1932

Abstract

▪ Abstract 

High-resolution structures of ribosomal complexes revealed that minute amounts of clinically relevant antibiotics hamper protein biosynthesis by limiting ribosomal mobility or perturbing its elaborate architecture, designed for navigating and controlling peptide bond formation and continuous amino acid polymerization. To accomplish this, the ribosome contributes positional rather than chemical catalysis, provides remote interactions governing accurate substrate alignment within the flexible peptidyl-transferase center (PTC) pocket, and ensures nascent-protein chirality through spatial limitations. Peptide bond formation is concurrent with aminoacylated-tRNA 3′ end translocation and is performed by a rotatory motion around the axis of a sizable ribosomal symmetry-related region, which is located around the PTC in all known crystal structures. Guided by ribosomal-RNA scaffold along an exact pattern, the rotatory motion results in stereochemistry that is optimal for peptide bond formation and for nascent protein entrance into the exit tunnel, the main target of antibiotics targeting ribosomes. By connecting the PTC, the decoding center, and the tRNA entrance and exit regions, the symmetry-related region can transfer intraribosomal signals, guaranteeing smooth processivity of amino acid polymerization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.58.030603.123822
2004-10-13
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mi/58/1/annurev.micro.58.030603.123822.html?itemId=/content/journals/10.1146/annurev.micro.58.030603.123822&mimeType=html&fmt=ahah

Literature Cited

  1. Agmon I, Amit M, Auerbach T, Bashan A, Baram D. et al. 2004. Ribosomal crystallography: A flexible nucleotide anchoring tRNA translocation facilitates peptide bond formation, chirality discrimination and antibiotics synergism. FEBS Lett. 567:20–26 [Google Scholar]
  2. Agmon I, Auerbach T, Baram D, Bartels H, Bashan A. et al. 2003. On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Eur. J. Biochem. 270:2543–56 [Google Scholar]
  3. Auerbach T, Bashan A, Harms J, Schluenzen F, Zarivach R. et al. 2002. Antibiotics targeting ribosomes: crystallographic studies. Curr. Drug. Targets Infect. Disord. 2:169–86 [Google Scholar]
  4. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20 [Google Scholar]
  5. Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J. et al. 2003. Structural basis for a unified machinery of peptide bond formation, translocation and nascent chain progression. Mol. Cell 11:91–102 [Google Scholar]
  6. Bashan A, Zarivach R, Schluenzen F, Agmon I, Harms J. et al. 2003. Ribosomal crystallography: peptide bond formation and its inhibition. Biopolymers 70:19–41 [Google Scholar]
  7. Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HAS. et al. 2003. Structural insight into the antibiotic action of telithromycin on resistant mutants. J. Bacteriol. 185:4276–79 [Google Scholar]
  8. Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T. et al. 2003. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Biol. 10:366–70 [Google Scholar]
  9. Biou V, Shu F, Ramakrishnan V. 1995. X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 14:4056–64 [Google Scholar]
  10. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–54 [Google Scholar]
  11. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48 [Google Scholar]
  12. Dallas A, Noller HF. 2001. Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol. Cell 8:855–64 [Google Scholar]
  13. Davydova N, Streltsov V, Wilce M, Liljas A, Garber M. 2002. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J. Mol. Biol. 322:635–44 [Google Scholar]
  14. Dedkova LM, Fahmi NE, Golovine SY, Hecht SM. 2003. Enhanced D-amino acid incorporation into protein by modified ribosomes. J. Am. Chem. Soc. 125:6616–17 [Google Scholar]
  15. Douthwaite S, Hansen LH, Mauvais P. 2000. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol. Microbiol. 36:183–93 [Google Scholar]
  16. Frank J, Zhu J, Penczek P, Li Y, Srivastava S. et al. 1995. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441–44 [Google Scholar]
  17. Gabashvili IS, Agrawal RK, Grassucci R, Squires CL, Dahlberg AE, Frank J. 1999. Major rearrangements in the 70S ribosomal 3D structure caused by a conformational switch in 16S ribosomal RNA. EMBO J. 18:6501–7 [Google Scholar]
  18. Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M. et al. 2001. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol. Cell 8:181–88 [Google Scholar]
  19. Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F. 1995. 1H and 15N resonance assignments and structure of the N-terminal domain of Escherichia coli initiation factor 3. Eur. J. Biochem. 228:395–402 [Google Scholar]
  20. Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F. 1995. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome J. Mol. Biol. 254:247–59 [Google Scholar]
  21. Gong F, Yanofsky C. 2002. Instruction of translating ribosome by nascent peptide. Science 297:1864–67 [Google Scholar]
  22. Green R, Noller HF. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66:679–716 [Google Scholar]
  23. Gualerzi CO, Pon CL. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881–89 [Google Scholar]
  24. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. 2002. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10:117–28 [Google Scholar]
  25. Hansen JL, Moore PB, Steitz TA. 2003. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330:1061–75 [Google Scholar]
  26. Hansen JL, Schmeing TM, Moore PB, Steitz TA. 2002. Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99:11670–75 [Google Scholar]
  27. Harms J, Schlunzen F, Fucini P, Bartels H, Yonath A. 2004. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Struct. Biol. 2:4 [Google Scholar]
  28. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. et al. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–88 [Google Scholar]
  29. Izard T, Ellis J. 2000. The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism. EMBO J. 19:2690–700 [Google Scholar]
  30. Jenni S, Ban N. 2003. The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr. Opin. Struct. Biol. 13:212–19 [Google Scholar]
  31. Katunin V, Muth G, Strobel S, Wintermeyer W, Rodnina M. 2002. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10:339–46 [Google Scholar]
  32. Kim DF, Green R. 1999. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4:859–64 [Google Scholar]
  33. Kurzchalia TV, Wiedmann M, Breter H, Zimmermann W, Bauschke E, Rapoport TA. 1988. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products Eur. J. Biochem. 172:663–68 [Google Scholar]
  34. Lazaro E, Rodriguez-Fonseca C, Porse B, Urena D, Garrett RA, Ballesta JP. 1996. A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23 S rRNA. J. Mol. Biol. 261:231–38 [Google Scholar]
  35. Liao S, Lin J, Do H, Johnson AE. 1997. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90:31–41 [Google Scholar]
  36. Makowski I, Frolow F, Saper MA, Shoham M, Wittmann HG, Yonath A. x 1987. Single crystals of large ribosomal particles from Halobacterium marismortui diffract to 6 Å. J. Mol. Biol. 193:819–22 [Google Scholar]
  37. Malkin LI, Rich A. 1967. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26:329–46 [Google Scholar]
  38. Mankin AS, Garrett RA. 1991. Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium. J. Bacteriol. 173:3559–63 [Google Scholar]
  39. McCutcheon JP, Agrawal RK, Philips SM, Grassucci RA, Gerchman SE. et al. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96:4301–6 [Google Scholar]
  40. Milligan RA, Unwin PN. 1986. Location of exit channel for nascent protein in 80S ribosome. Nature 319:693–95 [Google Scholar]
  41. Moazed D, Noller HF. 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochemie 69:879–84 [Google Scholar]
  42. Moazed D, Noller HF. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142–48 [Google Scholar]
  43. Moore PB, Steitz TA. 2003. After the ribosome structures: How does peptidyl transferase work. RNA 9:155–59 [Google Scholar]
  44. Morris DR, Geballe AP. 2000. Upstream open reading frames as regulators of mRNA translation. Mol. Cell Biol. 20:8635–42 [Google Scholar]
  45. Nakatogawa H, Ito K. 2002. The ribosomal exit tunnel functions as a discriminating gate. Cell 108:629–36 [Google Scholar]
  46. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30 [Google Scholar]
  47. Petrelli D, Garofalo C, Lammi M, Spurio R, Pon CL. et al. 2003. Mapping the active sites of bacterial translation initiation factor IF3. J. Mol. Biol. 331:541–56 [Google Scholar]
  48. Pioletti M, Schluenzen F, Harms J, Zarivach R, Gluehmann M. et al. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20:1829–39 [Google Scholar]
  49. Polacek N, Gomez MJ, Ito K, Xiong L, Nakamura Y, Mankin A. 2003. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell 11:103–12 [Google Scholar]
  50. Porse BT, Kirillov SV, Awayez MJ, Ottenheijm HC, Garrett RA. 1999. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes. Proc. Natl. Acad. Sci. USA 96:9003–8 [Google Scholar]
  51. Ramakrishnan V. 2002. Ribosome structure and the mechanism of translation. Cell 108:557–72 [Google Scholar]
  52. Rodnina MV, Wintermeyer W. 2001. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 26:124–30 [Google Scholar]
  53. Rodriguez-Fonseca C, Amils R, Garrett RA. 1995. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J. Mol. Biol. 247:224–35 [Google Scholar]
  54. Sabatini DD, Blobel G. 1970. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes J. Cell Biol. 45:146–57 [Google Scholar]
  55. Sarker S, Rudd KE, Oliver D. 2000. Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J. Bacteriol. 182:5592–95 [Google Scholar]
  56. Schluenzen F, Harms JM, Franceschi F, Hansen HA, Bartels H. et al. 2003. Structural basis for the antibiotic activity of ketolides and azalides. Structure 11:329–38 [Google Scholar]
  57. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M. et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615–23 [Google Scholar]
  58. Schluenzen F, Zarivach R, Harms J, Bashan A, Tocilj A. et al. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–21 [Google Scholar]
  59. Schmeing TM, Seila AC, Hansen JL, Freeborn B, Soukup JK. et al. 2002. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat. Struct. Biol. 9:225–30 [Google Scholar]
  60. Shaw WV, Leslie AG. 1991. Chloramphenicol acetyltransferase. Annu. Rev. Biophys. Biophys. Chem. 20:363–86 [Google Scholar]
  61. Shevack A, Gewitz HS, Hennemann B, Yonath A, Wittmann HG. 1985. Characterization and crystallization of ribosomal particles from Halobacterium marismortui. FEBS Lett. 184:68–71 [Google Scholar]
  62. Spahn CM, Prescott CD. 1996. Throwing a spanner in the works: antibiotics and the translation apparatus. J. Mol. Med. 74:423–39 [Google Scholar]
  63. Srivastava S, Verschoor A, Frank J. 1992. Eukaryotic initiation factor 3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J. Mol. Biol. 226:301–4 [Google Scholar]
  64. Stark H, Mueller F, Orlova EV, Schatz M, Dube P. et al. 1995. The 70S Escherichia coli ribosome at 23 Å resolution: fitting the ribosomal RNA. Structure 3:815–21 [Google Scholar]
  65. Stark H, Orlova EV, Rinke-Appel J, Junke N, Mueller F. et al. 1997. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88:19–28 [Google Scholar]
  66. Stroud RM, Walter P. 1999. Signal sequence recognition and protein targeting. Curr. Opin. Struct. Biol. 9:754–59 [Google Scholar]
  67. Tan GT, DeBlasio A, Mankin AS. 1996. Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. J. Mol. Biol. 261:222–30 [Google Scholar]
  68. Tenson T, Ehrenberg M. 2002. Regulatory nascent peptides in the ribosomal tunnel. Cell 108:591–94 [Google Scholar]
  69. Traut RR, Monro RE. 1964. The puromycin reaction and its relationship to protein synthesis. J. Mol. Biol. 10:63–72 [Google Scholar]
  70. Unge J, Berg A, Al-Kharadaghi S, Nikulin A, Nikonov S. et al. 1998. The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. Structure 6:1577–86 [Google Scholar]
  71. Valle M, Zavialov A, Li W, Stagg SM, Sengupta J. et al. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10:899–906 [Google Scholar]
  72. Vester B, Douthwaite S. 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45:1–12 [Google Scholar]
  73. Vester B, Garrett RA. 1988. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. EMBO J. 7:3577–87 [Google Scholar]
  74. von Bohlen K, Makowski I, Hansen HA, Bartels H, Berkovitch-Yellin Z. et al. 1991. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J. Mol. Biol. 222:11–15 [Google Scholar]
  75. Weisblum B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39:577–85 [Google Scholar]
  76. Deleted in proof
  77. Wilson KS, Noller HF. 1998. Molecular movement inside the translational engine. Cell 92:337–49 [Google Scholar]
  78. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39 [Google Scholar]
  79. Yonath A. 2002. The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. Annu. Rev. Biophys. Biomol. Struct. 31:257–73 [Google Scholar]
  80. Yonath A. 2003. Structural insight into functional aspects of ribosomal RNA targeting. ChemBioChem 4:1008–17 [Google Scholar]
  81. Yonath A. 2003. Ribosomal tolerance and peptide bond formation. Biol. Chem. 384:1411–19 [Google Scholar]
  82. Yonath A, Glotz C, Gewitz HS, Bartels KS, von Bohlen K. et al. 1988. Characterization of crystals of small ribosomal subunits. J. Mol. Biol. 203:831–34 [Google Scholar]
  83. Yonath A, Leonard KR, Wittmann HG. 1987. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236:813–16 [Google Scholar]
  84. Yonath A, Muessig J, Tesche B, Lorenz S, Erdmann VA, Wittmann HG. 1980. Crystallization of the large ribosomal subunit from B. stearothermophilus. Biochem. Int. 1:315–428 [Google Scholar]
  85. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–96 [Google Scholar]
  86. Zarivach R, Bashan A, Berisio R, Harms J, Auerbach T. et al. 2004. Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J. Phys. Org. Chem. 17:1–11 [Google Scholar]
  87. Woolhead CA, McCormick PJ, Johnson AE. 2004. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725–36 [Google Scholar]
/content/journals/10.1146/annurev.micro.58.030603.123822
Loading
/content/journals/10.1146/annurev.micro.58.030603.123822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error