1932

Abstract

In this review, I develop an empirically based model of optical image formation by the human eye, followed by neural sampling by retinal ganglion cells, to demonstrate the perceptual effects of blur, aliasing, and distortion of visual space in the brain. The optical model takes account of ocular aberrations and their variation across the visual field, in addition to variations of defocus due to variation of target vergence in three-dimensional scenes. Neural sampling by retinal ganglion cells with receptive field size and spacing that increases with eccentricity is used to visualize the neural image carried by the optic nerve to the brain. Anatomical parameters are derived from psychophysical studies of sampling-limited visual resolution of sinusoidal interference fringes. Retinotopic projection of the neural image onto brainstem nuclei reveals features of the neural image in a perceptually uniform brain space where location and size of visual objects may be measured by counting neurons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121219-081840
2020-09-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-121219-081840.html?itemId=/content/journals/10.1146/annurev-vision-121219-081840&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson RS, Evans DW, Thibos LN 1996. Effect of window size on detection acuity and resolution acuity for sinusoidal gratings in central and peripheral vision. J. Opt. Soc. Am. A 13:697–706
    [Google Scholar]
  2. Anderson RS, Thibos LN. 1999a. Relationship between acuity for gratings and for tumbling-E letters in peripheral vision. J. Opt. Soc. Am. A 16:2321–33
    [Google Scholar]
  3. Anderson RS, Thibos LN. 1999b. Sampling limits and critical bandwidth for letter discrimination in peripheral vision. J. Opt. Soc. Am. A 16:2334–42
    [Google Scholar]
  4. Anderson SJ, Drasdo N, Thompson CM 1995. Parvocellular neurons limit motion acuity in human peripheral vision. Proc. R. Soc. Lond. B 261:129–38
    [Google Scholar]
  5. Anderson SJ, Hess RF. 1990. Post-receptoral undersampling in normal human peripheral vision. Vis. Res. 30:1507–15
    [Google Scholar]
  6. Anderson SJ, Mullen KT, Hess RF 1991. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. J. Physiol. 442:47–64
    [Google Scholar]
  7. Artal P, Derrington AM, Colombo E 1995. Refraction, aliasing, and the absence of motion reversals in peripheral vision. Vis. Res. 35:939–47
    [Google Scholar]
  8. Bedggood P, Daaboul M, Ashman R, Smith G, Metha A 2008. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. J. Biomed. Opt. 13:024008
    [Google Scholar]
  9. Bergmann C. 1857. Anatomisches und Physiologisches uber die Netzhaut des Auges. Z. Ration. Med. 2:83–108
    [Google Scholar]
  10. Boycott BB, Wassle H. 1974. The morphological types of ganglion cells of the domestic cat's retina. J. Physiol. 240:397–419
    [Google Scholar]
  11. Burge J, Geisler WS. 2011. Optimal defocus estimation in individual natural images. PNAS 108:16849–54
    [Google Scholar]
  12. Cannon MW. 1985. Perceived contrast in the fovea and periphery. J. Opt. Soc. Am. A 2:1760–68
    [Google Scholar]
  13. Cheng H, Barnett JK, Vilupuru AS, Marsack JD, Kasthurirangan S et al. 2004. A population study on changes in wave aberrations with accommodation. J. Vis. 4:272–80
    [Google Scholar]
  14. Cheng X, Himebaugh NL, Kollbaum PS, Thibos LN, Bradley A 2004. Test-retest reliability of clinical Shack-Hartmann measurements. Investig. Ophthalmol. Vis. Sci. 45:351–60
    [Google Scholar]
  15. Chessa M, Maiello G, Bex PJ, Solari F 2016. A space-variant model for motion interpretation across the visual field. J. Vis. 16:12
    [Google Scholar]
  16. Coletta NJ, Williams DR. 1987. Psychophysical estimate of extrafoveal cone spacing. J. Opt. Soc. Am. A 4:1503–13
    [Google Scholar]
  17. Coletta NJ, Williams DR, Tiana CLM 1990. Consequences of spatial sampling for human motion perception. Vis. Res. 30:1631–48
    [Google Scholar]
  18. Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:5–25
    [Google Scholar]
  19. Dacey DM. 1993. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13:5334–55
    [Google Scholar]
  20. Drasdo N, Millican CL, Katholi CR, Curcio CA 2007. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vis. Res. 47:2901–11
    [Google Scholar]
  21. D'Zmura M. 1996. Bergmann on visual resolution. Perception 25:1223–34
    [Google Scholar]
  22. Enroth-Cugell C, Robson JG. 1966. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–52
    [Google Scholar]
  23. Evans DW, Wang Y, Haggerty KM, Thibos LN 2010. Effect of sampling array irregularity and window size on the discrimination of sampled gratings. Vis. Res. 50:20–30
    [Google Scholar]
  24. Famiglietti EV Jr., Kolb H. 1976. Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science 194:193–95
    [Google Scholar]
  25. Flitcroft DI. 2012. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog. Retin. Eye Res. 31:622–60
    [Google Scholar]
  26. Galvin SJ, Williams DR. 1992. No aliasing at edges in normal viewing. Vis. Res. 32:2251–59
    [Google Scholar]
  27. Galvin SJ, Williams DR, Coletta NJ 1996. The spatial grain of motion perception in human peripheral vision. Vis. Res. 36:2283–95
    [Google Scholar]
  28. Goodman JW. 2005. Introduction to Fourier Optics Greenwood Village, CO: Roberts & Co.
  29. Held RT, Cooper EA, O'Brien JF, Banks MS 2010. Using blur to affect perceived distance and size. ACM Trans. Graph. 29:19
    [Google Scholar]
  30. Kay JN, Chu MW, Sanes JR 2012. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483:465–69
    [Google Scholar]
  31. Kolb H, Linberg KA, Fisher S 1992. Neurons of the human retina: a Golgi study. J. Comp. Neurol. 318:147–87
    [Google Scholar]
  32. Leventhal AG, Schall JD. 1983. Structural basis of orientation sensitivity of cat retinal ganglion cells. J. Comp. Neurol. 220:465–75
    [Google Scholar]
  33. Levick WR, Thibos LN. 1982. Analysis of orientation bias in cat retina. J. Physiol. 329:243–61
    [Google Scholar]
  34. Liu T, Thibos LN. 2019. Customized models of ocular aberrations across the visual field during accommodation. J. Vis. 19:13
    [Google Scholar]
  35. Livingstone M, Hubel D. 1988. Do the relative mapping densities of the magno-parvocellular systems vary with eccentricity. J. Neurosci. 8:4334–39
    [Google Scholar]
  36. Martinez LM, Molano-Mazon M, Wang X, Sommer FT, Hirsch JA 2014. Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron 81:943–56
    [Google Scholar]
  37. Mastronarde DN, Thibeault MA, Dubin MW 1984. Non-uniform postnatal growth of the cat retina. J. Comp. Neurol. 228:598–608
    [Google Scholar]
  38. Mather G. 1996. Image blur as a pictorial depth cue. Proc. Biol. Sci. 263:169–72
    [Google Scholar]
  39. Nowakowski M, Sheehan M, Neal D, Goncharov AV 2012. Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye. Biomed. Opt. Express 3:240–58
    [Google Scholar]
  40. Pelli DG. 2008. Crowding: a cortical constraint on object recognition. Curr. Opin. Neurobiol. 18:445–51
    [Google Scholar]
  41. Perry VH, Oehler R, Cowey A 1984. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12:1101–23
    [Google Scholar]
  42. Reese BE, Galli-Resta L. 2002. The role of tangential dispersion in retinal mosaic formation. Prog. Retin. Eye Res. 21:153–68
    [Google Scholar]
  43. Robson JG. 1966. Spatial and temporal contrast-sensitivity functions of the visual system. J. Opt. Soc. Am. 56:1141–42
    [Google Scholar]
  44. Rodieck RW. 1998. The First Steps in Seeing Sunderland, MA: Sinauer Assoc.
  45. Rodieck RW, Binmoeller KF, Dineen J 1985. Parasol and midget ganglion cells of the human retina. J. Comp. Neurol. 233:115–32
    [Google Scholar]
  46. Rosen R, Lundstrom L, Unsbo P 2011. Influence of optical defocus on peripheral vision. Investig. Ophthalmol. Vis. Sci. 52:318–23
    [Google Scholar]
  47. Rosenholtz R. 2016. Capabilities and limitations of peripheral vision. Annu. Rev. Vis. Sci. 2:437–57
    [Google Scholar]
  48. Ross HE, Murray DJ. 1996. E.H. Weber on the Tactile Senses. Hove, UK: Taylor & Francis
  49. Rossi EA, Roorda A. 2010. The relationship between visual resolution and cone spacing in the human fovea. Nat. Neurosci. 13:156–57
    [Google Scholar]
  50. Schall JD, Perry VH, Leventhal AG 1986. Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially. Brain Res 368:18–23
    [Google Scholar]
  51. Schneider KA, Richter MC, Kastner S 2004. Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J. Neurosci. 24:8975–85
    [Google Scholar]
  52. Schwartz EL. 1977. Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol. Cybern. 25:181–94
    [Google Scholar]
  53. Schwartz EL. 1980. Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vis. Res. 20:645–69
    [Google Scholar]
  54. Shannon CE. 1949. Communication in the presence of noise. Proc. I.R.E. 37:10–21
    [Google Scholar]
  55. Smith EL 3rd 2011. Prentice Award Lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom. Vis. Sci. 88:1029–44
    [Google Scholar]
  56. Smith RA, Cass PF. 1987. Aliasing in the parafovea with incoherent light. J. Opt. Soc. Am. A 4:1530–34
    [Google Scholar]
  57. Snyder AW, Bossomaier TRJ, Hughes A 1986. Optical image quality and the cone mosaic. Science 231:499–501
    [Google Scholar]
  58. Thibos LN. 2000. Formation and sampling of the retinal image. Seeing. Handbook of Perception and Cognition K De Valois 1–54 London: Academic
    [Google Scholar]
  59. Thibos LN, Bradley A. 1995. Modeling off-axis vision—II: the effect of spatial filtering and sampling by retinal neurons. Vision Models for Target Detection and Recognition E Peli 338–79 Singapore: World Sci. Press
    [Google Scholar]
  60. Thibos LN, Bradley A, Liu T, Lopez-Gil N 2013. Spherical aberration and the sign of defocus. Optom. Vis. Sci. 90:1284–91
    [Google Scholar]
  61. Thibos LN, Bradley A, Xu R, Lopez-Gil N 2019. Ricco's law and absolute threshold for foveal detection of black holes. J. Opt. Soc. Am. A 36:B35–43
    [Google Scholar]
  62. Thibos LN, Cheney FE, Walsh DJ 1987a. Retinal limits to the detection and resolution of gratings. J. Opt. Soc. Am. A 4:1524–29
    [Google Scholar]
  63. Thibos LN, Still DL, Bradley A 1996. Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vis. Res. 36:249–58
    [Google Scholar]
  64. Thibos LN, Walsh DJ, Cheney FE 1987b. Vision beyond the resolution limit: aliasing in the periphery. Vis. Res. 27:2193–97
    [Google Scholar]
  65. Torralba A. 2009. How many pixels make an image. Vis. Neurosci. 26:123–31
    [Google Scholar]
  66. Tuten WS, Cooper RF, Tiruveedhula P, Dubra A, Roorda A et al. 2018. Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect. J. Vis. 18:6
    [Google Scholar]
  67. Wang YZ, Bradley A, Thibos LN 1997a. Aliased frequencies enable the discrimination of compound gratings in peripheral vision. Vis. Res. 37:283–90
    [Google Scholar]
  68. Wang YZ, Bradley A, Thibos LN 1997b. Interaction between sub- and supra-Nyquist spatial frequencies in peripheral vision. Vis. Res. 37:2545–52
    [Google Scholar]
  69. Wang YZ, Thibos LN, Bradley A 1996. Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision. Vis. Res. 36:1737–44
    [Google Scholar]
  70. Wassle H, Grunert U, Rohrenbeck J, Boycott BB 1990. Retinal ganglion cell density and cortical magnification factor in the primate. Vis. Res. 30:1897–911
    [Google Scholar]
  71. Wassle H, Peichl L, Boycott BB 1981. Dendritic territories of cat retinal ganglion cells. Nature 292:344–45
    [Google Scholar]
  72. Wassle H, Peichl L, Boycott BB 1983. Mosaics and territories of cat retinal ganglion cells. Prog. Brain Res. 58:183–90
    [Google Scholar]
  73. Wassle H, Riemann HJ. 1978. The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B 200:441–61
    [Google Scholar]
  74. Watanabe M, Rodieck RW. 1989. Parasol and midget ganglion cells of the primate retina. J. Comp. Neurol. 289:434–54
    [Google Scholar]
  75. Watt SJ, Akeley K, Ernst MO, Banks MS 2005. Focus cues affect perceived depth. J. Vis. 5:834–62
    [Google Scholar]
  76. Weber EH. 1846. Tastsinn und Gemeingefuhl. Handworterbuch der Physiologie R Wagner 481–588 Brunswick, Ger.: Vieweg
    [Google Scholar]
  77. Werblin FS, Dowling JE. 1969. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32:339–55
    [Google Scholar]
  78. Wilkinson MO, Anderson RS, Bradley A, Thibos LN 2016. Neural bandwidth of veridical perception across the visual field. J. Vis. 16:1
    [Google Scholar]
  79. Williams DR, Coletta NJ. 1987. Cone spacing and the visual resolution limit. J. Opt. Soc. Am. A 4:1514–23
    [Google Scholar]
  80. Wilson BJ, Decker KE, Roorda A 2002. Monochromatic aberrations provide an odd-error cue to focus direction. J. Opt. Soc. Am. A 19:833–39
    [Google Scholar]
/content/journals/10.1146/annurev-vision-121219-081840
Loading
/content/journals/10.1146/annurev-vision-121219-081840
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error