studies have established that the underlying fusion of monocular signals into a combined binocular response starts within the first synapses downstream from our eyes. Long-standing consensus held that the two eyes’ signals remain largely segregated until they are combined by neurons in the upper layers of the primary visual cortex. However, new experimental data challenge this classic model, suggesting that there are pronounced earlier interactions between the two eyes’ streams of activation. In this article, we review the literature and detail how these findings can be functionally interpreted in context with previously established psychophysical models of binocular vision.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100720-112922
2022-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100720-112922.html?itemId=/content/journals/10.1146/annurev-vision-100720-112922&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson PA, Movshon JA. 1989. Binocular combination of contrast signals. Vis. Res. 29:1115–32
    [Google Scholar]
  2. Baker DH, Lygo FA, Meese TS, Georgeson MA. 2018. Binocular summation revisited: beyond √2. Psychol. Bull. 144:1186
    [Google Scholar]
  3. Baker DH, Meese TS. 2007. Binocular contrast interactions: Dichoptic masking is not a single process. Vis. Res. 47:3096–107
    [Google Scholar]
  4. Baker DH, Meese TS, Summers RJ. 2007. Psychophysical evidence for two routes to suppression before binocular summation of signals in human vision. Neuroscience 146:435–48
    [Google Scholar]
  5. Baker DH, Wallis SA, Georgeson MA, Meese TS. 2012. Nonlinearities in the binocular combination of luminance and contrast. Vis. Res. 56:1–9
    [Google Scholar]
  6. Blake R. 1989. A neural theory of binocular rivalry. Psychol. Rev. 96:145–67
    [Google Scholar]
  7. Blake R, Fox R. 1973. The psychophysical inquiry into binocular summation. Percept. Psychophys 14:161–85
    [Google Scholar]
  8. Blake R, Sloane M, Fox R. 1981. Further developments in binocular summation. Percept. Psychophys. 30:266–76
    [Google Scholar]
  9. Blake R, Wilson H. 2011. Binocular vision. Vis. Res. 51:754–70
    [Google Scholar]
  10. Blasdel GG, Lund JS. 1983. Termination of afferent axons in macaque striate cortex. J. Neurosci. 3:71389–413
    [Google Scholar]
  11. Braddick OJ. 1979. Binocular single vision and perceptual processing. Proc. R. Soc. Lond. B 204:503–12
    [Google Scholar]
  12. Brascamp JW. 2019. Neurophysiology: charting the confluence of the two eyes' information streams. Curr. Biol. 29:R134–36
    [Google Scholar]
  13. Carter O, van Swinderen B, Leopold D, Collin S, Maier A 2020. Perceptual rivalry across animal species. J. Comp. Neurol. 528:173123–33
    [Google Scholar]
  14. Casagrande VA, Boyd JD. 1996. The neural architecture of binocular vision. Eye 10:Pt. 2153–60
    [Google Scholar]
  15. Changizi MA, Shimojo S. 2008.. “ X-ray vision” and the evolution of forward-facing eyes. J. Theor. Biol. 254:756–67
    [Google Scholar]
  16. Chopin A, Bavelier D, Levi DM. 2019. The prevalence and diagnosis of “stereoblindness” in adults less than 60 years of age: a best evidence synthesis. Ophthalmic Physiol. Opt. 39:66–85
    [Google Scholar]
  17. Conley M, Birecree E, Casagrande VA. 1985. Neuronal classes and their relation to functional and laminar organization of the lateral geniculate nucleus: a Golgi study of the prosimian primate, Galago crassicaudatus. J. Comp. Neurol. 242:4561–83
    [Google Scholar]
  18. Coutant BE, Westheimer G. 1993. Population distribution of stereoscopic ability. Ophthalmic Physiol. Opt. 13:3–7
    [Google Scholar]
  19. Cox MA, Dougherty K, Westerberg JA, Schall MS, Maier A. 2019. Temporal dynamics of binocular integration in primary visual cortex. J. Vis. 19:13
    [Google Scholar]
  20. Cumming BG, DeAngelis GC. 2001. The physiology of stereopsis. Annu. Rev. Neurosci. 24:203–38
    [Google Scholar]
  21. De Valois RL, Morgan H, Snodderly DM. 1974a. Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. Vis. Res. 14:75–81
    [Google Scholar]
  22. De Valois RL, Morgan HC. 1974. Psychophysical studies of monkey vision. II. Squirrel monkey wavelength and saturation discrimination. Vis. Res. 14:69–73
    [Google Scholar]
  23. De Valois RL, Morgan HC, Polson MC, Mead WR, Hull EM. 1974b. Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. Vis. Res. 14:53–67
    [Google Scholar]
  24. Dieter K, Blake R. 2015. Sensory eye dominance varies within the visual field. J. Vis 15:268
    [Google Scholar]
  25. Ding J, Klein SA, Levi DM. 2013. Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model. J. Vis. 13:13
    [Google Scholar]
  26. Ding J, Sperling G. 2006. A gain-control theory of binocular combination. PNAS 103:1141–46
    [Google Scholar]
  27. Dougherty K, Carlson BM, Cox MA, Westerberg JA, Zinke W et al. 2021. Binocular suppression in the macaque lateral geniculate nucleus reveals early competitive interactions between the eyes. eNeuro 8:ENEURO.0364–20.2020
    [Google Scholar]
  28. Dougherty K, Cox MA, Westerberg JA, Maier A. 2019. Binocular modulation of monocular V1 neurons. Curr. Biol. 29:381–91.e4
    [Google Scholar]
  29. Dougherty K, Schmid MC, Maier A. 2018. Binocular response modulation in the lateral geniculate nucleus. J. Comp. Neurol. 527:3522–34
    [Google Scholar]
  30. Fechner GT. 1860. Elemente der psychophysik Leipzig, Ger.: Breitkopf & Härtel
  31. Fielder AR, Moseley MJ. 1996. Does stereopsis matter in humans?. Eye 10:233–38
    [Google Scholar]
  32. Gamlin PD. 2002. Neural mechanisms for the control of vergence eye movements. Ann. N.Y. Acad. Sci. 956:264–72
    [Google Scholar]
  33. Georgeson MA, Sengpiel F. 2021. Contrast adaptation and interocular transfer in cortical cells: a re-analysis and a two-stage gain-control model of binocular combination. Vis. Res. 185:29–49
    [Google Scholar]
  34. Grünert U, Martin PR. 2020. Cell types and cell circuits in human and non-human primate retina. Prog. Retin. Eye Res. 78:100844
    [Google Scholar]
  35. Heesy CP. 2004. On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat. Rec. A 281:11104–10
    [Google Scholar]
  36. Heesy CP. 2009. Seeing in stereo: the ecology and evolution of primate binocular vision and stereopsis. Evol. Anthropol. Issues News Rev. 18:21–35
    [Google Scholar]
  37. Hibbard PB. 2007. A statistical model of binocular disparity. Vis. Cogn. 15:149–65
    [Google Scholar]
  38. Hou F, Huang CB, Liang J, Zhou Y, Lu ZL. 2013. Contrast gain-control in stereo depth and cyclopean contrast perception. J. Vis. 13:3
    [Google Scholar]
  39. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  40. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  41. Hubel DH, Wiesel TN. 1972. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146:421–50
    [Google Scholar]
  42. Hubel DH, Wiesel TN, Yeagle EM, Lafer-Sousa R, Conway BR. 2015. Binocular stereoscopy in visual areas V-2, V-3, and V-3A of the macaque monkey. Cereb. Cortex 25:959–71
    [Google Scholar]
  43. Kaas JH. 2004. The evolution of the visual system in primates. Vis. Neurosci. 2:1563–72
    [Google Scholar]
  44. Kastner S, Schneider KA, Wunderlich K 2006. Beyond a relay nucleus: neuroimaging views on the human LGN. Visual Perception, Part 2: Fundamentals of Awareness, Multi-Sensory Integration and High-Order Perception S Martinez-Conde, S Macknik, LM Martinez, J-M Alonso, PU Tse 125–43 Amsterdam: Elsevier
    [Google Scholar]
  45. Knabe W, Washausen S, Happel N, Kuhn HJ. 2008. Diversity in mammalian chiasmatic architecture: Ipsilateral axons are deflected at glial arches in the prechiasmatic optic nerve of the eutherian Tupaia belangeri. J. Comp. Neurol. 508:437–57
    [Google Scholar]
  46. Legge GE. 1984. Binocular contrast summation—II. Quadratic summation. Vis. Res. 24:385–94
    [Google Scholar]
  47. Leopold DA, Maier A, Wilke M, Logothetis NK. 2005. Binocular rivalry and the illusion of monocular vision. Binocular Rivalry D Alais, R Blake 231–58 Cambridge, MA: MIT Press
    [Google Scholar]
  48. Liu L, Schor CM. 1995. Binocular combination of contrast signals from orthogonal orientation channels. Vis. Res. 35:2559–67
    [Google Scholar]
  49. Marrocco RT, McClurkin JW. 1979. Binocular interaction in the lateral geniculate nucleus of the monkey. Brain Res. 168:633–37
    [Google Scholar]
  50. Martin GR. 2009. What is binocular vision for? A birds' eye view. J. Vis. 9:14
    [Google Scholar]
  51. McAlonan K, Cavanaugh J, Wurtz RH. 2008. Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–94
    [Google Scholar]
  52. Meese TS, Georgeson MA, Baker DH. 2006. Binocular contrast vision at and above threshold. J. Vis. 6:1224–43
    [Google Scholar]
  53. Mitchell AS, Thiele A, Petkov CI, Roberts A, Robbins TW et al. 2018. Continued need for non-human primate neuroscience research. Curr. Biol. 28:R1186–87
    [Google Scholar]
  54. Mitzdorf U. 1985. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65:37–100
    [Google Scholar]
  55. Moradi F, Heeger DJ. 2009. Inter-ocular contrast normalization in human visual cortex. J. Vis. 9:13
    [Google Scholar]
  56. Murphy J, Hall C, Arkins S. 2009. What horses and humans see: a comparative review. Int. J. Zool. 2009:721798
    [Google Scholar]
  57. Neveu MM, Jeffery G. 2007. Chiasm formation in man is fundamentally different from that in the mouse. Eye 21:1264–70
    [Google Scholar]
  58. Otero-Millan J, Macknik SL, Martinez-Conde S. 2014. Fixational eye movements and binocular vision. Front. Integr. Neurosci. 8:52
    [Google Scholar]
  59. Panum P. 1858. Physiological Observations Concerning Vision with Two Eyes Kiel, Ger.: Schwering's
  60. Parker AJ. 2007. Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8:379–91
    [Google Scholar]
  61. Pettigrew JD, Sanderson KJ, Levick WR. 1986. Visual Neuroscience Cambridge, UK: Cambridge Univ. Press
  62. Poletti M, Aytekin M, Rucci M. 2015. Head-eye coordination at a microscopic scale. Curr. Biol. 25:3253–59
    [Google Scholar]
  63. Rakic P, Barlow HB, Gaze RM. 1977. Prenatal development of the visual system in rhesus monkey. Philos. Trans. R. Soc. London. B 278:245–60
    [Google Scholar]
  64. Read JCA. 2021. Binocular vision and stereopsis across the animal kingdom. Annu. Rev. Vis. Sci. 7:389–415
    [Google Scholar]
  65. Repérant J, Miceli D, Vesselkin N, Molotchnikoff S. 1989. The centrifugal visual system of vertebrates: a century-old search reviewed. Int. Rev. Cytol. 118:115–71
    [Google Scholar]
  66. Risi N, Calabrese E, Indiveri G. 2021. Instantaneous stereo depth estimation of real-world stimuli with a neuromorphic stereo-vision setup. Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS) art. 20919448 Piscataway, NJ: IEEE
    [Google Scholar]
  67. Rodieck R, Dreher B. 1979. Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey. Exp. Brain Res. 35:465–77
    [Google Scholar]
  68. Roelfsema PR, Treue S. 2014. Basic neuroscience research with nonhuman primates: a small but indispensable component of biomedical research. Neuron 82:1200–4
    [Google Scholar]
  69. Roska B, Meister M 2014. The retina dissects the visual scene. The New Visual Neurosciences JS Werner, LM Chalupa 163–82 Cambridge, MA: MIT Press
    [Google Scholar]
  70. Schall JD, Thompson KG. 1999. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22:241–59
    [Google Scholar]
  71. Schroeder CE, Mehta AD, Givre SJ. 1998. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb. Cortex 8:575–92
    [Google Scholar]
  72. Shimojo S, Nakayama K. 1990. Real world occlusion constraints and binocular rivalry. Vis. Res. 30:69–80
    [Google Scholar]
  73. Smith EL III, Chino Y, Ni J, Cheng H. 1997. Binocular combination of contrast signals by striate cortical neurons in the monkey. J. Neurophysiol. 78:366–82
    [Google Scholar]
  74. Sussman RW, Tab Rasmussen D, Raven PH 2013. Rethinking primate origins again. Am. J. Primatol. 75:95–106
    [Google Scholar]
  75. Tong F, Meng M, Blake R. 2006. Neural bases of binocular rivalry. Trends Cogn. Sci. 10:502–11
    [Google Scholar]
  76. Tovar DA, Westerberg JA, Cox MA, Dougherty K, Carlson TA et al. 2020. Stimulus feature-specific information flow along the columnar cortical microcircuit revealed by multivariate laminar spiking analysis. Front. Syst. Neurosci. 14:600601
    [Google Scholar]
  77. Truchard AM, Ohzawa I, Freeman RD. 2000. Contrast gain control in the visual cortex: monocular versus binocular mechanisms. J. Neurosci. 20:3017–32
    [Google Scholar]
  78. Verhoef BE, Bohon KS, Conway BR. 2015. Functional architecture for disparity in macaque inferior temporal cortex and its relationship to the architecture for faces, color, scenes, and visual field. J. Neurosci. 35:6952–68
    [Google Scholar]
  79. Walls GL. 1942. The Vertebrate Eye and Its Adaptive Radiation Bloomfield Hills, MI: Cranbrook Inst. Sci.
  80. Westerberg JA, Cox MA, Dougherty K, Maier A. 2019. V1 microcircuit dynamics: Altered signal propagation suggests intracortical origins for adaptation in response to visual repetition. J. Neurophysiol. 121:1938–52
    [Google Scholar]
  81. Wu DA, Kanai R, Shimojo S. 2004. Vision: steady-state misbinding of colour and motion. Nature 429:262
    [Google Scholar]
  82. Zeater N, Cheong SK, Solomon SG, Dreher B, Martin PR. 2015. Binocular visual responses in the primate lateral geniculate nucleus. Curr. Biol. 25:3190–95
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100720-112922
Loading
/content/journals/10.1146/annurev-vision-100720-112922
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error