1932

Abstract

Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-080520-083353
2021-02-15
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-080520-083353.html?itemId=/content/journals/10.1146/annurev-animal-080520-083353&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    St. John JC 2019. Genomic balance: two genomes establishing synchrony to modulate cellular fate and function. Cells 8:1306
    [Google Scholar]
  2. 2. 
    Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65
    [Google Scholar]
  3. 3. 
    Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–80
    [Google Scholar]
  4. 4. 
    Ursing BM, Arnason U. 1998. The complete mitochondrial DNA sequence of the pig (Susscrofa). J. Mol. Evol. 47:302–6
    [Google Scholar]
  5. 5. 
    Pfeiffer T, Schuster S, Bonhoeffer S 2001. Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–7
    [Google Scholar]
  6. 6. 
    Van Blerkom J. 2004. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128:269–80
    [Google Scholar]
  7. 7. 
    Sathananthan H, Pera M, Trounson A 2002. The fine structure of human embryonic stem cells. Reprod. Biomed. Online 4:56–61
    [Google Scholar]
  8. 8. 
    Schultz J, Waterstradt R, Kantowski T, Rickmann A, Reinhardt F et al. 2016. Precise expression of Fis1 is important for glucose responsiveness of beta cells. J. Endocrinol. 230:81–91
    [Google Scholar]
  9. 9. 
    Duchen MR. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. 516:Pt. 11–17
    [Google Scholar]
  10. 10. 
    Quintana-Cabrera R, Mehrotra A, Rigoni G, Soriano ME 2017. Who and how in the regulation of mitochondrial cristae shape and function. Biochem. Biophys. Res. Commun. 500:94–101
    [Google Scholar]
  11. 11. 
    Shutt TE, Shadel GS. 2010. A compendium of human mitochondrial gene expression machinery with links to disease. Environ. Mol. Mutag. 51:360–79
    [Google Scholar]
  12. 12. 
    Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O 2015. Multiple functions of syncytiotrophoblast mitochondria. Steroids 103:11–22
    [Google Scholar]
  13. 13. 
    Sheshadri P, Kumar A. 2016. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic. Res. 50:570–84
    [Google Scholar]
  14. 14. 
    Wang Z, Figueiredo-Pereira C, Oudot C, Vieira HLA, Brenner C 2017. Mitochondrion: A common organelle for distinct cell deaths?. Int. Rev. Cell Mol. Biol. 331:245–87
    [Google Scholar]
  15. 15. 
    Monlun M, Hyernard C, Blanco P, Lartigue L, Faustin B 2017. Mitochondria as molecular platforms integrating multiple innate immune signalings. J. Mol. Biol. 429:1–13
    [Google Scholar]
  16. 16. 
    Haseeb A, Makki MS, Haqqi TM 2014. Modulation of ten-eleven translocation 1 (TET1), isocitrate dehydrogenase (IDH) expression, α-ketoglutarate (α-KG), and DNA hydroxymethylation levels by interleukin-1β in primary human chondrocytes. J. Biol. Chem. 289:6877–85
    [Google Scholar]
  17. 17. 
    Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H et al. 2016. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell 61:199–209
    [Google Scholar]
  18. 18. 
    Birky CW Jr 1995. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. PNAS 92:11331–38
    [Google Scholar]
  19. 19. 
    Giles RE, Blanc H, Cann HM, Wallace DC 1980. Maternal inheritance of human mitochondrial DNA. PNAS 77:6715–19
    [Google Scholar]
  20. 20. 
    Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P et al. 2008. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40:249–54
    [Google Scholar]
  21. 21. 
    Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI 1990. Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–63
    [Google Scholar]
  22. 22. 
    Gyllensten U, Wharton D, Josefsson A, Wilson AC 1991. Paternal inheritance of mitochondrial DNA in mice. Nature 352:255–57
    [Google Scholar]
  23. 23. 
    Zhao X, Li N, Guo W, Hu X, Liu Z et al. 2004. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovisaries). Heredity 93:399–403
    [Google Scholar]
  24. 24. 
    St. John JC, Schatten G. 2004. Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer. Genetics 167:897–905
    [Google Scholar]
  25. 25. 
    Cagnone G, Tsai TS, Srirattana K, Rossello F, Powell DR et al. 2016. Segregation of naturally occurring mitochondrial DNA variants in a mini-pig model. Genetics 202:931–44
    [Google Scholar]
  26. 26. 
    Marchington DR, Hartshorne GM, Barlow D, Poulton J 1997. Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck. Am. J. Hum. Genet. 60:408–16
    [Google Scholar]
  27. 27. 
    Hauswirth WW, Van de Walle MJ, Laipis PJ, Olivo PD 1984. Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell 37:1001–7
    [Google Scholar]
  28. 28. 
    Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG et al. 2008. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 63:35–39
    [Google Scholar]
  29. 29. 
    Boulet L, Karpati G, Shoubridge EA 1992. Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am. J. Hum. Genet. 51:1187–200
    [Google Scholar]
  30. 30. 
    Cao L, Shitara H, Horii T, Nagao Y, Imai H et al. 2007. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39:386–90
    [Google Scholar]
  31. 31. 
    Marchington DR, Macaulay V, Hartshorne GM, Barlow D, Poulton J 1998. Evidence from human oocytes for a genetic bottleneck in an mtDNA disease. Am. J. Hum. Genet. 63:769–75
    [Google Scholar]
  32. 32. 
    Spikings EC, Alderson J, St. John JC 2007. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76:327–35
    [Google Scholar]
  33. 33. 
    Cagnone GL, Tsai TS, Makanji Y, Matthews P, Gould J et al. 2016. Restoration of normal embryo-genesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci. Rep. 6:23229
    [Google Scholar]
  34. 34. 
    Santos TA, El Shourbagy S, St. John JC 2006. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85:584–91
    [Google Scholar]
  35. 35. 
    May-Panloup P, Chretien MF, Jacques C, Vasseur C, Malthiery Y, Reynier P 2005. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum. Reprod. 20:593–97
    [Google Scholar]
  36. 36. 
    May-Panloup P, Vignon X, Chrétien MF, Heyman Y, Tamassia M et al. 2005. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod. Biol. Endocrinol. 3:65
    [Google Scholar]
  37. 37. 
    Smallwood SA, Kelsey G. 2012. De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42
    [Google Scholar]
  38. 38. 
    Stewart KR, Veselovska L, Kelsey G 2016. Establishment and functions of DNA methylation in the germline. Epigenomics 8:1399–413
    [Google Scholar]
  39. 39. 
    von Meyenn F, Berrens RV, Andrews S, Santos F, Collier AJ et al. 2016. Comparative principles of DNA methylation reprogramming during human and mouse in vitro primordial germ cell specification. Dev. Cell 39:104–15
    [Google Scholar]
  40. 40. 
    Guo F, Li X, Liang D, Li T, Zhu P et al. 2014. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15:447–59
    [Google Scholar]
  41. 41. 
    Santos F, Hendrich B, Reik W, Dean W 2002. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241:172–82
    [Google Scholar]
  42. 42. 
    McConnell JM, Petrie L. 2004. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod. Biomed. Online 9:418–24
    [Google Scholar]
  43. 43. 
    El Shourbagy SH, Spikings EC, Freitas M, St. John JC 2006. Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131:233–45
    [Google Scholar]
  44. 44. 
    Houghton FD. 2006. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18
    [Google Scholar]
  45. 45. 
    Stigliani S, Persico L, Lagazio C, Anserini P, Venturini PL, Scaruffi P 2014. Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol. Hum. Reprod. 20:1238–46
    [Google Scholar]
  46. 46. 
    Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN et al. 2017. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil. Steril. 107:220–28.e5
    [Google Scholar]
  47. 47. 
    Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St. John JC 2007. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120:4025–34
    [Google Scholar]
  48. 48. 
    Facucho-Oliveira JM, St. John JC 2009. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev. 5:140–58
    [Google Scholar]
  49. 49. 
    St. John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY et al. 2005. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7:141–53
    [Google Scholar]
  50. 50. 
    Krisher RL, Prather RS. 2012. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79:311–20
    [Google Scholar]
  51. 51. 
    Warburg O. 1956. On respiratory impairment in cancer cells. Science 124:269–70
    [Google Scholar]
  52. 52. 
    Kelly RDW, Rodda AE, Dickinson A, Mahmud A, Nefzger CM et al. 2013. Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells 31:703–16
    [Google Scholar]
  53. 53. 
    Sun X, St. John JC 2016. The role of the mtDNA set point in differentiation, development and tumorigenesis. Biochem. J. 473:2955–71
    [Google Scholar]
  54. 54. 
    Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P 2003. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61
    [Google Scholar]
  55. 55. 
    Amaral A, Ramalho-Santos J, St. John JC 2007. The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum. Reprod. 22:1585–96
    [Google Scholar]
  56. 56. 
    St. John JC 2016. Mitochondrial DNA copy number and replication in reprogramming and differentiation. Semin. Cell Dev. Biol. 52:93–101
    [Google Scholar]
  57. 57. 
    Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P et al. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18:231–36
    [Google Scholar]
  58. 58. 
    Chatre L, Ricchetti M. 2013. Prevalent coordination of mitochondrial DNA transcription and initiation of replication with the cell cycle. Nucleic Acids Res 41:3068–78
    [Google Scholar]
  59. 59. 
    Kucej M, Butow RA. 2007. Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17:586–92
    [Google Scholar]
  60. 60. 
    Ciesielski GL, Oliveira MT, Kaguni LS 2016. Animal mitochondrial DNA replication. Enzymes 39:255–92
    [Google Scholar]
  61. 61. 
    Cluett TJ, Akman G, Reyes A, Kazak L, Mitchell A et al. 2018. Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Res 46:10771–81
    [Google Scholar]
  62. 62. 
    Fisher RP, Clayton DA. 1988. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8:3496–509
    [Google Scholar]
  63. 63. 
    Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM 2002. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 31:289–94
    [Google Scholar]
  64. 64. 
    Tiranti V, Savoia A, Forti F, D'Apolito MF, Centra M et al. 1997. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum. Mol. Genet. 6:615–25
    [Google Scholar]
  65. 65. 
    Hillen HS, Parshin AV, Agaronyan K, Morozov YI, Graber JJ et al. 2017. Mechanism of transcription anti-termination in human mitochondria. Cell 171:1082–93.e13
    [Google Scholar]
  66. 66. 
    Wernette CM, Kaguni LS. 1986. A mitochondrial DNA polymerase from embryos of Drosophila melanogaster. Purification, subunit structure, and partial characterization. J. Biol. Chem. 261:14764–70
    [Google Scholar]
  67. 67. 
    Carrodeguas JA, Kobayashi R, Lim SE, Copeland WC, Bogenhagen DF 1999. The accessory subunit of Xenopuslaevis mitochondrial DNA polymerase gamma increases processivity of the catalytic subunit of human DNA polymerase γ and is related to class II aminoacyl-tRNA synthetases. Mol. Cell. Biol. 19:4039–46
    [Google Scholar]
  68. 68. 
    Korhonen JA, Gaspari M, Falkenberg M 2003. TWINKLE has 5′ → 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J. Biol. Chem. 278:48627–32
    [Google Scholar]
  69. 69. 
    Zhang H, Meng LH, Pommier Y 2007. Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene. Biochimie 89:474–81
    [Google Scholar]
  70. 70. 
    Sun X, Johnson J, St. John JC 2018. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Res 46:5977–95
    [Google Scholar]
  71. 71. 
    Kelly RDW, Mahmud A, McKenzie M, Trounce IA, St. John JC 2012. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40:10124–38
    [Google Scholar]
  72. 72. 
    Lee W, Johnson J, Gough DJ, Donoghue J, Cagnone GLM et al. 2015. Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny. Cell Death Dis 6:e1664
    [Google Scholar]
  73. 73. 
    Tsai TS, Tyagi S, St. John JC 2018. The molecular characterisation of mitochondrial DNA deficient oocytes using a pig model. Hum. Reprod. 33:942–53
    [Google Scholar]
  74. 74. 
    Hance N, Ekstrand MI, Trifunovic A 2005. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum. Mol. Genet. 14:1775–83
    [Google Scholar]
  75. 75. 
    Waddington CH. 1957. The Strategy of the Genes London: Allen & Unwin
  76. 76. 
    Kelly RDW, Sumer H, McKenzie M, Facucho-Oliveira J, Trounce IA et al. 2013. The effects of nuclear reprogramming on mitochondrial DNA replication. Stem Cell Rev. Rep. 9:1–15
    [Google Scholar]
  77. 77. 
    Dickinson A, Yeung KY, Donoghue J, Baker MJ, Kelly RD et al. 2013. The regulation of mitochondrial DNA copy number in glioblastoma cells. Cell Death Differ 20:1644–53
    [Google Scholar]
  78. 78. 
    Jones PA, Taylor SM. 1980. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93
    [Google Scholar]
  79. 79. 
    Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P et al. 2013. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–26
    [Google Scholar]
  80. 80. 
    Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R 2005. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10:176–82
    [Google Scholar]
  81. 81. 
    Sun X, St. John JC 2018. Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. Epigenet. Chromatin 11:53
    [Google Scholar]
  82. 82. 
    Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B et al. 2015. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21:81–94
    [Google Scholar]
  83. 83. 
    McFarland R, Taylor RW, Turnbull DM 2007. Mitochondrial disease—its impact, etiology, and pathology. Curr. Top. Dev. Biol. 77:113–55
    [Google Scholar]
  84. 84. 
    Trounce I, Wallace DC. 1996. Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somat. Cell Mol. Genet. 22:81–85
    [Google Scholar]
  85. 85. 
    Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE et al. 2019. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. PNAS 116:16028–35
    [Google Scholar]
  86. 86. 
    Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N et al. 1994. Identification of the remains of the Romanov family by DNA analysis. Nat. Genet. 6:130–35
    [Google Scholar]
  87. 87. 
    Wallace DC, Ruiz-Pesini E, Mishmar D 2003. mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb. Symp. Quant. Biol. 68:479–86
    [Google Scholar]
  88. 88. 
    Gerber AS, Loggins R, Kumar S, Dowling TE 2001. Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes?. Annu. Rev. Genet. 35:539–66
    [Google Scholar]
  89. 89. 
    Innocenti P, Morrow EH, Dowling DK 2011. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332:845–48
    [Google Scholar]
  90. 90. 
    Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C et al. 2014. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim. Biophys. Acta 1842:208–19
    [Google Scholar]
  91. 91. 
    St. John JC, Tsai TS. 2018. The association of mitochondrial DNA haplotypes and phenotypic traits in pigs. BMC Genet 19:41
    [Google Scholar]
  92. 92. 
    Tsai TS, Rajasekar S, St. John JC 2016. The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Susscrofadomesticus). BMC Genet 17:67
    [Google Scholar]
  93. 93. 
    Nagao Y, Totsuka Y, Atomi Y, Kaneda H, Lindahl KF et al. 1998. Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet. Syst. 73:21–27
    [Google Scholar]
  94. 94. 
    Ruiz-Pesini E, Lapeña AC, Díez-Sánchez C, Pérez-Martos A, Montoya J et al. 2000. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet. 67:682–96
    [Google Scholar]
  95. 95. 
    May-Panloup P, Desquiret V, Morinière C, Ferré-L'Hôtellier V, Lemerle S et al. 2014. Mitochondrial macro-haplogroup JT may play a protective role in ovarian ageing. Mitochondrion 18:1–6
    [Google Scholar]
  96. 96. 
    Sutarno , Cummins JM, Greeff J, Lymbery AJ 2002. Mitochondrial DNA polymorphisms and fertility in beef cattle. Theriogenology 57:1603–10
    [Google Scholar]
  97. 97. 
    Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV, Sánchez-Cabo F, Torroja C et al. 2016. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535:561–65
    [Google Scholar]
  98. 98. 
    Yu G, Xiang H, Tian J, Yin J, Pinkert CA et al. 2015. Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids. Sci. Rep. 5:13118
    [Google Scholar]
  99. 99. 
    Lee WT, Sun X, Tsai TS, Johnson JL, Gould JA et al. 2017. Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discov 3:17062
    [Google Scholar]
  100. 100. 
    Lee WT, Cain JE, Cuddihy A, Johnson J, Dickinson A et al. 2016. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis. Cell Death Discov 2:16016
    [Google Scholar]
  101. 101. 
    Ramalho-Santos J, Sutovsky P, Simerly C, Oko R, Wessel GM et al. 2000. ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Hum. Reprod. 15:2610–20
    [Google Scholar]
  102. 102. 
    Luetjens CM, Payne C, Schatten G 1999. Non-random chromosome positioning in human sperm and sex chromosome anomalies following intracytoplasmic sperm injection. Lancet 353:1240
    [Google Scholar]
  103. 103. 
    Marchington DR, Scott Brown MSG, Lamb VK, van Golde RJT, Kremer JAM et al. 2002. No evidence for paternal mtDNA transmission to offspring or extra-embryonic tissues after ICSI. Mol. Hum. Reprod. 8:1046–49
    [Google Scholar]
  104. 104. 
    Brenner CA, Barritt JA, Willadsen S, Cohen J 2000. Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil. Steril. 74:573–78
    [Google Scholar]
  105. 105. 
    Barritt JA, Brenner CA, Malter HE, Cohen J 2001. Rebuttal: interooplasmic transfers in humans. Reprod. Biomed. Online 3:47–48
    [Google Scholar]
  106. 106. 
    Acton BM, Lai I, Shang X, Jurisicova A, Casper RF 2007. Neutral mitochondrial heteroplasmy alters physiological function in mice. Biol. Reprod. 77:569–76
    [Google Scholar]
  107. 107. 
    Chen SH, Pascale C, Jackson M, Szvetecz MA, Cohen J 2016. A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre. Reprod. Biomed. Online 33:737–44
    [Google Scholar]
  108. 108. 
    Tsai TS, St. John JC 2018. The effects of mitochondrial DNA supplementation at the time of fertilization on the gene expression profiles of porcine preimplantation embryos. Mol. Reprod. Dev. 85:490–504
    [Google Scholar]
  109. 109. 
    St. John JC, Makanji Y, Johnson JL, Tsai TS, Lagondar S et al. 2019. The transgenerational effects of oocyte mitochondrial supplementation. Sci. Rep. 9:6694
    [Google Scholar]
  110. 110. 
    Derr JN, Hedrick PW, Halbert ND, Plough L, Dobson LK et al. 2012. Phenotypic effects of cattle mitochondrial DNA in American bison. Conserv. Biol. 26:1130–36
    [Google Scholar]
  111. 111. 
    Paschal JC, Sanders JO, Kerr JL 1991. Calving and weaning characteristics of Angus-, Gray Brahman-, Gir-, Indu-Brazil-, Nellore-, and Red Brahman-sired F1 calves. J. Anim. Sci. 69:2395–402
    [Google Scholar]
  112. 112. 
    Martin LC, Brinks JS, Bourdon RM, Cundiff LV 1992. Genetic effects on beef heifer puberty and subsequent reproduction. J. Anim. Sci. 70:4006–17
    [Google Scholar]
  113. 113. 
    Pick JL, Hutter P, Ebneter C, Ziegler AK, Giordano M, Tschirren B 2016. Artificial selection reveals the energetic expense of producing larger eggs. Front. Zool. 13:38
    [Google Scholar]
  114. 114. 
    Srirattana K, McCosker K, Schatz T, St. John JC 2017. Cattle phenotypes can disguise their maternal ancestry. BMC Genet 18:59
    [Google Scholar]
  115. 115. 
    Bowles EJ, Campbell KH, St. John JC 2007. Nuclear transfer: preservation of a nuclear genome at the expense of its associated mtDNA genome(s). Curr. Top. Dev. Biol. 77:251–90
    [Google Scholar]
  116. 116. 
    Munsie MJ, Michalska AE, O'Brien CM, Trounson AO, Pera MF, Mountford PS 2000. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10:989–92
    [Google Scholar]
  117. 117. 
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–13
    [Google Scholar]
  118. 118. 
    Morgan HD, Santos F, Green K, Dean W, Reik W 2005. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14:Suppl. 1R47–58
    [Google Scholar]
  119. 119. 
    Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K et al. 2002. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. PNAS 99:12889–94
    [Google Scholar]
  120. 120. 
    Enright BP, Kubota C, Yang X, Tian XC 2003. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biol. Reprod. 69:896–901
    [Google Scholar]
  121. 121. 
    Srirattana K, Imsoonthornruksa S, Laowtammathron C, Sangmalee A, Tunwattana W et al. 2012. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment. Cell. Reprogramming 14:248–57
    [Google Scholar]
  122. 122. 
    Zhang Y, Li J, Villemoes K, Pedersen AM, Purup S, Vajta G 2007. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 9:357–63
    [Google Scholar]
  123. 123. 
    Kim YJ, Ahn KS, Kim M, Shim H 2011. Comparison of potency between histone deacetylase inhibitors trichostatin A and valproic acid on enhancing in vitro development of porcine somatic cell nuclear transfer embryos. In Vitro Cell. Dev. Biol. Anim. 47:283–89
    [Google Scholar]
  124. 124. 
    Wen BQ, Li J, Li JJ, Tian SJ, Sun SC et al. 2014. The histone deacetylase inhibitor Scriptaid improves in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Theriogenology 81:332–39
    [Google Scholar]
  125. 125. 
    Bowles EJ, Lee J-H, Alberio R, Lloyd REI, Stekel D et al. 2007. Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics 176:1511–26
    [Google Scholar]
  126. 126. 
    Lloyd RE, Lee J-H, Alberio R, Bowles EJ, Ramalho-Santos J et al. 2006. Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172:2515–27
    [Google Scholar]
  127. 127. 
    Burgstaller JP, Schinogl P, Dinnyes A, Müller M, Steinborn R 2007. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol. 7:141
    [Google Scholar]
  128. 128. 
    Takeda K, Akagi S, Kaneyama K, Kojima T, Takahashi S et al. 2003. Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bostaurus) derived from cumulus cells. Mol. Reprod. Dev. 64:429–37
    [Google Scholar]
  129. 129. 
    Takeda K, Tasai M, Iwamoto M, Akita T, Tagami T et al. 2006. Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol. Reprod. Dev. 73:306–12
    [Google Scholar]
  130. 130. 
    Liu H, Wang CW, Grifo JA, Krey LC, Zhang J 1999. Reconstruction of mouse oocytes by germinal vesicle transfer: Maturity of host oocyte cytoplasm determines meiosis. Hum. Reprod. 14:2357–61
    [Google Scholar]
  131. 131. 
    Poulton J, Steffann J, Burgstaller J, McFarland R, Workshop P 2019. 243rd ENMC International Workshop: developing guidelines for management of reproductive options for families with maternally inherited mtDNA disease, Amsterdam, The Netherlands, 22–24 March 2019. Neuromuscul. Disord. 29:725–33
    [Google Scholar]
  132. 132. 
    Yamada M, Emmanuele V, Sanchez-Quintero MJ, Sun B, Lallos G et al. 2016. Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18:749–54
    [Google Scholar]
  133. 133. 
    Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R et al. 2016. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540:270–75
    [Google Scholar]
  134. 134. 
    Bowles EJ, Tecirlioglu RT, French AJ, Holland MK, St. John JC 2008. Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells 26:775–82
    [Google Scholar]
  135. 135. 
    Royrvik EC, Burgstaller JP, Johnston IG 2016. mtDNA diversity in human populations highlights the merit of haplotype matching in gene therapies. Mol. Hum. Reprod. 22:809–17
    [Google Scholar]
  136. 136. 
    Johnston IG, Burgstaller JP, Havlicek V, Kolbe T, Rulicke T et al. 2015. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. eLife 4:e07464
    [Google Scholar]
  137. 137. 
    Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL et al. 2010. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465:82–85
    [Google Scholar]
  138. 138. 
    Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM et al. 2016. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534:383–86
    [Google Scholar]
  139. 139. 
    Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL et al. 2015. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77:753–59
    [Google Scholar]
  140. 140. 
    Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF 2017. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat. Biotechnol. 35:1059–68
    [Google Scholar]
  141. 141. 
    Meirelles FV, Smith LC. 1997. Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145:445–51
    [Google Scholar]
  142. 142. 
    Srirattana K, St. John JC 2017. Manipulating the mitochondrial genome to enhance cattle embryo development. G3 7:2065–80
    [Google Scholar]
  143. 143. 
    Lee JH, Peters A, Fisher P, Bowles EJ, St. John JC, Campbell KH 2010. Generation of mtDNA homoplasmic cloned lambs. Cell. Reprogramming 12:347–55
    [Google Scholar]
  144. 144. 
    Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M 1984. Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 12:4811–24
    [Google Scholar]
  145. 145. 
    Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM 2011. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. PNAS 108:3630–35
    [Google Scholar]
  146. 146. 
    Hong EE, Okitsu CY, Smith AD, Hsieh CL 2013. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol. Cell. Biol. 33:2683–90
    [Google Scholar]
  147. 147. 
    Baccarelli AA, Byun HM. 2015. Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin. Epigenet. 7:44
    [Google Scholar]
  148. 148. 
    Mechta M, Ingerslev LR, Fabre O, Picard M, Barres R 2017. Evidence suggesting absence of mitochondrial DNA methylation. Front. Genet. 8:166
    [Google Scholar]
  149. 149. 
    Sirard MA. 2019. Distribution and dynamics of mitochondrial DNA methylation in oocytes, embryos and granulosa cells. Sci. Rep. 9:11937
    [Google Scholar]
  150. 150. 
    Dzitoyeva S, Chen H, Manev H 2012. Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol. Aging 33:2881–91
    [Google Scholar]
/content/journals/10.1146/annurev-animal-080520-083353
Loading
/content/journals/10.1146/annurev-animal-080520-083353
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error