1932

Abstract

The evolution of herbicide resistance in weed populations is a highly replicated example of adaptation surmounting the race against extinction, but the factors determining its rate and nature remain poorly understood. Here, we explore theory and empirical evidence for the importance of population genetic parameters—including effective population size, dominance, mutational target size, and gene flow—in influencing the probability and mode of herbicide resistance adaptation and its variation across species. We compiled data on the number of resistance mutations across populations for 79 herbicide-resistant species. Our findings are consistent with theoretical predictions that self-fertilization reduces resistance adaptation from standing variation within populations, but increases independent adaptation across populations. Furthermore, we provide evidence for a ploidy–mating system interaction that may reflect trade-offs in polyploids between increased effective population size and greater masking of beneficial mutations. We highlight the power of population genomic approaches to provide insights into the evolutionary dynamics of herbicide resistance with important implications for understanding the limits of adaptation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040038
2018-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040038.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040038&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AF, Whitlock MC. 1.  2011. Inferences about the distribution of dominance drawn from yeast gene knockout data. Genetics 187:553–66 [Google Scholar]
  2. Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C. 2.  et al. 2003. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 163:1287–98 [Google Scholar]
  3. Anderson JB, Sirjusingh C, Ricker N. 3.  2004. Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 168:1915–23 [Google Scholar]
  4. Antonovics J.4.  1968. Evolution in closely adjacent plant populations V. Evolution of self-fertility. Heredity 23:219–38 [Google Scholar]
  5. Antonovics J, Bradshaw AD, Turner RG. 5.  1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7:1–85 [Google Scholar]
  6. Ashworth MB, Walsh MJ, Flower KC, Powles SB. 6.  2016. Recurrent selection with reduced 2,4-d amine doses results in the rapid evolution of 2,4-d herbicide resistance in wild radish (Raphanus raphanistrum L.). Pest Manag. Sci. 72:2091–98 [Google Scholar]
  7. Bagavathiannan MV, Norsworthy JK. 7.  2014. Pollen-mediated transfer of herbicide resistance in Echinochloa crus-galli. Pest Manag. Sci 70:1425–31 [Google Scholar]
  8. Baker HG.8.  1955. Self-compatibility and establishment after long-distance dispersal. Evolution 9:347–49 [Google Scholar]
  9. Baker HG.9.  1974. The evolution of weeds. Annu. Rev. Ecol. Syst. 5:1–24 [Google Scholar]
  10. Ball DA.10.  1992. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci 40:654–59 [Google Scholar]
  11. Barrett RDH, Schluter D. 11.  2008. Adaptation from standing genetic variation. Trends Ecol. Evol. 23:38–44 [Google Scholar]
  12. Baucom RS.12.  2016. The remarkable repeated evolution of herbicide resistance. Am. J. Bot. 103:181–83 [Google Scholar]
  13. Baudry E, Kerdelhué C, Innan H, Stephan W. 13.  2001. Species and recombination effects on DNA variability in the tomato genus. Genetics 158:1725–35 [Google Scholar]
  14. Behrman EL, Watson SS, O'Brien KR, Heschel MS, Schmidt PS. 14.  2015. Seasonal variation in life history traits in two Drosophila species. J. Evol. Biol. 28:1691–704 [Google Scholar]
  15. Bell G, Gonzalez A. 15.  2009. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12:942–48 [Google Scholar]
  16. Bell G, Gonzalez A. 16.  2011. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:1327–30 [Google Scholar]
  17. Berg JJ, Coop G. 17.  2014. A population genetic signal of polygenic adaptation. PLOS Genet 10:e1004412 [Google Scholar]
  18. Bergelson J, Purrington CB. 18.  1996. Surveying patterns in the cost of resistance in plants. Am. Nat. 148:536–58 [Google Scholar]
  19. Bergelson J, Stahl E, Dudek S, Kreitman M. 19.  1998. Genetic variation within and among populations of Arabidopsis thaliana. Genetics 148:1311–23 [Google Scholar]
  20. Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA. 20.  2014. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLOS Genet 10:e1004775 [Google Scholar]
  21. Bourne EC, Bocedi G, Travis JMJ, Pakeman RJ, Brooker RW, Schiffers K. 21.  2014. Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proc. R. Soc. Lond. B 281:20132795 [Google Scholar]
  22. Bradshaw LD, Padgette SR, Kimball SL, Wells BH. 22.  1997. Perspectives on glyphosate resistance. Weed Technol 11:189–98 [Google Scholar]
  23. Burger R, Lynch M. 23.  1995. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49:151–63 [Google Scholar]
  24. Busi R, Girotto M, Powles SB. 24.  2016. Response to low-dose herbicide selection in self-pollinated Avena fatua. Pest Manag. Sci 72:603–8 [Google Scholar]
  25. Busi R, Neve P, Powles S. 25.  2013. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation. Evol. Appl. 6:231–42 [Google Scholar]
  26. Brachi B, Morris GP, Borevitz JO. 26.  2011. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232 [Google Scholar]
  27. Carlson SM, Cunningham CJ, Westley PAH. 27.  2014. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29:521–30 [Google Scholar]
  28. Chahal PS, Aulakh JS, Jugulam M, Jhala AJ. 28.  2015. Herbicide-resistant Palmer amaranth (Amaranthus palmeri S. Wats.) in the United States—mechanisms of resistance, impact, and management. Herbicides, Agronomic Crops and Weed Biology AJ Price, JA Kelton, L Sarunaite 1–30 London: InTech [Google Scholar]
  29. Charlesworth B.29.  1992. Evolutionary rates in partially self-fertilizing species. Am. Nat. 140:126–48 [Google Scholar]
  30. Chatham LA, Bradley KW, Kruger GR, Martin JR, Owen MDK. 30.  et al. 2015. A multistate study of the association between glyphosate resistance and EPSPS gene amplification in waterhemp (Amaranthus tuberculatus). Weed Sci 63:569–77 [Google Scholar]
  31. Chatham LA, Wu C, Riggins CW, Hager AG, Young BG. 31.  et al. 2015. EPSPS gene amplification is present in the majority of glyphosate-resistant Illinois waterhemp (Amaranthus tuberculatus) populations. Weed Technol 29:48–55 [Google Scholar]
  32. Chen J, Huang H, Zhang C, Wei S, Huang Z. 32.  et al. 2015. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica). Planta 242:859–68 [Google Scholar]
  33. Concepcion D, Seburn KL, Wen G, Frankel WN, Hamilton BA. 33.  2004. Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168:953–59 [Google Scholar]
  34. Coop G, Witonsky D, Di Rienzo A, Pritchard JK. 34.  2010. Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–23 [Google Scholar]
  35. Costea M, Weaver SE, Tardif FJ. 35.  2005. The biology of invasive alien plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif. Can. J. Plant Sci 85:507–22 [Google Scholar]
  36. Cruden RW.36.  1977. Pollen‐ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46 [Google Scholar]
  37. Darmency H, Menchari Y, Le Corre V Délye C. 37.  2015. Fitness cost due to herbicide resistance may trigger genetic background evolution. Evolution 69:271–78 [Google Scholar]
  38. de Wet JMJ. 38.  1971. Polyploidy and evolution in plants. Taxon 20:29–35 [Google Scholar]
  39. Délye C.39.  2013. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 69:176–87 [Google Scholar]
  40. Délye C, Deulvot C, Chauvel B. 40.  2013. DNA analysis of herbarium specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides. PLOS ONE 8:e75117 [Google Scholar]
  41. Délye C, Gardin J, Boucansaud K, Chauvel B, Petit C. 41.  2011. Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Res 51:433–37 [Google Scholar]
  42. Délye C, Jasieniuk M, Le Corre V. 42.  2013. Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29:649–58 [Google Scholar]
  43. Devine MD, Shukla A. 43.  2000. Altered target sites as a mechanism of herbicide resistance. Crop Prot 19:881–89 [Google Scholar]
  44. Dillon A, Varanasi VK, Danilova TV, Koo D-H, Nakka S. 44.  et al. 2017. Physical mapping of amplified copies of the 5-enolpyruvylshikimate-3-phosphate synthase gene in glyphosate-resistant Amaranthus tuberculatus. Plant Physiol 173:1226–34 [Google Scholar]
  45. Donn G, Tischer E, Smith JA, Goodman HM. 45.  1984. Herbicide-resistant alfalfa cells: an example of gene amplification in plants. J. Mol. Appl. Genet. 2:621–35 [Google Scholar]
  46. Duggleby RG, McCourt JA, Guddat LW. 46.  2008. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46:309–24 [Google Scholar]
  47. Feder AF, Rhee S-Y, Holmes SP, Shafer RW, Petrov DA, Pennings PS. 47.  2016. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1. eLife 5:e10670 [Google Scholar]
  48. Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. 48.  2014. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol. Biol. Evol. 31:1275–91 [Google Scholar]
  49. Fisher RA.49.  1930. The Genetical Theory of Natural Selection: A Complete Variorum Edition Oxford, UK: Oxford Univ. Press318 pp.
  50. Flood PJ, van Heerwaarden J, Becker F, de Snoo CB, Harbinson J, Aarts MGM. 50.  2016. Whole-genome hitchhiking on an organelle mutation. Curr. Biol. 26:1306–11 [Google Scholar]
  51. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 51.  1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–45 [Google Scholar]
  52. Gaines TA, Wright AA, Molin WT, Lorentz L, Riggins CW. 52.  et al. 2013. Identification of genetic elements associated with EPSPS gene amplification. PLOS ONE 8:e65819 [Google Scholar]
  53. Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST. 53.  et al. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri. PNAS 107:1029–34 [Google Scholar]
  54. Garud NR, Rosenberg NA. 54.  2015. Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps. Theor. Popul. Biol. 102:94–101 [Google Scholar]
  55. Glémin S, Ronfort J. 55.  2013. Adaptation and maladaptation in selfing and outcrossing species: new mutations versus standing variation. Evolution 67:225–40Outlines the probability of adaptation in selfers versus outcrossers, from new mutation and standing genetic variation. [Google Scholar]
  56. Gomulkiewicz R, Holt RD. 56.  1995. When does evolution by natural selection prevent extinction?. Evolution 49:201–7 [Google Scholar]
  57. Gonzalez A, Ronce O, Ferriere R, Hochberg ME. 57.  2013. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. Lond. B 368:20120404 [Google Scholar]
  58. Goodwillie C, Kalisz S, Eckert CG. 58.  2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36:47–79 [Google Scholar]
  59. Grant V.59.  1981. Plant Speciation New York: Columbia Univ. Press. , 2nd ed..
  60. Gressel J, Segel LA. 60.  1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75:349–71 [Google Scholar]
  61. Gressel J, Segel LA. 61.  1990. Herbicide rotations and mixtures. ACS Symp. Ser. 421:430–58 [Google Scholar]
  62. Gressel J, Segel LA. 62.  1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol 4:186–98 [Google Scholar]
  63. Gustafsson A.63.  1946. Apomixis in higher plants. Lunds Univ. Arsskr. 42:1–67 [Google Scholar]
  64. Hagerup O.64.  1932. Über polyploidie in beziehung zu klima, ökologie und phylogenie. Hereditas 16:19–40 [Google Scholar]
  65. Haldane JBS.65.  1927. A mathematical theory of natural and artificial selection, part V: selection and mutation. Math. Proc. Camb. Philos. Soc. 23:838–44 [Google Scholar]
  66. Haldane JBS.66.  1937. The effect of variation on fitness. Am. Nat. 71:337–49 [Google Scholar]
  67. Harms CT, DiMaio JJ. 67.  1991. Primisulfuron herbicide-resistant tobacco cell lines. Application of fluctuation test design to in vitro mutant selection with plant cells. J. Plant Physiol. 137:513–19 [Google Scholar]
  68. Hart SE, Saunders JW, Penner D. 68.  1993. Semidominant nature of monogenic sulfonylurea herbicide resistance in sugarbeet (Beta vulgaris). Weed Sci 41:317–24 [Google Scholar]
  69. Haughn G, Somerville CR. 69.  1987. Selection for herbicide resistance at the whole-plant level. ACS Symp. Ser. 334:98–107 [Google Scholar]
  70. Havlin JL, Kissel DE, Maddux LD, Claassen MM, Long JH. 70.  1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. J. 54:448–52 [Google Scholar]
  71. Healy-Fried ML, Funke T, Priestman MA, Han H, Schönbrunn E. 71.  2007. Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. J. Biol. Chem. 282:32949–55 [Google Scholar]
  72. Heap I.72.  2014. Herbicide resistant weeds. Integrated Pest Management D Pimentel, R Peshin 281–301 Dordrecht, Neth.: Springer [Google Scholar]
  73. Heap I.73.  2017. International Survey of Herbicide Resistant Weeds http://weedscience.org
  74. Hermisson J, Pennings PS. 74.  2005. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–52 [Google Scholar]
  75. Hermisson J, Pennings PS. 75.  2017. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol. Evol. 8:700–16 [Google Scholar]
  76. Holt JS, Welles SR, Silvera K, Heap IM, Heredia SM. 76.  et al. 2013. Taxonomic and life history bias in herbicide resistant weeds: implications for deployment of resistant crops. PLOS ONE 8:e71916 [Google Scholar]
  77. Holt RD, Gomulkiewicz R. 77.  1997. The evolution of species’ niches: a population dynamic perspective. Case Studies in Mathematical Modelling: Ecology, Physiology, and Cell Biology HG Othmer, FR Adler, MA Lewis, JC Dalton 25–50 Upper Saddle River, NJ: Prentice-Hall [Google Scholar]
  78. Holt RD, Gomulkiewicz R. 78.  2004. Conservation implications of niche conservatism and evolution in heterogeneous environments. In Evolutionary Conservation Biology R Ferrière, U Dieckmann, D Couvet 244–64 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  79. Huang X, Han B. 79.  2014. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65:531–51 [Google Scholar]
  80. Jander G, Baerson SR, Hudak JA, Gonzalez KA, Gruys KJ, Last RL. 80.  2003. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol 131:139–46 [Google Scholar]
  81. Jasieniuk M, Brûlé-Babel AL, Morrison IN. 81.  1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176–93Gives the first thorough synthesis of the evolutionary genetics of herbicide resistance; models the dynamics of resistance across key influencing parameters. [Google Scholar]
  82. Josephs EB, Stinchcombe JR, Wright SI. 82.  2017. What can genome‐wide association studies tell us about the evolutionary forces maintaining genetic variation for quantitative traits?. New Phytol 214:21–33 [Google Scholar]
  83. Kacser H, Burns JA. 83.  1981. The molecular basis of dominance. Genetics 97:639–66 [Google Scholar]
  84. Kaplan NL, Hudson RR, Langley CH. 84.  1989. The “hitchhiking effect” revisited. Genetics 123:887–99 [Google Scholar]
  85. Karasov T, Messer PW, Petrov DA. 85.  2010. Evidence that adaptation in Drosophila is not limited by mutation at single sites. PLOS Genet 6:e1000924Provides a remarkable example of parallel soft selective sweeps and refutes the traditional mutation-limited view of adaptation. [Google Scholar]
  86. Keightley PD.86.  1996. A metabolic basis for dominance and recessivity. Genetics 143:621–25 [Google Scholar]
  87. Kubrak OI, Nylin S, Flatt T, Nässel DR, Leimar O. 87.  2017. Adaptation to fluctuating environments in a selection experiment with Drosophila melanogaster. Ecol. Evol 7:3796–807 [Google Scholar]
  88. Kuester A, Chang S-M, Baucom RS. 88.  2015. The geographic mosaic of herbicide resistance evolution in the common morning glory, Ipomoea purpurea: evidence for resistance hotspots and low genetic differentiation across the landscape. Evol. Appl. 8:821–33 [Google Scholar]
  89. Kuester A, Fall E, Chang S-M, Baucom RS. 89.  2017. Shifts in outcrossing rates and changes to floral traits are associated with the evolution of herbicide resistance in the common morning glory. Ecol. Lett. 20:41–49Provides the first discussion of and evidence for the demographic consequences of selfing in herbicide resistance evolution. [Google Scholar]
  90. Kuester A, Wilson A, Chang S-M, Baucom RS. 90.  2016. A resurrection experiment finds evidence of both reduced genetic diversity and potential adaptive evolution in the agricultural weed Ipomoea purpurea. Mol. Ecol 25:4508–20 [Google Scholar]
  91. Lachapelle J, Bell G. 91.  2012. Evolutionary rescue of sexual and asexual populations in a deteriorating environment. Evolution 66:3508–18 [Google Scholar]
  92. Lagator M, Vogwill T, Colegrave N, Neve P. 92.  2013. Herbicide cycling has diverse effects on evolution of resistance in Chlamydomonas reinhardtii. Evol. Appl 6:197–206 [Google Scholar]
  93. Lanfear R, Kokko H, Eyre-Walker A. 93.  2014. Population size and the rate of evolution. Trends Ecol. Evol. 29:33–41 [Google Scholar]
  94. Lavigne C, Millecamps JL, Manac'h H, Cordonnier P, Matejicek A. 94.  et al. 1994. Monogenic semidominant sulfonylurea resistance in a line of white chicory. Plant Breed 113:305–11 [Google Scholar]
  95. Lee KM, Coop G. 95.  2017. Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207:1591–619 [Google Scholar]
  96. Letouzé A, Gasquez J. 96.  2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosuroides Huds.). Agronomie 23:601–8 [Google Scholar]
  97. Liebman M, Dyck E. 97.  1993. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3:92–122 [Google Scholar]
  98. Liu F, Zhang L, Charlesworth D. 98.  1998. Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc. R. Soc. B 265:293–301 [Google Scholar]
  99. Lorentz L, Gaines TA, Nissen SJ, Westra P, Strek HJ. 99.  et al. 2014. Characterization of glyphosate resistance in Amaranthus tuberculatus populations. J. Agric. Food Chem. 62:8134–42 [Google Scholar]
  100. Lorraine-Colwill DF, Powles SB, Hawkes TR, Preston C. 100.  2001. Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.). Theor. Appl. Genet. 102:545–50 [Google Scholar]
  101. Löve A.101.  1953. Subarctic polyploidy. Hereditas 39:113–24 [Google Scholar]
  102. Löve A, Löve D. 102.  1949. The geobotanical significance of polyploidy. I. Polyploidy and latitude. Port. Acta Bio. Ser. A Spec. Vol 273–352
  103. Lynch M, Force A. 103.  2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–73 [Google Scholar]
  104. Lynch M, Lande R. 104.  1993. Evolution and extinction in response to environmental change. Biotic Interactions and Global Change P Kareiva, J Kingsolver, R Huey 234–50 Sunderland, MA: Sinauer [Google Scholar]
  105. Mable BK, Adam A. 105.  2007. Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol. Ecol 16:3565–80 [Google Scholar]
  106. Mackenzie R, Mortimer AM, Putwain PD, Bryan IB, Hawkes TR. 106.  1997. The potential for the evolution of herbicide resistance: selection, characterisation and polygenic inheritance of resistance to chlorsulfuron in perennial ryegrass. Weed and Crop Resistance to Herbicides R De Prado, J Jorrín, L García-Torres 207–13 Dordrecht, Neth.: Springer [Google Scholar]
  107. Madlung A.107.  2013. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104 [Google Scholar]
  108. Malone JM, Morran S, Shirley N, Boutsalis P, Preston C. 108.  2016. EPSPS gene amplification in glyphosate-resistant Bromus diandrus. Pest Manag. Sci 72:81–88 [Google Scholar]
  109. Ma X-F, Gustafson JP. 109.  2005. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet. Genome Res. 109:236–49 [Google Scholar]
  110. McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG. 110.  2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. PNAS 103:569–73 [Google Scholar]
  111. Menchari Y, Chauvel B, Darmency H, Délye C. 111.  2008. Fitness costs associated with three mutant acetyl-coenzyme A carboxylase alleles endowing herbicide resistance in black-grass Alopecurus myosuroides. J. Appl. Ecol 45:939–47 [Google Scholar]
  112. Messer PW, Ellner SP, Hairston NG Jr.. 112.  2016. Can population genetics adapt to rapid evolution?. Trends Genet 32:408–18 [Google Scholar]
  113. Messer PW, Petrov DA. 113.  2013. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28:659–69 [Google Scholar]
  114. Miki BL, Labbé H, Hattori J, Ouellet T, Gabard J. 114.  et al. 1990. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor. Appl. Genet. 80:449–58 [Google Scholar]
  115. Müntzing A.115.  1936. The evolutionary significance of autopolyploidy. Hereditas 21:363–78 [Google Scholar]
  116. Nam K, Munch K, Mailund T, Nater A, Greminger MP. 116.  et al. 2017. Evidence that the rate of strong selective sweeps increases with population size in the great apes. PNAS 114:1613–18 [Google Scholar]
  117. Nandula VK, Ray JD, Ribeiro DN, Pan Z, Reddy KN. 117.  2013. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci 61:374–83 [Google Scholar]
  118. Narum SR, Hess JE. 118.  2011. Comparison of FST outlier tests for SNP loci under selection. Mol. Ecol. Resour. 11:184–94 [Google Scholar]
  119. Neve P, Busi R, Renton M, Vila-Aiub MM. 119.  2014. Expanding the eco-evolutionary context of herbicide resistance research. Pest Manag. Sci. 70:1385–93Gives an ecological-evolutionary synthesis of the key factors influencing resistance adaptation with an emphasis on integrative management approaches. [Google Scholar]
  120. Neve P, Powles S. 120.  2005. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor. Appl. Genet 110:1154–66 [Google Scholar]
  121. Newhouse K, Singh B, Shaner D, Stidham M. 121.  1991. Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. Theor. Appl. Genet. 83:65–70 [Google Scholar]
  122. Nordborg M.122.  2000. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–29 [Google Scholar]
  123. Ohno S.123.  1970. Evolution by Gene Duplication Heidelberg, Ger.: Springer
  124. Orr HA.124.  2003. The distribution of fitness effects among beneficial mutations. Genetics 163:1519–26 [Google Scholar]
  125. Orr HA, Betancourt AJ. 125.  2001. Haldane's sieve and adaptation from the standing genetic variation. Genetics 157:875–84 [Google Scholar]
  126. Orr HA, Unckless RL. 126.  2008. Population extinction and the genetics of adaptation. Am. Nat. 172:160–69 [Google Scholar]
  127. Orr HA, Unckless RL. 127.  2014. The population genetics of evolutionary rescue. PLOS Genet 10:e1004551Presents an important extension of evolutionary rescue theory “as a race against extinction” allowing for rescue from new mutation and standing genetic variation. [Google Scholar]
  128. Otto SP, Whitton J. 128.  2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34:401–37Reviews polyploid population genetics, microevolution, and macroevolution. [Google Scholar]
  129. Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW. 129.  et al. 2015. The scope of Baker's law. New Phytol 208:656–67 [Google Scholar]
  130. Paquin C, Adams J. 130.  1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302:495–500 [Google Scholar]
  131. Paris M, Roux F, Bérard A, Reboud X. 131.  2008. The effects of the genetic background on herbicide resistance fitness cost and its associated dominance in Arabidopsis thaliana. Heredity 101:499–506 [Google Scholar]
  132. Parker WB, Marshall LC, Burton JD, Somers DA, Wyse DL. 132.  et al. 1990. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. PNAS 87:7175–79 [Google Scholar]
  133. Pennings PS.133.  2012. Standing genetic variation and the evolution of drug resistance in HIV. PLOS Comput. Biol. 8:e1002527 [Google Scholar]
  134. Perron GG, Gonzalez A, Buckling A. 134.  2007. Source-sink dynamics shape the evolution of antibiotic resistance and its pleiotropic fitness cost. Proc. R. Soc. B 274:2351–56 [Google Scholar]
  135. Peter BM, Huerta-Sanchez E, Nielsen R. 135.  2012. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLOS Genet 8:e1003011 [Google Scholar]
  136. Petit C, Duhieu B, Boucansaud K, Délye C. 136.  2010. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci 178:501–9 [Google Scholar]
  137. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 137.  2017. nlme: linear and nonlinear mixed effects models. R Package Version 3:1–131 https://CRAN.R-project.org/package=nlme [Google Scholar]
  138. Preston C, Powles SB. 138.  2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity 88:8–13 [Google Scholar]
  139. Pritchard JK, Pickrell JK, Coop G. 139.  2010. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 20:R208–15 [Google Scholar]
  140. Przeworski M, Coop G, Wall JD. 140.  2005. The signature of positive selection on standing genetic variation. Evolution 59:2312–23 [Google Scholar]
  141. Purrington CB, Bergelson J. 141.  1999. Exploring the physiological basis of costs of herbicide resistance in Arabidopsis thaliana. Am. Nat 154:S82–91 [Google Scholar]
  142. Ribeiro DN, Pan Z, Duke SO, Nandula VK, Baldwin BS. 142.  et al. 2014. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri. Planta 239:199–212 [Google Scholar]
  143. Ronfort J, Glemin S. 143.  2013. Mating system, Haldane's sieve, and the domestication process. Evolution 67:1518–26 [Google Scholar]
  144. Roux F, Gasquez J, Reboud X. 144.  2004. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 166:449–60Identifies that the dominance of the cost of resistance for pleiotropic traits is not related to the dominance of the resistance benefit. [Google Scholar]
  145. Roux F, Matéjicek A, Gasquez J, Reboud X. 145.  2005. Dominance variation across six herbicides of the Arabidopsis thaliana csr1-1 and csr1-2 resistance alleles. Pest Manag. Sci. 61:1089–95 [Google Scholar]
  146. Salas RA, Dayan FE, Pan Z, Watson SB, Dickson JW. 146.  et al. 2012. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Manag. Sci. 68:1223–30 [Google Scholar]
  147. Sammons RD, Gaines TA. 147.  2014. Glyphosate resistance: state of knowledge. Pest Manag. Sci. 70:1367–77 [Google Scholar]
  148. Sarangi D, Tyre AJ, Patterson EL, Gaines TA, Irmak S. 148.  et al. 2017. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes. Sci. Rep. 7:srep44913 [Google Scholar]
  149. Savolainen O, Langley CH, Lazzaro BP, Fr H. 149.  2000. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol. Biol. Evol 17:645–55 [Google Scholar]
  150. Scarabel L, Panozzo S, Varotto S, Sattin M. 150.  2011. Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden-resistant Lolium spp. Pest Manag. Sci. 67:932–41 [Google Scholar]
  151. Schrider DR, Kern AD. 151.  2016. S/HIC: robust identification of soft and hard sweeps using machine learning. PLOS Genet 12:e1005928 [Google Scholar]
  152. Sebastian SA, Fader GM, Ulrich JF, Forney DR, Chaleff RS. 152.  1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci 29:1403–8 [Google Scholar]
  153. Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N. 153.  et al. 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519:349–52 [Google Scholar]
  154. Shaaltiel Y, Chua NH, Gepstein S, Gressel J. 154.  1988. Dominant pleiotropy controls enzymes co-segregating with paraquat resistance in Conyza bonariensis. Theor. Appl. Genet 75:850–56 [Google Scholar]
  155. Shimono Y, Shimono A, Oguma H, Konuma A, Tominaga T. 155.  2015. Establishment of Lolium species resistant to acetolactate synthase-inhibiting herbicide in and around grain-importation ports in Japan. Weed Res 55:101–11 [Google Scholar]
  156. Smith JM, Haigh J. 156.  1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23:23–35 [Google Scholar]
  157. Stebbins GL.157.  1950. Variation and Evolution in Plants New York: Columbia Univ. Press643 pp.
  158. Tilman D.158.  1999. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. PNAS 96:5995–6000 [Google Scholar]
  159. Tranel J, Wassom J, Jeschke R, Rayburn L. 159.  2002. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theor. Appl. Genet. 105:674–79 [Google Scholar]
  160. Uecker H, Otto SP, Hermisson J. 160.  2014. Evolutionary rescue in structured populations. Am. Nat. 183:E17–35 [Google Scholar]
  161. Vila-Aiub MM, Neve P, Powles SB. 161.  2005. Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol 167:787–96 [Google Scholar]
  162. Vila-Aiub MM, Neve P, Powles SB. 162.  2009. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol 184:751–67 [Google Scholar]
  163. Wang X, Shi X, Hao B, Ge S, Luo J. 163.  2005. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–46 [Google Scholar]
  164. Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR. 164.  et al. 2004. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. PNAS 101:14533–38 [Google Scholar]
  165. Wiersma AT, Gaines TA, Preston C, Hamilton JP, Giacomini D. 165.  et al. 2015. Gene amplification of 5-enol-pyruvylshikimate-3-phosphate synthase in glyphosate-resistant Kochia scoparia. Planta 241:463–74 [Google Scholar]
  166. Wilson BA, Pennings PS, Petrov DA. 166.  2017. Soft selective sweeps in evolutionary rescue. Genetics 205:1573–86Models the roles of soft and hard sweeps in evolutionary rescue; finds soft sweeps are more likely to occur when evolutionary rescue is likely. [Google Scholar]
  167. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 167.  2009. The frequency of polyploid speciation in vascular plants. PNAS 106:13875–79 [Google Scholar]
  168. Yerka MK, de Leon N, Stoltenberg DE. 168.  2012. Pollen-mediated gene flow in common lambsquarters (Chenopodium album). Weed Sci 60:600–6 [Google Scholar]
  169. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP. 169.  et al. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78 [Google Scholar]
  170. Yu Q, Ahmad-Hamdani MS, Han H, Christoffers MJ, Powles SB. 170.  2013. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species. Heredity 110:220–31 [Google Scholar]
  171. Yu Q, Powles SB. 171.  2014. Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag. Sci. 70:1340–50 [Google Scholar]
  172. Yuan JS, Tranel PJ, Stewart CN Jr.. 172.  2007. Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6–13 [Google Scholar]
  173. Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA. 173.  et al. 2013. Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92 [Google Scholar]
  174. Zeyl C, Vanderford T, Carter M. 174.  2003. An evolutionary advantage of haploidy in large yeast populations. Science 299:555–58 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040038
Loading
/content/journals/10.1146/annurev-arplant-042817-040038
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error