1932

Abstract

Development of assisted reproductive technologies has been driven by the goals of reducing the incidence of infertility, increasing the number of offspring from genetically elite animals, facilitating genetic manipulation, aiding preservation and long-distance movement of germplasm, and generating research material. Superovulation is associated with reduced fertilization rate and alterations in endometrial function. In vitro production of embryos can have a variety of consequences. Most embryos produced in vitro are capable of establishing pregnancy and developing into healthy neonatal animals. However, in vitro production is associated with reduced ability to develop to the blastocyst stage, increased incidence of failure to establish pregnancy, placental dysfunction, and altered fetal development. Changes in the developmental program mean that some consequences of being produced in vitro can extend into adult life. Reduced competence of the embryo produced in vitro to develop to the blastocyst stage is caused largely by disruption of events during oocyte maturation and fertilization. Conditions during embryo culture can affect embryo freezability and competence to establish pregnancy after transfer. Culture conditions, including actions of embryokines, can also affect the postnatal phenotype of the resultant progeny.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-084010
2020-02-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-084010.html?itemId=/content/journals/10.1146/annurev-animal-021419-084010&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ivanoff EI. 1922. On the use of artificial insemination for zootechnical purposes in Russia. J. Agric. Sci. 12:244–56
    [Google Scholar]
  2. 2. 
    Betteridge K. 1981. An historical look at embryo transfer. J. Reprod. Fertil. 62:1–13
    [Google Scholar]
  3. 3. 
    Polge C, Smith AU, Parkes AS 1949. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666
    [Google Scholar]
  4. 4. 
    Johnson LA, Flook JP, Hawk HW 1989. Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol. Reprod. 41:199–203
    [Google Scholar]
  5. 5. 
    Steptoe PC, Edwards RG. 1978. Birth after the reimplantation of a human embryo. Lancet 2:8085366
    [Google Scholar]
  6. 6. 
    Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA 1982. Normal development following in vitro fertilization in the cow. Biol. Reprod. 27:147–58
    [Google Scholar]
  7. 7. 
    Iritani A, Utsumi K, Miyake M, Hosoi Y, Saeki K 1988. In vitro fertilization by a routine method and by micromanipulation. Ann. N. Y. Acad. Sci. 541:583–90
    [Google Scholar]
  8. 8. 
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–13
    [Google Scholar]
  9. 9. 
    Hendriks S, Dancet EA, van Pelt AM, Hamer G, Repping S 2015. Artificial gametes: a systematic review of biological progress towards clinical application. Hum. Reprod. Update 21:285–96
    [Google Scholar]
  10. 10. 
    Kono T, Obata Y, Wu Q, Niwa K, Ono Y et al. 2004. Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–64
    [Google Scholar]
  11. 11. 
    Block J, Bonilla L, Hansen PJ 2009. Effect of addition of hyaluronan to embryo culture medium on survival of bovine embryos in vitro following vitrification and establishment of pregnancy after transfer to recipients. Theriogenology 71:1063–71
    [Google Scholar]
  12. 12. 
    Reindollar RH, Goldman MB. 2012. Gonadotropin therapy: a 20th century relic. Fertil. Steril. 97:813–18
    [Google Scholar]
  13. 13. 
    Luo C, Zuñiga J, Edison E, Palla S, Dong W, Parker-Thornburg J 2011. Superovulation strategies for 6 commonly used mouse strains. J. Am. Assoc. Lab. Anim. Sci. 50:471–78
    [Google Scholar]
  14. 14. 
    Lensen SF, Wilkinson J, Leijdekkers JA, La Marca A, Mol BWJ et al. 2018. Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database Syst. Rev. 2018:2CD012693 https://doi.org/10.1002/14651858.CD012693.pub2
    [Crossref] [Google Scholar]
  15. 15. 
    Putney DJ, Thatcher WW, Drost M, Wright JM, DeLorenzo MA 1988. Influence of environmental temperature on reproductive performance of bovine embryo donors and recipients in the southwest region of the United States. Theriogenology 30:905–22
    [Google Scholar]
  16. 16. 
    Ferraz PA, Burnley C, Karanja J, Viera-Neto A, Santos JE et al. 2016. Factors affecting the success of a large embryo transfer program in Holstein cattle in a commercial herd in the southeast region of the United States. Theriogenology 86:1834–41 https://doi.org/10.1016/j.theriogenology.2016.05.032
    [Crossref] [Google Scholar]
  17. 17. 
    Hasegawa A, Mochida K, Inoue H, Noda Y, Endo T et al. 2016. High-yield superovulation in adult mice by anti-inhibin serum treatment combined with estrous cycle synchronization. Biol. Reprod. 94: 21: https://doi.org/10.1095/biolreprod.115.134023
    [Crossref] [Google Scholar]
  18. 18. 
    Sartori R, Bastos MR, Wiltbank MC 2010. Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reprod. Fertil. Dev. 22:151–58 https://doi.org/10.1071/RD09221
    [Crossref] [Google Scholar]
  19. 19. 
    Lee ST, Kim TM, Cho MY, Moon SY, Han JY, Lim JM 2005. Development of a hamster superovulation program and adverse effects of gonadotropins on microfilament formation during oocyte development. Fertil. Steril. 83:Suppl. 11264–74
    [Google Scholar]
  20. 20. 
    Hawk HW, Cooper BS, Conley HH 1987. Inhibition of sperm transport and fertilization in superovulating ewes. Theriogenology 28:139–53
    [Google Scholar]
  21. 21. 
    Carney EW, Foote RH. 1990. Effects of superovulation, embryo recovery, culture system and embryo transfer on development of rabbit embryos in vivo and in vitro. J. Reprod. Fertil. 89:543–51
    [Google Scholar]
  22. 22. 
    Luo C, Zuñiga J, Edison E, Palla S, Dong W, Parker-Thornburg J 2011. Superovulation strategies for 6 commonly used mouse strains. J. Am. Assoc. Lab. Anim. Sci. 50:471–78
    [Google Scholar]
  23. 23. 
    Desantis S, Accogli G, Silvestre F, Binetti F, Caira M, Lacalandra GM 2015. Modifications of carbohydrate residues in the sheep oviductal ampulla after superovulation. Theriogenology 83:943–52
    [Google Scholar]
  24. 24. 
    Małysz-Cymborska I, Andronowska A. 2014. Expression of the vascular endothelial growth factor receptor system in porcine oviducts after induction of ovulation and superovulation. Domest. Anim. Endocrinol. 49:86–95
    [Google Scholar]
  25. 25. 
    Taiyeb AM, Muhsen-Alanssari SA, Dees WL, Ridha-Albarzanchi MT, Kraemer DC 2015. Improvement in in vitro fertilization outcome following in vivo synchronization of oocyte maturation in mice. Exp. Biol. Med. 240:519–26 https://doi.org/10.1177/1535370214549533
    [Crossref] [Google Scholar]
  26. 26. 
    Gras L, McBain J, Trounson A, Kola I 1992. The incidence of chromosomal aneuploidy in stimulated and unstimulated (natural) uninseminated human oocytes. Hum. Reprod. 7:1396–401
    [Google Scholar]
  27. 27. 
    Wang Y, Ock SA, Chian RC 2006. Effect of gonadotrophin stimulation on mouse oocyte quality and subsequent embryonic development in vitro. Reprod. Biomed. Online 12:304–14
    [Google Scholar]
  28. 28. 
    Tarín JJ, Pérez-Albalá S, Cano A 2002. Stage of the estrous cycle at the time of pregnant mare's serum gonadotropin injection affects the quality of ovulated oocytes in the mouse. Mol. Reprod. Dev. 61:398–405
    [Google Scholar]
  29. 29. 
    Cortell C, Salvetti P, Joly T, Viudes-de-Castro MP 2015. Effect of different superovulation stimulation protocols on adenosine triphosphate concentration in rabbit oocytes. Zygote 23:507–13 https://doi.org/10.1017/S0967199414000112
    [Crossref] [Google Scholar]
  30. 30. 
    Huffman SR, Pak Y, Rivera RM 2015. Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol. Reprod. Dev. 82:207–17 https://doi.org/10.1002/mrd.22463
    [Crossref] [Google Scholar]
  31. 31. 
    Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T 2007. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum. Reprod. 22:26–35
    [Google Scholar]
  32. 32. 
    Dias FC, Dadarwal D, Adams GP, Mrigank H, Mapletoft RJ, Singh J 2013. Length of the follicular growing phase and oocyte competence in beef heifers. Theriogenology 79:1177–83 e1. https://doi.org/10.1016/j.theriogenology.2013.02.016
    [Crossref] [Google Scholar]
  33. 33. 
    Ertzeid G, Storeng R. 1992. Adverse effects of gonadotrophin treatment on pre- and postimplantation development in mice. J. Reprod. Fertil. 96:649–55
    [Google Scholar]
  34. 34. 
    Van der Auwera I, D'Hooghe T 2001. Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 16:1237–43
    [Google Scholar]
  35. 35. 
    Gad A, Besenfelder U, Rings F, Ghanem N, Salilew-Wondim D et al. 2011. Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum. Reprod. 26:1693–707
    [Google Scholar]
  36. 36. 
    Forde N, Carter F, di Francesco S, Mehta JP, Garcia-Herreros M et al. 2012. Endometrial response of beef heifers on day 7 following insemination to supraphysiological concentrations of progesterone associated with superovulation. Physiol. Genom. 44:1107–15
    [Google Scholar]
  37. 37. 
    Mainigi MA, Olalere D, Burd I, Sapienza C, Bartolomei M, Coutifaris C 2014. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth. Biol. Reprod. 90:26 https://doi.org/10.1095/biolreprod.113.110411
    [Crossref] [Google Scholar]
  38. 38. 
    Fortier AL, McGraw S, Lopes FL, Niles KM, Landry M, Trasler JM 2014. Modulation of imprinted gene expression following superovulation. Mol. Cell. Endocrinol. 388:51–77 https://doi.org/10.1016/j.mce.2014.03.003
    [Crossref] [Google Scholar]
  39. 39. 
    Angel MA, Gil MA, Cuello C, Sanchez-Osorio J, Gomis J et al. 2014. The effects of superovulation of donor sows on ovarian response and embryo development after nonsurgical deep-uterine embryo transfer. Theriogenology 81:832–39
    [Google Scholar]
  40. 40. 
    Forde N, Carter F, di Francesco S, Mehta JP, Garcia-Herreros M et al. 2012. Endometrial response of beef heifers on day 7 following insemination to supraphysiological concentrations of progesterone associated with superovulation. Physiol. Genom. 44:1107–15
    [Google Scholar]
  41. 41. 
    Weinerman R, Mainigi M. 2014. Why we should transfer frozen instead of fresh embryos: the translational rationale. Fertil. Steril. 102:10–18 https://doi.org/10.1016/j.fertnstert.2014.05.019
    [Crossref] [Google Scholar]
  42. 42. 
    Kramer B, Stein BA, Van der Walt LA 1990. Exogenous gonadotropins–serum oestrogen and progesterone and the effect on endometrial morphology in the rat. J. Anat. 173:177–86
    [Google Scholar]
  43. 43. 
    Junovich G, Mayer Y, Azpiroz A, Daher S, Iglesias A et al. 2011. Ovarian stimulation affects the levels of regulatory endometrial NK cells and angiogenic cytokine VEGF. Am. J. Reprod. Immunol. 65:146–53
    [Google Scholar]
  44. 44. 
    Ertzeid G, Storeng R. 2001. The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod. 16:221–25
    [Google Scholar]
  45. 45. 
    Roque M, Lattes K, Serra S, Solà I, Geber S et al. 2013. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil. Steril. 99:156–62
    [Google Scholar]
  46. 46. 
    Bosdou JK, Venetis CA, Tarlatzis BC, Grimbizis GF, Kolibianakis EM 2019. Higher probability of live-birth in high, but not normal, responders after first frozen-embryo transfer in a freeze-only cycle strategy compared to fresh-embryo transfer: a meta-analysis. Hum. Reprod. 34:491–505
    [Google Scholar]
  47. 47. 
    Taft R. 2017. In vitro fertilization in mice. Cold Spring Harb. Protoc. 2017:pdb.prot094508. https://doi.org/10.1101/pdb.prot094508
    [Crossref] [Google Scholar]
  48. 48. 
    Herrick JR 2019. Comparative Embryo Culture: Methods and Protocols New York: Humana
  49. 49. 
    Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H et al. 2019. Update on mammalian sperm capacitation: How much does the horse differ from other species?. Reproduction 157:R181–97 https://doi.org/10.1530/REP-18-0541
    [Crossref] [Google Scholar]
  50. 50. 
    Adamson GD, de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R et al. 2018. International Committee for Monitoring Assisted Reproductive Technology: world report on assisted reproductive technology, 2011. Fertil. Steril. 110:1067–80 https://doi.org/10.1016/j.fertnstert.2018.06.039
    [Crossref] [Google Scholar]
  51. 51. 
    Glujovsky D, Farquhar C, Quinteiro Retamar AM, Alvarez Sedo CR, Blake D 2016. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst. Rev. 2016:6CD002118 https://doi.org/10.1002/14651858.CD002118.pub5
    [Crossref] [Google Scholar]
  52. 52. 
    Randi F, Fernandez-Fuertes B, McDonald M, Forde N, Kelly AK et al. 2016. Asynchronous embryo transfer as a tool to understand embryo-uterine interaction in cattle: Is a large conceptus a good thing?. Reprod. Fertil. Dev. 28:1999–2006
    [Google Scholar]
  53. 53. 
    Teh WT, McBain J, Rogers P 2016. What is the contribution of embryo-endometrial asynchrony to implantation failure?. J. Assist. Reprod. Genet. 33:1419–30
    [Google Scholar]
  54. 54. 
    Cent. Dis. Control Prev., Am. Soc. Reprod. Med., Soc. Assist. Reprod. Technol. 2017 2015. Assisted Reproductive Technology National Summary Report Atlanta: US Dep. Health Hum Serv .
  55. 55. 
    Hinrichs K. 2018. Assisted reproductive techniques in mares. Reprod. Domest. Anim. 53:Suppl. 24–13 https://doi.org/10.1111/rda.13259
    [Crossref] [Google Scholar]
  56. 56. 
    Herrick JR. 2019. Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 100:1158–70
    [Google Scholar]
  57. 57. 
    Hansen PJ, Block J. 2004. Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production. Reprod. Fertil. Dev. 16:1–14
    [Google Scholar]
  58. 58. 
    Hansen PJ. 2007. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology 68:Suppl. 1S242–49
    [Google Scholar]
  59. 59. 
    Bouquet A, Juga J. 2013. Integrating genomic selection into dairy cattle breeding programmes: a review. Animal 7:705–13
    [Google Scholar]
  60. 60. 
    Fowler KE, Mandawala AA, Griffin DK, Walling GA, Harvey SC 2018. The production of pig preimplantation embryos in vitro: current progress and future prospects. Reprod. Biol. 18:203–11 https://doi.org/10.1016/j.repbio.2018.07.001
    [Crossref] [Google Scholar]
  61. 61. 
    Viana J. 2018. 2017 statistics of embryo production and transfer in farm animals. Embryo Technol. Newsl. 26:48–19
    [Google Scholar]
  62. 62. 
    Thibier M. 2000. The IETS statistics of embryo transfers in livestock in the world for the year 1999: a new record for bovine in vivo-derived embryos transferred. Embryo Transf. Newsl. 18:424–28
    [Google Scholar]
  63. 63. 
    Khurana NK, Niemann H. 2000. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol. Reprod. 62:847–56
    [Google Scholar]
  64. 64. 
    Lopes AS, Madsen SE, Ramsing NB, Løvendahl P, Greve T, Callesen H 2007. Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer. Hum. Reprod. 22:558–66
    [Google Scholar]
  65. 65. 
    Abe H, Otoi T, Tachikawa S, Yamashita S, Satoh T, Hoshi H 1999. Fine structure of bovine morulae and blastocysts in vivo and in vitro. Anat. Embryol. 199:519–27
    [Google Scholar]
  66. 66. 
    Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE 2001. Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol. Reprod. 64:1375–85
    [Google Scholar]
  67. 67. 
    Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P 2002. Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol. Reprod. Dev. 62:320–27
    [Google Scholar]
  68. 68. 
    Sudano MJ, Santos VG, Tata A, Ferreira CR, Paschoal DM et al. 2012. Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro– and in vivo–produced blastocysts. Biol. Reprod. 87: 130: https://doi.org/10.1095/biolreprod.112.102897
    [Crossref] [Google Scholar]
  69. 69. 
    Driver AM, Peñagaricano F, Huang W, Ahmad KR, Hackbart KS et al. 2012. RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo– and in vitro–derived bovine blastocysts. BMC Genom 13:118 https://doi.org/10.1186/1471-2164-13-118
    [Crossref] [Google Scholar]
  70. 70. 
    Heras S, De Coninck DI, Van Poucke M, Goossens K, Bogado Pascottini O et al. 2016. Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC Genom 17:72 https://doi.org/10.1186/s12864-016-2393-z
    [Crossref] [Google Scholar]
  71. 71. 
    Urrego R, Bernal-Ulloa SM, Chavarría NA, Herrera-Puerta E, Lucas-Hahn A et al. 2017. Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro. Zygote 25:131–40 https://doi.org/10.1017/S096719941600040X
    [Crossref] [Google Scholar]
  72. 72. 
    Salilew-Wondim D, Saeed-Zidane M, Hoelker M, Gebremedhn S, Poirier M et al. 2018. Genome-wide DNA methylation patterns of bovine blastocysts derived from in vivo embryos subjected to in vitro culture before, during or after embryonic genome activation. BMC Genom 19:424 https://doi.org/10.1186/s12864-018-4826-3
    [Crossref] [Google Scholar]
  73. 73. 
    Fernández-González R, de Dios Hourcade J, López-Vidriero I, Benguría A, De Fonseca FR, Gutiérrez-Adán A 2009. Analysis of gene transcription alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice. Reproduction 137:271–83
    [Google Scholar]
  74. 74. 
    Ren L, Wang Z, An L, Zhang Z, Tan K et al. 2015. Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum. Reprod. 30:2892–911 https://doi.org/10.1093/humrep/dev228
    [Crossref] [Google Scholar]
  75. 75. 
    Henderson GR, Brahmasani SR, Yelisetti UM, Konijeti S, Katari VC, Sisinthy S 2014. Candidate gene expression patterns in rabbit preimplantation embryos developed in vivo and in vitro. J. Assist. Reprod. Genet. 31:899–911
    [Google Scholar]
  76. 76. 
    Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS et al. 2015. Transcriptome analysis of pig in vivo, in vitro-fertilized, and nuclear transfer blastocyst-stage embryos treated with histone deacetylase inhibitors postfusion and activation reveals changes in the lysosomal pathway. Cell. Reprogramming 17:243–58 https://doi.org/10.1089/cell.2015.0022
    [Crossref] [Google Scholar]
  77. 77. 
    Smits K, Goossens K, Van Soom A, Govaere J, Hoogewijs M, Peelman LJ 2011. In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts. Reprod. Fertil. Dev. 23:364–75
    [Google Scholar]
  78. 78. 
    Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS 2008. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum. Mol. Genet. 17:1–14
    [Google Scholar]
  79. 79. 
    Velker BAM, Denomme MM, Krafty RT, Mann MRW 2017. Maintenance of Mest imprinted methylation in blastocyst-stage mouse embryos is less stable than other imprinted loci following superovulation or embryo culture. Environ. Epigene 3: dvx015. https://doi.org/10.1093/eep/dvx015
    [Crossref] [Google Scholar]
  80. 80. 
    Carmignac V, Barberet J, Iranzo J, Quéré R, Guilleman M et al. 2019. Effects of assisted reproductive technologies on transposon regulation in the mouse pre-implanted embryo. Hum. Reprod. 34:612–22 https://doi.org/10.1093/humrep/dez020
    [Crossref] [Google Scholar]
  81. 81. 
    Deshmukh RS, Østrup O, Østrup E, Vejlsted M, Niemann H et al. 2011. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6:177–87
    [Google Scholar]
  82. 82. 
    Pontes JH, Nonato-Junior I, Sanches BV, Ereno-Junior JC, Uvo S et al. 2009. Comparison of embryo yield and pregnancy rate between in vivo and in vitro methods in the same Nelore (Bos indicus) donor cows. Theriogenology 71:690–97 https://doi.org/10.1016/j.theriogenology.2008.09.031
    [Crossref] [Google Scholar]
  83. 83. 
    Ferraz PA, Burnley C, Karanja J, Viera-Neto A, Santos JE et al. 2016. Factors affecting the success of a large embryo transfer program in Holstein cattle in a commercial herd in the southeast region of the United States. Theriogenology 86:1834–41 https://doi.org/10.1016/j.theriogenology.2016.05.032
    [Crossref] [Google Scholar]
  84. 84. 
    Papadopoulos S, Rizos D, Duffy P, Wade M, Quinn K et al. 2002. Embryo survival and recipient pregnancy rates after transfer of fresh or vitrified, in vivo or in vitro produced ovine blastocysts. Anim. Reprod. Sci. 74:35–44
    [Google Scholar]
  85. 85. 
    Wei X, Xiaoling Z, Kai M, Rui W, Jing X et al. 2016. Characterization and comparative analyses of transcriptomes for in vivo and in vitro produced peri-implantation conceptuses and endometria from sheep. J. Reprod. Dev. 62:279–87 https://doi.org/10.1262/jrd.2015-064
    [Crossref] [Google Scholar]
  86. 86. 
    Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD 2010. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum. Reprod. 25:613–22 https://doi.org/10.1093/humrep/dep449
    [Crossref] [Google Scholar]
  87. 87. 
    de Dios Hourcade J, Pérez-Crespo M, Serrano A, Gutiérrez-Adán A, Pintado B 2012. In vitro and in vivo development of mice morulae after storage in non-frozen conditions. Reprod. Biol. Endocrinol. 10:62 https://doi.org/10.1186/1477-7827-10-62
    [Crossref] [Google Scholar]
  88. 88. 
    Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P et al. 2010. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum. Reprod. 25:2039–46 https://doi.org/10.1093/humrep/deq165
    [Crossref] [Google Scholar]
  89. 89. 
    Tan K, Wang Z, Zhang Z, An L, Tian J 2016. IVF affects embryonic development in a sex-biased manner in mice. Reproduction 151:4443–53 https://doi.org/10.1530/REP-15-0588
    [Crossref] [Google Scholar]
  90. 90. 
    Mathew DJ, Sánchez JM, Passaro C, Charpigny G, Behura SK et al. 2019. Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome. Biol. Reprod. 100:365–80 https://doi.org/10.1093/biolre/ioy199
    [Crossref] [Google Scholar]
  91. 91. 
    Bloise E, Lin W, Liu X, Simbulan R, Kolahi KS et al. 2012. Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology 153:3457–67 https://doi.org/10.1210/en.2011-1921
    [Crossref] [Google Scholar]
  92. 92. 
    Sui L, An L, Tan K, Wang Z, Wang S et al. 2014. Dynamic proteomic profiles of in vivo- and in vitro-produced mouse postimplantation extraembryonic tissues and placentas. Biol. Reprod. 91:155 https://doi.org/10.1095/biolreprod.114.124248
    [Crossref] [Google Scholar]
  93. 93. 
    Tan K, Zhang Z, Miao K, Yu Y, Sui L et al. 2016. Dynamic integrated analysis of DNA methylation and gene expression profiles in in vivo and in vitro fertilized mouse post-implantation extraembryonic and placental tissues. Mol. Hum. Reprod. 22:485–598 https://doi.org/10.1093/molehr/gaw028
    [Crossref] [Google Scholar]
  94. 94. 
    de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA et al. 2015. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum. Mol. Genet. 24:6975–85 https://doi.org/10.1093/hmg/ddv400
    [Crossref] [Google Scholar]
  95. 95. 
    Miles JR, Farin CE, Rodriguez KF, Alexander JE, Farin PW 2004. Angiogenesis and morphometry of bovine placentas in late gestation from embryos produced in vivo or in vitro. Biol. Reprod. 71:1919–26
    [Google Scholar]
  96. 96. 
    Siqueira LG, Tribulo P, Chen Z, Denicol AC, Ortega MS et al. 2017. Colony-stimulating factor 2 acts from days 5 to 7 of development to modify programming of the bovine conceptus at day 86 of gestation. Biol. Reprod. 96:4743–57 https://doi.org/10.1093/biolre/iox018
    [Crossref] [Google Scholar]
  97. 97. 
    Haavaldsen C, Tanbo T, Eskild A 2012. Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum. Reprod. 27:576–82 https://doi.org/10.1093/humrep/der428
    [Crossref] [Google Scholar]
  98. 98. 
    Valenzuela OA, Couturier-Tarrade A, Choi YH, Aubrière MC, Ritthaler J et al. 2018. Impact of equine assisted reproductive technologies (standard embryo transfer or intracytoplasmic sperm injection (ICSI) with in vitro culture and embryo transfer) on placenta and foal morphometry and placental gene expression. Reprod. Fertil. Dev. 30:371–79 https://doi.org/10.1071/RD16536
    [Crossref] [Google Scholar]
  99. 99. 
    Bonilla L, Block J, Denicol AC, Hansen PJ 2010. Consequences of transfer of an in vitro-produced embryo for the dam and resultant calf. J. Dairy Sci. 97:229–39
    [Google Scholar]
  100. 100. 
    van Wagtendonk-de Leeuw AM, Mullaart E, de Roos AP, Merton JS, den Daas JH et al. 2000. Effects of different reproduction techniques: AI MOET or IVP, on health and welfare of bovine offspring. Theriogenology 53:575–97
    [Google Scholar]
  101. 101. 
    Farin CE, Farmer WT, Farin PW 2010. Pregnancy recognition and abnormal offspring syndrome in cattle. Reprod. Fertil. Dev. 22:75–87
    [Google Scholar]
  102. 102. 
    Hiendleder S, Mund C, Reichenbach HD, Wenigerkind H, Brem G et al. 2004. Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques. Biol. Reprod. 71:217–23
    [Google Scholar]
  103. 103. 
    Rooke JA, McEvoy TG, Ashworth CJ, Robinson JJ, Wilmut I et al. 2007. Ovine fetal development is more sensitive to perturbation by the presence of serum in embryo culture before rather than after compaction. Theriogenology 67:639–47
    [Google Scholar]
  104. 104. 
    Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG et al. 2001. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27:153–54
    [Google Scholar]
  105. 105. 
    Chen Z, Robbins KM, Wells KD, Rivera RM 2013. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann. Epigenetics 8:591–601 https://doi.org/10.4161/epi.24655
    [Crossref] [Google Scholar]
  106. 106. 
    Feuer SK, Camarano L, Rinaudo PF 2013. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies. Mol. Hum. Reprod. 19:189–204 https://doi.org/10.1093/molehr/gas066
    [Crossref] [Google Scholar]
  107. 107. 
    Sullivan-Pyke CS, Senapati S, Mainigi MA, Barnhart KT 2017. In vitro fertilization and adverse obstetric and perinatal outcomes. Semin. Perinatol. 41:345–53 https://doi.org/10.1053/j.semperi.2017.07.001
    [Crossref] [Google Scholar]
  108. 108. 
    Lidegaard O, Pinborg A, Andersen AN 2005. Imprinting diseases and IVF: Danish National IVF cohort study. Hum. Reprod. 20:950–54
    [Google Scholar]
  109. 109. 
    Siqueira LGB, Dikmen S, Ortega MS, Hansen PJ 2017. Postnatal phenotype of dairy cows is altered by in vitro embryo production using reverse X-sorted semen. J. Dairy Sci. 100:5899–908 https://doi.org/10.3168/jds.2016-12539
    [Crossref] [Google Scholar]
  110. 110. 
    Hansen PJ, Dobbs KB, Denicol AC, Siqueira LGB 2016. Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res 363:237–47 https://doi.org/10.1007/s00441-015-2287-4
    [Crossref] [Google Scholar]
  111. 111. 
    Duranthon V, Chavatte-Palmer P. 2018. Long term effects of ART: What do animals tell us?. Mol. Reprod. Dev. 85:348–68 https://doi.org/10.1002/mrd.22970
    [Crossref] [Google Scholar]
  112. 112. 
    Castillo-Fernandez JE, Loke YJ, Bass-Stringer S, Gao F, Xia Y et al. 2017. DNA methylation changes at infertility genes in newborn twins conceived by in vitro fertilisation. Genome Med 9:28 https://doi.org/10.1186/s13073-017-0413-5
    [Crossref] [Google Scholar]
  113. 113. 
    Ma Y, Ma Y, Wen L, Lei H, Chen S, Wang XC 2019. Changes in DNA methylation and imprinting disorders in E9.5 mouse fetuses and placentas derived from vitrified eight-cell embryos. Mol. Reprod. Dev. 86:404–15
    [Google Scholar]
  114. 114. 
    Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM et al. 2018. Origins of lifetime health around the time of conception: causes and consequences. Lancet 391:1842–52 https://doi.org/10.1016/S0140-6736(18)30312-X
    [Crossref] [Google Scholar]
  115. 115. 
    Ibrahim Y, Hotaling J. 2018. Sperm epigenetics and its impact on male fertility, pregnancy loss, and somatic health of future offsprings. Semin. Reprod. Med. 36:233–39 https://doi.org/10.1055/s-0038-1677047
    [Crossref] [Google Scholar]
  116. 116. 
    Nicholas LM, Ozanne SE. 2019. Early life programming in mice by maternal overnutrition: mechanistic insights and interventional approaches. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374:20180116 https://doi.org/10.1098/rstb.2018.0116
    [Crossref] [Google Scholar]
  117. 117. 
    Sjöblom C, Roberts CT, Wikland M, Robertson SA 2005. Granulocyte-macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology 146:2142–53
    [Google Scholar]
  118. 118. 
    Rizos D, Ward F, Duffy P, Boland MP, Lonergan P 2002. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61:234–48
    [Google Scholar]
  119. 119. 
    Gad A, Hoelker M, Besenfelder U, Havlicek V, Cinar U et al. 2012. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol. Reprod. 87:100 https://doi.org/10.1095/biolreprod.112.099697
    [Crossref] [Google Scholar]
  120. 120. 
    Sanfins A, Plancha CE, Albertini DF 2015. Pre-implantation developmental potential from in vivo and in vitro matured mouse oocytes: a cytoskeletal perspective on oocyte quality. J. Assist. Reprod. Genet. 32:127–36 https://doi.org/10.1007/s10815-014-0363-4
    [Crossref] [Google Scholar]
  121. 121. 
    Nagashima H, Grupen CG, Ashman RJ, Nottle MB 1996. Developmental competence of in vivo and in vitro matured porcine oocytes after subzonal sperm injection. Mol. Reprod. Dev. 45:359–63
    [Google Scholar]
  122. 122. 
    Schramm RD, Paprocki AM, VandeVoort CA 2003. Causes of developmental failure of in-vitro matured rhesus monkey oocytes: impairments in embryonic genome activation. Hum. Reprod. 18:826–33
    [Google Scholar]
  123. 123. 
    Lin YH, Tsai CY, Huang LW, Seow KM, Hwang JL, Tzeng CR 2014. Reduced uterine receptivity for mouse embryos developed from in-vitro matured oocytes. J. Assist. Reprod. Genet. 31:1713–18 https://doi.org/10.1007/s10815-014-0354-5
    [Crossref] [Google Scholar]
  124. 124. 
    Gremeau AS, Andreadis N, Fatum M, Craig J, Turner K et al. 2012. In vitro maturation or in vitro fertilization for women with polycystic ovaries? A case-control study of 194 treatment cycles. Fertil. Steril. 98:355–60 https://doi.org/10.1016/j.fertnstert.2012.04.046
    [Crossref] [Google Scholar]
  125. 125. 
    Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X et al. 2016. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 152:R143–57 https://doi.org/10.1530/REP-15-0606
    [Crossref] [Google Scholar]
  126. 126. 
    Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E 2014. Fine mapping of genome activation in bovine embryos by RNA sequencing. PNAS 111:4139–44 https://doi.org/10.1073/pnas.1321569111
    [Crossref] [Google Scholar]
  127. 127. 
    Holm P, Walker SK, Seamark RF 1996. Embryo viability, duration of gestation and birth weight in sheep after transfer of in vitro matured and in vitro fertilized zygotes cultured in vitro or in vivo. J. Reprod. Fertil. 107:175–81
    [Google Scholar]
  128. 128. 
    Hansen PJ, Tribulo P. 2019. Regulation of present and future development by actions of maternal regulatory signals on the embryo during the morula to blastocyst transition—insights from the cow. Biol. Reprod. 101:3526–37
    [Google Scholar]
  129. 129. 
    Loureiro B, Bonilla L, Block J, Fear JM, Bonilla AQ, Hansen PJ 2009. Colony-stimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine embryos produced in vitro. Endocrinology 150:5046–54 https://doi.org/10.1210/en.2009-0481
    [Crossref] [Google Scholar]
  130. 130. 
    Ziebe S, Loft A, Povlsen BB, Erb K, Agerholm I et al. 2013. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil. Steril. 99:61600–9 https://doi.org/10.1016/j.fertnstert.2012.12.043
    [Crossref] [Google Scholar]
  131. 131. 
    Denicol AC, Block J, Kelley DE, Pohler KG, Dobbs KB et al. 2014. The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J 28:3975–86 https://doi.org/10.1096/fj.14-253112
    [Crossref] [Google Scholar]
  132. 132. 
    Cheung LP, Leung HY, Bongso A 2003. Effect of supplementation of leukemia inhibitory factor and epidermal growth factor on murine embryonic development in vitro, implantation, and outcome of offspring. Fertil. Steril. 80:Suppl. 2727–35
    [Google Scholar]
  133. 133. 
    Aflalo ED, Sod-Moriah UA, Potashnik G, Har-Vardi I 2007. EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate. Reprod. Biol. Endocrinol. 5:4
    [Google Scholar]
  134. 134. 
    Hansen PJ, Dobbs KD, Denicol AC 2014. Programming of the preimplantation embryo by the embryokine colony stimulating factor 2. Anim. Reprod. Sci. 149:59–66
    [Google Scholar]
  135. 135. 
    Kannampuzha-Francis J, Denicol AC, Loureiro B, Kaniyamattam K, Ortega MS, Hansen PJ 2015. Exposure to colony stimulating factor 2 during preimplantation development increases postnatal growth in cattle. Mol. Reprod. Dev. 82:892–97 https://doi.org/10.1002/mrd.22533
    [Crossref] [Google Scholar]
  136. 136. 
    Tríbulo P, Bernal Ballesteros BH, Ruiz A, Tríbulo A, Tríbulo RJ et al. 2017. Consequences of exposure of embryos produced in vitro in a serum-containing medium to dickkopf-related protein 1 and colony stimulating factor 2 on blastocyst yield, pregnancy rate, and birth weight. J. Anim. Sci. 95:4407–12 https://doi.org/10.2527/jas2017.1927
    [Crossref] [Google Scholar]
  137. 137. 
    De Berardis D, Mazza M, Marini S, Del Nibletto L, Serroni N et al. 2014. Psychopathology, emotional aspects and psychological counselling in infertility: a review. Clin. Ter. 165:163–69
    [Google Scholar]
  138. 138. 
    Whitworth KM, Prather RS. 2017. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol. Reprod. Dev. 2017:926–33 https://doi.org/10.1002/mrd.22811
    [Crossref] [Google Scholar]
  139. 139. 
    Mueller ML, Cole JB, Sonstegard TS, Van Eenennaam AL 2019. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J. Dairy Sci. 102:4215–26 https://doi.org/10.3168/jds.2018-15892
    [Crossref] [Google Scholar]
  140. 140. 
    Hildebrandt TB, Hermes R, Colleoni S, Diecke S, Holtze S et al. 2018. Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun 9:2589 https://doi.org/10.1038/s41467-018-04959-2
    [Crossref] [Google Scholar]
  141. 141. 
    Niemann H. 2016. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 86:180–90 https://doi.org/10.1016/j.theriogenology.2016.04.021
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-084010
Loading
/content/journals/10.1146/annurev-animal-021419-084010
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error