1932

Abstract

The visual system must reconstruct the dynamic, three-dimensional (3D) world from ambiguous two-dimensional (2D) retinal images. In this review, we synthesize current literature on how the visual system of nonhuman primates performs this transformation through multiple channels within the classically defined dorsal (where) and ventral (what) pathways. Each of these channels is specialized for processing different 3D features (e.g., the shape, orientation, or motion of objects, or the larger scene structure). Despite the common goal of 3D reconstruction, neurocomputational differences between the channels impose distinct information-limiting constraints on perception. Convergent evidence further points to the little-studied area V3A as a potential branchpoint from which multiple 3D-fugal processing channels diverge. We speculate that the expansion of V3A in humans may have supported the emergence of advanced 3D spatial reasoning skills. Lastly, we discuss future directions for exploring 3D information transmission across brain areas and experimental approaches that can further advance the understanding of 3D vision.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111022-123857
2023-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-111022-123857.html?itemId=/content/journals/10.1146/annurev-vision-111022-123857&mimeType=html&fmt=ahah

Literature Cited

  1. Albright TD, Desimone R, Gross CG. 1984. Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51:16–31
    [Google Scholar]
  2. Alizadeh AM, Van Dromme I, Verhoef BE, Janssen P. 2018a. Caudal Intraparietal Sulcus and three-dimensional vision: a combined functional magnetic resonance imaging and single-cell study. NeuroImage 166:46–59
    [Google Scholar]
  3. Alizadeh AM, Van Dromme IC, Janssen P. 2018b. Single-cell responses to three-dimensional structure in a functionally defined patch in macaque area TEO. J. Neurophysiol. 120:2806–18
    [Google Scholar]
  4. Angelaki DE, Gu Y, Deangelis GC. 2011. Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J. Physiol. 589:825–33
    [Google Scholar]
  5. Anzai A, Chowdhury SA, DeAngelis GC. 2011. Coding of stereoscopic depth information in visual areas V3 and V3A. J. Neurosci. 31:10270–82
    [Google Scholar]
  6. Ayzenberg V, Behrmann M. 2022. Does the brain's ventral visual pathway compute object shape?. Trends Cogn. Sci. 26:1119–32
    [Google Scholar]
  7. Banker SM, Ramphal B, Pagliaccio D, Thomas L, Rosen E et al. 2020. Spatial network connectivity and spatial reasoning ability in children with nonverbal learning disability. Sci. Rep. 10:561
    [Google Scholar]
  8. Barton RA. 2004. From the cover: binocularity and brain evolution in primates. PNAS 101:10113–15
    [Google Scholar]
  9. Bogadhi AR, Katz LN, Bollimunta A, Leopold DA, Krauzlis RJ. 2021. Midbrain activity shapes high-level visual properties in the primate temporal cortex. Neuron 109:690–99.e5
    [Google Scholar]
  10. Bonnen K, Czuba TB, Whritner JA, Kohn A, Huk AC, Cormack LK. 2020. Binocular viewing geometry shapes the neural representation of the dynamic three-dimensional environment. Nat. Neurosci. 23:113–21
    [Google Scholar]
  11. Born RT, Bradley DC. 2005. Structure and function of visual area MT. Annu. Rev. Neurosci. 28:157–89
    [Google Scholar]
  12. Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A et al. 2008. Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb. Cortex 18:1094–111
    [Google Scholar]
  13. Boussaoud D, Ungerleider LG, Desimone R. 1990. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol. 296:462–95
    [Google Scholar]
  14. Brincat SL, Connor CE. 2004. Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nat. Neurosci. 7:880–86
    [Google Scholar]
  15. Brooks KR. 2002. Interocular velocity difference contributes to stereomotion speed perception. J. Vis. 2:218–31
    [Google Scholar]
  16. Chang TY, Doudlah R, Kim B, Sunkara A, Thompson LW et al. 2020a. Functional links between sensory representations, choice activity, and sensorimotor associations in parietal cortex. eLife 9:e57968
    [Google Scholar]
  17. Chang TY, Thompson LW, Doudlah R, Kim B, Sunkara A, Rosenberg A. 2020b. Optimized but not maximized cue integration for 3D visual perception. eNeuro 7:ENEURO.0411-19.2019
    [Google Scholar]
  18. Clark JJ, Yuille AL. 1990. Data Fusion for Sensory Information Processing Springer Int. Ser. Eng. Comput. Sci. 105 Berlin: Springer
  19. Connor CE, Knierim JJ. 2017. Integration of objects and space in perception and memory. Nat. Neurosci. 20:1493–503
    [Google Scholar]
  20. Cooper EA, van Ginkel M, Rokers B. 2016. Sensitivity and bias in the discrimination of two-dimensional and three-dimensional motion direction. J. Vis. 16:5
    [Google Scholar]
  21. Cormack LK, Czuba TB, Knöll J, Huk AC. 2017. Binocular mechanisms of 3D motion processing. Annu. Rev. Vis. Sci. 3:297–318
    [Google Scholar]
  22. Cowan NJ, Chang DE. 2005. Geometric visual servoing. IEEE Trans. Robot. 21:1128–38
    [Google Scholar]
  23. Cowan NJ, Weingarten JD, Koditschek DE. 2002. Visual servoing via navigation functions. IEEE Trans. Robot. Autom. 18:521–33
    [Google Scholar]
  24. Cowey A, Porter J. 1979. Brain damage and global stereopsis. Proc. R. Soc. Lond. B 204:399–407
    [Google Scholar]
  25. Cumming BG, DeAngelis GC. 2001. The physiology of stereopsis. Annu. Rev. Neurosci. 24:203–38
    [Google Scholar]
  26. Cumming BG, Parker AJ. 1994. Binocular mechanisms for detecting motion-in-depth. Vis. Res. 34:483–95
    [Google Scholar]
  27. Cumming BG, Parker AJ. 1999. Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. J. Neurosci. 19:5602–18
    [Google Scholar]
  28. Czuba TB, Huk AC, Cormack LK, Kohn A. 2014. Area MT encodes three-dimensional motion. J. Neurosci. 34:15522–33
    [Google Scholar]
  29. Czuba TB, Rokers B, Guillet K, Huk AC, Cormack LK. 2011. Three-dimensional motion aftereffects reveal distinct direction-selective mechanisms for binocular processing of motion through depth. J. Vis. 11:18
    [Google Scholar]
  30. Dakin CJ, Rosenberg A. 2018. Gravity estimation and verticality perception. Handb. Clin. Neurol. 159:43–59
    [Google Scholar]
  31. De Valois RL, Yund EW, Hepler N. 1982. The orientation and direction selectivity of cells in macaque visual cortex. Vis. Res. 22:531–44
    [Google Scholar]
  32. DeAngelis GC, Uka T. 2003. Coding of horizontal disparity and velocity by MT neurons in the alert macaque. J. Neurophysiol. 89:1094–111
    [Google Scholar]
  33. Desimone R, Albright TD, Gross CG, Bruce C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:2051–62
    [Google Scholar]
  34. Distler C, Boussaoud D, Desimone R, Ungerleider LG. 1993. Cortical connections of inferior temporal area TEO in macaque monkeys. J. Comp. Neurol. 334:125–50
    [Google Scholar]
  35. Doudlah R, Chang TY, Thompson LW, Kim B, Sunkara A, Rosenberg A 2022. Parallel processing, hierarchical transformations, and sensorimotor associations along the ‘where’ pathway. eLife 11:e78712
    [Google Scholar]
  36. Du Q, Ts'o D 2013. Responses in area V2 to disparity gradients: a role in 3D surface analysis Presented at the Society for Neuroscience 2013, Nov. 9–13 San Diego, CA:
  37. Durand JB, Nelissen K, Joly O, Wardak C, Todd JT et al. 2007. Anterior regions of monkey parietal cortex process visual 3D shape. Neuron 55:493–505
    [Google Scholar]
  38. Eifuku S, Wurtz RH. 1998. Response to motion in extrastriate area MSTl: center-surround interactions. J. Neurophysiol. 80:282–96
    [Google Scholar]
  39. Elmore LC, Rosenberg A, DeAngelis GC, Angelaki DE. 2019. Choice-related activity during visual slant discrimination in macaque CIP but not V3A. eNeuro 6:ENEURO.0248-18.2019
    [Google Scholar]
  40. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  41. Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE. 2011. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 15:146–54
    [Google Scholar]
  42. Fulvio JM, Ji M, Thompson LW, Rosenberg A, Rokers B. 2020. Cue-dependent effects of VR experience on motion-in-depth sensitivity. PLOS ONE 15:e0229929
    [Google Scholar]
  43. Galletti C, Battaglini PP. 1989. Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J. Neurosci. 9:1112–25
    [Google Scholar]
  44. Galletti C, Battaglini PP, Fattori P. 1990.. “ Real-motion” cells in area V3A of macaque visual cortex. Exp. Brain Res. 82:67–76
    [Google Scholar]
  45. Gaska JP, Jacobson LD, Pollen DA. 1987. Response suppression by extending sine-wave gratings within the receptive fields of neurons in visual cortical area V3A of the macaque monkey. Vis. Res. 27:1687–92
    [Google Scholar]
  46. Gaska JP, Jacobson LD, Pollen DA. 1988. Spatial and temporal frequency selectivity of neurons in visual cortical area V3A of the macaque monkey. Vis. Res. 28:1179–91
    [Google Scholar]
  47. Gibson JJ. 1947. Motion Picture Testing and Research Washington, DC: U.S. Gov. Print. Off.
  48. Greenwald HS, Knill DC. 2009. Orientation disparity: a cue for 3D orientation?. Neural Comput. 21:2581–604
    [Google Scholar]
  49. Harris JM, Wilcox LM. 2009. The role of monocularly visible regions in depth and surface perception. Vis. Res. 49:2666–85
    [Google Scholar]
  50. Hegdé J, Van Essen DC. 2005. Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity. J. Neurophysiol. 94:2856–66
    [Google Scholar]
  51. Hegdé J, Van Essen DC. 2007. A comparative study of shape representation in macaque visual areas v2 and v4. Cereb. Cortex 17:1100–16
    [Google Scholar]
  52. Héjja-Brichard Y, Rima S, Rapha E, Durand JB, Cottereau BR 2020. Stereomotion processing in the nonhuman primate brain. Cereb. Cortex 30:4528–43
    [Google Scholar]
  53. Held RT, Cooper EA, O'Brien JF, Banks MS. 2010. Using blur to affect perceived distance and size. ACM Trans. Graph. 29:19
    [Google Scholar]
  54. Henderson M, Vo V, Chunharas C, Sprague T, Serences J. 2019. Multivariate analysis of BOLD activation patterns recovers graded depth representations in human visual and parietal cortex. eNeuro 6:ENEURO.0362-18.2019
    [Google Scholar]
  55. Hillis JM, Watt SJ, Landy MS, Banks MS. 2004. Slant from texture and disparity cues: optimal cue combination. J. Vis. 4:967–92
    [Google Scholar]
  56. Hinkle DA, Connor CE. 2001. Disparity tuning in macaque area V4. Neuroreport 12:365–69
    [Google Scholar]
  57. Hinkle DA, Connor CE. 2002. Three-dimensional orientation tuning in macaque area V4. Nat. Neurosci. 5:665–70
    [Google Scholar]
  58. Howard IP, Rogers BJ. 1995. Binocular Vision and Stereopsis Oxford, UK: Oxford Univ. Press
  59. Humphrey GK, Khan SC. 1992. Recognizing novel views of three-dimensional objects. Can. J. Psychol. 46:170–90
    [Google Scholar]
  60. Ilg UJ, Schumann S, Thier P. 2004. Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron 43:145–51
    [Google Scholar]
  61. Janssen P, Verhoef BE, Premereur E. 2018. Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision. Cortex 98:218–27
    [Google Scholar]
  62. Janssen P, Vogels R, Liu Y, Orban GA. 2003. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron 37:693–701
    [Google Scholar]
  63. Janssen P, Vogels R, Orban GA. 1999. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. PNAS 96:8217–22
    [Google Scholar]
  64. Janssen P, Vogels R, Orban GA. 2000a. Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science 288:2054–56
    [Google Scholar]
  65. Janssen P, Vogels R, Orban GA. 2000b. Three-dimensional shape coding in inferior temporal cortex. Neuron 27:385–97
    [Google Scholar]
  66. Kim HR, Angelaki DE, DeAngelis GC. 2016. The neural basis of depth perception from motion parallax. Philos. Trans. R. Soc. Lond. B 371:0256
    [Google Scholar]
  67. Kim HR, Angelaki DE, DeAngelis GC 2022. A neural mechanism for detecting object motion during self-motion. eLife 11:e74971
    [Google Scholar]
  68. Knill DC. 1998. Surface orientation from texture: ideal observers, generic observers and the information content of texture cues. Vis. Res. 38:1655–82
    [Google Scholar]
  69. Knill DC, Richards W. 1996. Perception as Bayesian Inference Cambridge, UK: Cambridge Univ. Press
  70. Knill DC, Saunders JA. 2003. Do humans optimally integrate stereo and texture information for judgments of surface slant?. Vis. Res. 43:2539–58
    [Google Scholar]
  71. Kobatake E, Tanaka K. 1994. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71:856–67
    [Google Scholar]
  72. Koenderink JJ, van Doorn AJ 2004. Shape and shading. The Visual Neurosciences LM Chalupa, JS Werner 1090–105. Cambridge, MA: MIT Press
    [Google Scholar]
  73. Kornblith S, Cheng X, Ohayon S, Tsao DY. 2013. A network for scene processing in the macaque temporal lobe. Neuron 79:766–81
    [Google Scholar]
  74. Kotake Y, Morimoto H, Okazaki Y, Fujita I, Tamura H. 2009. Organization of color-selective neurons in macaque visual area V4. J. Neurophysiol. 102:15–27
    [Google Scholar]
  75. Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA. 1994. Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J. Neurophysiol. 71:1597–626
    [Google Scholar]
  76. Liu Y, Vogels R, Orban GA. 2004. Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex. J. Neurosci. 24:3795–800
    [Google Scholar]
  77. Longuet-Higgins HC, Prazdny K 1980. The interpretation of a moving retinal image. Proc. R. Soc. Lond. B 208:385–97
    [Google Scholar]
  78. Ma WJ, Beck JM, Latham PE, Pouget A. 2006. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9:1432–38
    [Google Scholar]
  79. Mather G. 1996. Image blur as a pictorial depth cue. Proc. R. Soc. Lond. B 263:169–72
    [Google Scholar]
  80. Maunsell JH, Van Essen DC. 1983. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49:1148–67
    [Google Scholar]
  81. Mishkin M, Ungerleider LG, Macko KA. 1983. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6:414–17
    [Google Scholar]
  82. Movshon JA, Adelson EH, Gizzi MS, Newsome WT 1985. The analysis of visual moving patterns. Pattern Recognition Mechanisms C Chagas, R Gattass, C Gross 117–51. Berlin: Springer
    [Google Scholar]
  83. Movshon JA, Newsome WT. 1996. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16:7733–41
    [Google Scholar]
  84. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H. 2000. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83:2580–601
    [Google Scholar]
  85. Mysore SG, Vogels R, Raiguel SE, Todd JT, Orban GA. 2010. The selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion. J. Neurosci. 30:15491–508
    [Google Scholar]
  86. Nadler JW, Angelaki DE, DeAngelis GC. 2008. A neural representation of depth from motion parallax in macaque visual cortex. Nature 452:642–45
    [Google Scholar]
  87. Nakamura H, Kuroda T, Wakita M, Kusunoki M, Kato A et al. 2001. From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. J. Neurosci. 21:8174–87
    [Google Scholar]
  88. Nakamura K, Colby CL. 2000. Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. J. Neurophysiol. 84:677–92
    [Google Scholar]
  89. Nakamura K, Colby CL. 2002. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. PNAS 99:4026–31
    [Google Scholar]
  90. Nakhla N, Korkian Y, Krause MR, Pack CC. 2021. Neural selectivity for visual motion in macaque area V3A. eNeuro 8:ENEURO.0383-20.2020
    [Google Scholar]
  91. Nguyenkim JD, DeAngelis GC. 2003. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. J. Neurosci. 23:7117–28
    [Google Scholar]
  92. Nover H, Anderson CH, DeAngelis GC. 2005. A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance. J. Neurosci. 25:10049–60
    [Google Scholar]
  93. Oliva A, Torralba A. 2007. The role of context in object recognition. Trends Cogn. Sci. 11:520–27
    [Google Scholar]
  94. Orban GA, Kennedy H, Bullier J. 1986. Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. J. Neurophysiol. 56:462–80
    [Google Scholar]
  95. Oruç I, Maloney LT, Landy MS. 2003. Weighted linear cue combination with possibly correlated error. Vis. Res. 43:2451–68
    [Google Scholar]
  96. Parker AJ. 2007. Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8:379–91
    [Google Scholar]
  97. Pasternak T, Tadin D. 2020. Linking neuronal direction selectivity to perceptual decisions about visual motion. Annu. Rev. Vis. Sci. 6:335–62
    [Google Scholar]
  98. Pasupathy A, Connor CE. 2001. Shape representation in area V4: position-specific tuning for boundary conformation. J. Neurophysiol. 86:2505–19
    [Google Scholar]
  99. Poggio GF, Talbot WH. 1981. Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey. J. Physiol. 315:469–92
    [Google Scholar]
  100. Pohl W. 1973. Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J. Comp. Physiol. Psychol. 82:227–39
    [Google Scholar]
  101. Premereur E, Janssen P. 2020. Effective connectivity reveals an interconnected inferotemporal network for three-dimensional structure processing. J. Neurosci. 40:8501–12
    [Google Scholar]
  102. Qamar AT, Cotton RJ, George RG, Beck JM, Prezhdo E et al. 2013. Trial-to-trial, uncertainty-based adjustment of decision boundaries in visual categorization. PNAS 110:20332–37
    [Google Scholar]
  103. Rogers BJ. 1993. Motion parallax and other dynamic cues for depth in humans. Rev. Oculomot. Res. 5:119–37
    [Google Scholar]
  104. Rokers B, Cormack LK, Huk AC. 2008. Strong percepts of motion through depth without strong percepts of position in depth. J. Vis. 8:6
    [Google Scholar]
  105. Rosenberg A, Angelaki DE. 2014a. Gravity influences the visual representation of object tilt in parietal cortex. J. Neurosci. 34:14170–80
    [Google Scholar]
  106. Rosenberg A, Angelaki DE. 2014b. Reliability-dependent contributions of visual orientation cues in parietal cortex. PNAS 111:18043–48
    [Google Scholar]
  107. Rosenberg A, Cowan NJ, Angelaki DE. 2013. The visual representation of 3D object orientation in parietal cortex. J. Neurosci. 33:19352–61
    [Google Scholar]
  108. Rosenberg A, Patterson JS, Angelaki DE. 2015. A computational perspective on autism. PNAS 112:9158–65
    [Google Scholar]
  109. Rosenberg A, Wallisch P, Bradley DC. 2008. Responses to direction and transparent motion stimuli in area FST of the macaque. Vis. Neurosci. 25:187–95
    [Google Scholar]
  110. Sabatini SP, Solari F. 2004. Emergence of motion-in-depth selectivity in the visual cortex through linear combination of binocular energy complex cells with different ocular dominance. Neurocomputing 58–60:865–72
    [Google Scholar]
  111. Saleem KS, Suzuki W, Tanaka K, Hashikawa T. 2000. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J. Neurosci. 20:5083–101
    [Google Scholar]
  112. Sanada TM, DeAngelis GC. 2014. Neural representation of motion-in-depth in area MT. J. Neurosci. 34:15508–21
    [Google Scholar]
  113. Sasaki R, Anzai A, Angelaki DE, DeAngelis GC. 2020. Flexible coding of object motion in multiple reference frames by parietal cortex neurons. Nat. Neurosci. 23:1004–15
    [Google Scholar]
  114. Sauvan XM, Peterhans E. 1999. Orientation constancy in neurons of monkey visual cortex. Vis. Cogn. 6:43–54
    [Google Scholar]
  115. Seilheimer RL, Rosenberg A, Angelaki DE. 2014. Models and processes of multisensory cue combination. Curr. Opin. Neurobiol. 25:38–46
    [Google Scholar]
  116. Sereno ME, Trinath T, Augath M, Logothetis NK. 2002. Three-dimensional shape representation in monkey cortex. Neuron 33:635–52
    [Google Scholar]
  117. Shimojo S, Nakayama K. 1990. Real world occlusion constraints and binocular rivalry. Vis. Res. 30:69–80
    [Google Scholar]
  118. Srinath R, Emonds A, Wang Q, Lempel AA, Dunn-Weiss E et al. 2021. Early emergence of solid shape coding in natural and deep network vision. Curr. Biol. 31:51–65.e5
    [Google Scholar]
  119. Srivastava S, Orban GA, De Mazière PA, Janssen P. 2009. A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse. J. Neurosci. 29:10613–26
    [Google Scholar]
  120. Stevens KA. 1981. The information content of texture gradients. Biol. Cybern. 42:95–105
    [Google Scholar]
  121. Sunkara A, DeAngelis GC, Angelaki DE 2015. Role of visual and non-visual cues in constructing a rotation-invariant representation of heading in parietal cortex. eLife 4:e04693
    [Google Scholar]
  122. Sunkara A, DeAngelis GC, Angelaki DE. 2016. Joint representation of translational and rotational components of optic flow in parietal cortex. PNAS 113:5077–82
    [Google Scholar]
  123. Tanabe S, Umeda K, Fujita I. 2004. Rejection of false matches for binocular correspondence in macaque visual cortical area V4. J. Neurosci. 24:8170–80
    [Google Scholar]
  124. Tanaka H, Uka T, Yoshiyama K, Kato M, Fujita I. 2001. Processing of shape defined by disparity in monkey inferior temporal cortex. J. Neurophysiol. 85:735–44
    [Google Scholar]
  125. Tanaka K, Sugita Y, Moriya M, Saito H. 1993. Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J. Neurophysiol. 69:128–42
    [Google Scholar]
  126. Theys T, Pani P, van Loon J, Goffin J, Janssen P. 2012. Selectivity for three-dimensional shape and grasping-related activity in the macaque ventral premotor cortex. J. Neurosci. 32:12038–50
    [Google Scholar]
  127. Thomas OM, Cumming BG, Parker AJ. 2002. A specialization for relative disparity in V2. Nat. Neurosci. 5:472–78
    [Google Scholar]
  128. Thompson LW, Ji M, Rokers B, Rosenberg A. 2019. Contributions of binocular and monocular cues to motion-in-depth perception. J. Vis. 19:2
    [Google Scholar]
  129. Thompson LW, Kim B, Rokers B, Rosenberg A. 2022. Hierarchical processing of 3D motion in macaque MT and FST Presented at the Society for Neuroscience 2022, Nov. 12–16 San Diego, CA:
  130. Thompson LW, Kim B, Zhu Z, Rokers B, Rosenberg A. 2021. Perspective cues make eye-specific contributions to 3D motion perception. J. Cogn. Neurosci. 34:192–208
    [Google Scholar]
  131. Todd JT, Mingolla E. 1983. Perception of surface curvature and direction of illumination from patterns of shading. J. Exp. Psychol. Hum. Percept. Perform. 9:583–95
    [Google Scholar]
  132. Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA et al. 2003. Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39:555–68
    [Google Scholar]
  133. Tsutsui K, Jiang M, Sakata H, Taira M. 2003. Short-term memory and perceptual decision for three-dimensional visual features in the caudal intraparietal sulcus (Area CIP). J. Neurosci. 23:5486–95
    [Google Scholar]
  134. Tsutsui K, Jiang M, Yara K, Sakata H, Taira M. 2001. Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. J. Neurophysiol. 86:2856–67
    [Google Scholar]
  135. Tsutsui K, Sakata H, Naganuma T, Taira M. 2002. Neural correlates for perception of 3D surface orientation from texture gradient. Science 298:409–12
    [Google Scholar]
  136. Umeda K, Tanabe S, Fujita I. 2007. Representation of stereoscopic depth based on relative disparity in macaque area V4. J. Neurophysiol. 98:241–52
    [Google Scholar]
  137. Ungerleider LG, Desimone R. 1986. Cortical connections of visual area MT in the macaque. J. Comp. Neurol. 248:190–222
    [Google Scholar]
  138. Ungerleider LG, Galkin TW, Desimone R, Gattass R. 2008. Cortical connections of area V4 in the macaque. Cereb. Cortex 18:477–99
    [Google Scholar]
  139. Uttal DH, Cohen CA. 2012. Spatial thinking and STEM education: when, why, and how?. The Psychology of Learning and Motivation B Ross 147–81. Amsterdam: Elsevier
    [Google Scholar]
  140. Van Dromme IC, Premereur E, Verhoef BE, Vanduffel W, Janssen P. 2016. Posterior parietal cortex drives inferotemporal activations during three-dimensional object vision. PLOS Biol. 14:e1002445
    [Google Scholar]
  141. Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RBH et al. 2001. Mapping visual cortex in monkeys and humans using surface-based atlases. Vis. Res. 41:1359–78
    [Google Scholar]
  142. Vaziri S, Carlson ET, Wang Z, Connor CE 2014. A channel for 3D environmental shape in anterior inferotemporal cortex. Neuron 84:55–62
    [Google Scholar]
  143. Vaziri S, Connor CE. 2016. Representation of gravity-aligned scene structure in ventral pathway visual cortex. Curr. Biol. 26:766–74
    [Google Scholar]
  144. Verhoef BE, Bohon KS, Conway BR. 2015. Functional architecture for disparity in macaque inferior temporal cortex and its relationship to the architecture for faces, color, scenes, and visual field. J. Neurosci. 35:6952–68
    [Google Scholar]
  145. Verhoef BE, Vogels R, Janssen P. 2010. Contribution of inferior temporal and posterior parietal activity to three-dimensional shape perception. Curr. Biol. 20:909–13
    [Google Scholar]
  146. Verhoef BE, Vogels R, Janssen P. 2012. Inferotemporal cortex subserves three-dimensional structure categorization. Neuron 73:171–82
    [Google Scholar]
  147. Verhoef BE, Vogels R, Janssen P. 2016. Binocular depth processing in the ventral visual pathway. Philos. Trans. R. Soc. Lond. B 371:20150259
    [Google Scholar]
  148. Webster MJ, Bachevalier J, Ungerleider LG. 1994. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex 4:470–83
    [Google Scholar]
  149. Yamane Y, Carlson ET, Bowman KC, Wang Z, Connor CE 2008. A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nat. Neurosci. 11:1352–60
    [Google Scholar]
  150. Yoshioka TW, Doi T, Abdolrahmani M, Fujita I 2021. Specialized contributions of mid-tier stages of dorsal and ventral pathways to stereoscopic processing in macaque. eLife 10:e58749
    [Google Scholar]
  151. Zeki SM. 1974. Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J. Physiol. 242:827–41
    [Google Scholar]
/content/journals/10.1146/annurev-vision-111022-123857
Loading
/content/journals/10.1146/annurev-vision-111022-123857
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error