1932

Abstract

A fascinating feature of plant growth and development is that plants initiate organs continually throughout their lifespan. The ability to do this relies on specialized groups of pluripotent stem cells termed meristems, which allow for the elaboration of the shoot, root, and vascular systems. We now have a deep understanding of the genetic networks that control meristem initiation and stem cell maintenance, including the roles of receptors and their ligands, transcription factors, and integrated hormonal and chromatin control. This review describes these networks and discusses how this knowledge is being applied to improve crop productivity by increasing fruit size and seed number.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040549
2019-04-29
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-042817-040549.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040549&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP et al. 2016. Advancing crop transformation in the era of genome editing. Plant Cell 28:71510–20
    [Google Scholar]
  2. 2.  Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T et al. 2005. Cytokinin oxidase regulates rice grain production. Science 309:5735741–45
    [Google Scholar]
  3. 3.  Avramova V, Sprangers K, Beemster GTS 2015. The maize leaf: another perspective on growth regulation. Trends Plant Sci 20:12787–97
    [Google Scholar]
  4. 4.  Balkunde R, Kitagawa M, Xu XM, Wang J, Jackson D 2017. SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size and organ boundaries in Arabidopsis. Plant J 90:3435–46
    [Google Scholar]
  5. 5.  Barton MK 2010. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev. Biol. 341:195–113
    [Google Scholar]
  6. 6.  Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A et al. 2009. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. PNAS 106:93615–20
    [Google Scholar]
  7. 7.  Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K et al. 2011. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol 52:114–29
    [Google Scholar]
  8. 8.  Bleckmann A, Weidtkamp-Peters S, Seidel CAM, Simon R 2010. Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152:1166–76
    [Google Scholar]
  9. 9.  Bolduc N, Tyers RG, Freeling M, Hake S 2014. Unequal redundancy in maize knotted1 homeobox genes. Plant Physiol 164:1229–38
    [Google Scholar]
  10. 10.  Bommert P, Je BI, Goldshmidt A, Jackson D 2013. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:7472555–58
    [Google Scholar]
  11. 11.  Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M et al. 2005. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:61235–45
    [Google Scholar]
  12. 12.  Bommert P, Nagasawa NS, Jackson D 2013. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat. Genet. 45:3334–37
    [Google Scholar]
  13. 13.  Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:5479617–19
    [Google Scholar]
  14. 14.  Brophy JAN, LaRue T, Dinneny JR 2018. Understanding and engineering plant form. Semin. Cell Dev. Biol. 79:68–77
    [Google Scholar]
  15. 15.  Busch W, Miotk A, Ariel FD, Zhao Z, Forner J et al. 2010. Transcriptional control of a plant stem cell niche. Dev. Cell 18:5841–53
    [Google Scholar]
  16. 16.  Campbell L, Turner S 2017. Regulation of vascular cell division. J. Exp. Bot. 68:127–43
    [Google Scholar]
  17. 17.  Carles CC, Fletcher JC 2009. The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes Dev 23:232723–28
    [Google Scholar]
  18. 18.  Carles CC, Lertpiriyapong K, Reville K, Fletcher JC 2004. The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy. Genetics 167:41893–903
    [Google Scholar]
  19. 19.  Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A et al. 2014. The boron efflux transporter. ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 26:72962–77
    [Google Scholar]
  20. 20.  Chen H, Banerjee AK, Hannapel DJ 2004. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:2276–84
    [Google Scholar]
  21. 21.  Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM 2012. Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing Arabidopsis shoot meristem. PNAS 109:104002–7
    [Google Scholar]
  22. 22.  Chuck GS, Brown PJ, Meeley R, Hake S 2014. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. PNAS 111:5218775–80
    [Google Scholar]
  23. 23.  Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM 1996. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:51567–75
    [Google Scholar]
  24. 24.  Clark SE, Williams RW, Meyerowitz EM 1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:4575–85
    [Google Scholar]
  25. 25.  Cock JM, McCormick S 2001. A large family of genes that share homology with CLAVATA3. Plant Physiol 126:3939–42
    [Google Scholar]
  26. 26.  Daum G, Medzihradszky A, Suzaki T, Lohmann JU 2014. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. PNAS 111:4014619–24
    [Google Scholar]
  27. 27.  De Rybel B, Mähönen AP, Helariutta Y, Weijers D 2016. Plant vascular development: from early specification to differentiation. Nat. Rev. Mol. Cell Biol. 17:130–40
    [Google Scholar]
  28. 28.  Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M et al. 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:59061380–84
    [Google Scholar]
  29. 29.  DeYoung BJ, Clark SE 2008. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180:2895–904
    [Google Scholar]
  30. 30.  Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R et al. 2017. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. PNAS 114:36E7641–49
    [Google Scholar]
  31. 31.  Doebley JF, Gaut BS, Smith BD 2006. The molecular genetics of crop domestication. Cell 127:71309–21
    [Google Scholar]
  32. 32.  Durbak AR, Phillips KA, Pike S, O'Neill MA, Mares J et al. 2014. Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:72978–95
    [Google Scholar]
  33. 33.  Efroni I, Mello A, Nawy T, Ip P-L, Rahni R et al. 2016. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165:71721–33
    [Google Scholar]
  34. 34.  Fan C, Wu Y, Yang Q, Yang Y, Meng Q et al. 2014. A novel single-nucleotide mutation in a CLAVATA3 gene homolog controls a multilocular silique trait in Brassica rapa L. . Mol. Plant 7:121788–92
    [Google Scholar]
  35. 35.  Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R et al. 2005. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17:92542–53
    [Google Scholar]
  36. 36.  Fiers M, Ku KL, Liu C-M 2007. CLE peptide ligands and their roles in establishing meristems. Curr. Opin. Plant Biol. 10:139–43
    [Google Scholar]
  37. 37.  Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:54091911–14
    [Google Scholar]
  38. 38.  Gaillochet C, Lohmann JU 2015. The never-ending story: from pluripotency to plant developmental plasticity. Development 142:2237–49
    [Google Scholar]
  39. 39.  Giulini A, Wang J, Jackson D 2004. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:70031031–34
    [Google Scholar]
  40. 40.  Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. PNAS 106:3816529–34
    [Google Scholar]
  41. 41.  Graf P, Dolzblasz A, Würschum T, Lenhard M, Pfreundt U, Laux T 2010. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing. Plant Cell 22:3716–28
    [Google Scholar]
  42. 42.  Green KA, Prigge MJ, Katzman RB, Clark SE 2005. CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell 17:3691–704
    [Google Scholar]
  43. 43.  Gruel J, Landrein B, Tarr P, Schuster C, Refahi Y et al. 2016. An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci. Adv. 2:1e1500989
    [Google Scholar]
  44. 44.  Guo Y, Han L, Hymes M, Denver R, Clark SE 2010. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J 63:6889–900
    [Google Scholar]
  45. 45.  Heidstra R, Sabatini S 2014. Plant and animal stem cells: similar yet different. Nat. Rev. Mol. Cell Biol. 15:5301–12
    [Google Scholar]
  46. 46.  Heisler MG, Jönsson H 2007. Modelling meristem development in plants. Curr. Opin. Plant Biol. 10:192–97
    [Google Scholar]
  47. 47.  Hu C, Zhu Y, Cui Y, Cheng K, Liang W et al. 2018. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat. Plants 4:4205–11
    [Google Scholar]
  48. 48.  Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K et al. 2014. Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep 15:111202–9
    [Google Scholar]
  49. 49.  Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S et al. 2006. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:5788842–45
    [Google Scholar]
  50. 50.  Jackson D, Hake S 1999. Control of phylotaxy in maize by the ABPHYL1 gene. Development 126:315–23
    [Google Scholar]
  51. 51.  Jackson D, Veit B, Hake S 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:2405–13
    [Google Scholar]
  52. 52.  Jasinski S, Piazza P, Craft J, Hay A, Woolley L et al. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15:171560–65
    [Google Scholar]
  53. 53.  Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED et al. 2016. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat. Genet. 48:7785–91
    [Google Scholar]
  54. 54.  Je BI, Xu F, Wu Q, Liu L, Meeley R et al. 2018. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. eLife 7:10306
    [Google Scholar]
  55. 55.  Jeong S, Trotochaud AE, Clark SE 1999. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:101925–34
    [Google Scholar]
  56. 56.  Jiao Y, Wang Y, Xue D, Wang J, Yan M et al. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42:6541–44
    [Google Scholar]
  57. 57.  Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC et al. 2007. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. PNAS 104:4417317–22
    [Google Scholar]
  58. 58.  Kayes JM, Clark SE 1998. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843–51
    [Google Scholar]
  59. 59.  Kim JY, Rim Y, Wang J, Jackson D 2005. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:7788–93
    [Google Scholar]
  60. 60.  Kimura Y, Tasaka M, Torii KU, Uchida N 2018. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development 145:1dev156380
    [Google Scholar]
  61. 61.  Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T et al. 2006. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:5788845–48
    [Google Scholar]
  62. 62.  Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M et al. 2007. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:7128652–55
    [Google Scholar]
  63. 63.  Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW et al. 2018. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. PNAS 115:61382–87
    [Google Scholar]
  64. 64.  Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J 1998. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10:81375–90
    [Google Scholar]
  65. 65.  Leibfried A, To JPC, Busch W, Stehling S, Kehle A et al. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nat. Cell Biol. 438:70711172–75
    [Google Scholar]
  66. 66.  Li M, Zhong W, Yang F, Zhang Z 2018. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture. Plant Cell Physiol 59:3448–57
    [Google Scholar]
  67. 67.  Liu L, Du Y, Shen X, Li M, Sun W et al. 2015. KRN4 controls quantitative variation in maize kernel row number. PLOS Genet 11:11e1005670
    [Google Scholar]
  68. 68.  Long JA, Moan EI, Medford JI, Barton MK 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:656066–69
    [Google Scholar]
  69. 69.  Lowe K, Wu E, Wang N, Hoerster G, Hastings C et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:91998–2015
    [Google Scholar]
  70. 70.  Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L et al. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:52441980–83
    [Google Scholar]
  71. 71.  MacAlister CA, Ortiz-Ramírez C, Becker JD, Feijó JA, Lippman ZB 2016. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens. Plant J 85:2193–208
    [Google Scholar]
  72. 72.  Maier AT, Stehling-Sun S, Offenburger S-L, Lohmann JU 2011. The bZIP transcription factor PERIANTHIA: a multifunctional hub for meristem control. Front. Plant Sci. 2:79
    [Google Scholar]
  73. 73.  Mandel T, Candela H, Landau U, Asis L, Zelinger E et al. 2016. Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development 143:91612–22
    [Google Scholar]
  74. 74.  Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:6805–15
    [Google Scholar]
  75. 75.  Miura K, Ikeda M, Matsubara A, Song X-J, Ito M et al. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42:6545–49
    [Google Scholar]
  76. 76.  Möller BK, Xuan W, Beeckman T 2017. Dynamic control of lateral root positioning. Curr. Opin. Plant Biol. 35:1–7
    [Google Scholar]
  77. 77.  Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP 2017. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36:91477–91
    [Google Scholar]
  78. 78.  Müller R, Bleckmann A, Simon R 2008. The receptor kinase CORYNE of Arabidopsis transmits the stem cell–limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:4934–46
    [Google Scholar]
  79. 79.  Müller R, Borghi L, Kwiatkowska D, Laufs P, Simon R 2006. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18:51188–98
    [Google Scholar]
  80. 80.  Muños S, Ranc N, Botton E, Bérard A, Rolland S et al. 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:42244–54
    [Google Scholar]
  81. 81.  Nimchuk ZL, Tarr PT, Meyerowitz EM 2011. An evolutionarily conserved pseudokinase mediates stem cell production in plants. Plant Cell 23:3851–54
    [Google Scholar]
  82. 82.  Nimchuk ZL, Zhou Y, Tarr PT, Peterson BA, Meyerowitz EM 2015. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development 142:61043–49
    [Google Scholar]
  83. 83.  Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y 2008. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:5861294–94
    [Google Scholar]
  84. 84.  Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y 2009. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat. Chem. Biol 5:8578–80
    [Google Scholar]
  85. 85.  Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H 2017. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants 3:17112
    [Google Scholar]
  86. 86.  Pautler M, Eveland AL, LaRue T, Yang F, Weeks R et al. 2015. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27:1104–20
    [Google Scholar]
  87. 87.  Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV 2016. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. PNAS 113:41E6298–306
    [Google Scholar]
  88. 88.  Perilli S, Di Mambro R, Sabatini S 2012. Growth and development of the root apical meristem. Curr. Opin. Plant Biol. 15:117–23
    [Google Scholar]
  89. 89.  Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S et al. 2016. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife 5:827
    [Google Scholar]
  90. 90.  Pilkington M 1929. The regeneration of the stem apex. New Phytol 28:137–53
    [Google Scholar]
  91. 91.  Poethig S 1989. Genetic mosaics and cell lineage analysis in plants. Trends Genet 5:273–77
    [Google Scholar]
  92. 92.  Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:161–76
    [Google Scholar]
  93. 93.  Reinhardt D, Frenz M, Mandel T, Kuhlemeier C 2003. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:174073–83
    [Google Scholar]
  94. 94.  Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:2470–78
    [Google Scholar]
  95. 95.  Rojo E, Sharma VK, Kovaleva V, Raikhel, Fletcher JC 2002. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:5969–77
    [Google Scholar]
  96. 96.  Running MP, Meyerowitz EM 1996. Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 122:41261–69
    [Google Scholar]
  97. 97.  Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M 2001. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:5581–90
    [Google Scholar]
  98. 98.  Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T et al. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:7137811–14
    [Google Scholar]
  99. 99.  Satina S, Blakeslee AF, Avery AG 1940. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 27:10895–905
    [Google Scholar]
  100. 100.  Scheben A, Edwards D 2018. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr. Opin. Plant Biol. 45:Part B218–25
    [Google Scholar]
  101. 101.  Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:6635–44
    [Google Scholar]
  102. 102.  Serrano-Mislata A, Bencivenga S, Bush M, Schiessl K, Boden S, Sablowski R 2017. DELLA genes restrict inflorescence meristem function independently of plant height. Nat. Plants 3:9749–54
    [Google Scholar]
  103. 103.  Shinohara H, Matsubayashi Y 2015. Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J 82:2328–36
    [Google Scholar]
  104. 104.  Smith LG, Greene B, Veit B, Hake S 1992. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116:121–30
    [Google Scholar]
  105. 105.  Somssich M, Je BI, Simon R, Jackson D 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:183238–48
    [Google Scholar]
  106. 106.  Song S-K, Clark SE 2005. POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev. Biol 285:1272–84
    [Google Scholar]
  107. 107.  Stahl Y, Grabowski S, Bleckmann A, Kühnemuth R, Weidtkamp-Peters S et al. 2013. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr. Biol. 23:362–71
    [Google Scholar]
  108. 108.  Stahl Y, Simon R 2013. Gated communities: apoplastic and symplastic signals converge at plasmodesmata to control cell fates. J. Exp. Bot. 64:175237–41
    [Google Scholar]
  109. 109.  Stahl Y, Wink RH, Ingram GC, Simon R 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 19:11909–14
    [Google Scholar]
  110. 110.  Stateczny D, Oppenheimer J, Bommert P 2016. G protein signaling in plants: minus times minus equals plus. Curr. Opin. Plant Biol. 34:127–35
    [Google Scholar]
  111. 111.  Steeves TA, Sussex IM 2009. Patterns in Plant Development Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  112. 112.  Sussex IM 1952. Regeneration of the potato shoot apex. Nature 170:4331755–57
    [Google Scholar]
  113. 113.  Suzaki T, Ohneda M, Toriba T, Yoshida A, Hirano H-Y 2009. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice. PLOS Genet 5:10e1000693
    [Google Scholar]
  114. 114.  Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano H-Y 2006. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol 47:121591–602
    [Google Scholar]
  115. 115.  Suzaki T, Yoshida A, Hirano H-Y 2008. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. Plant Cell 20:82049–58
    [Google Scholar]
  116. 116.  Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM 2016. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7:13274
    [Google Scholar]
  117. 117.  Tonn N, Greb T 2017. Radial plant growth. Curr. Biol. 27:17R878–82
    [Google Scholar]
  118. 118.  Tsukagoshi H, Busch W, Benfey PN 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:4606–16
    [Google Scholar]
  119. 119.  Uchida N, Shimada M, Tasaka M 2012. Modulation of the balance between stem cell proliferation and consumption by ERECTA-family genes. Plant Signal. Behav. 7:111506–8
    [Google Scholar]
  120. 120.  Uchida N, Shimada M, Tasaka M 2013. ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol 54:3343–51
    [Google Scholar]
  121. 121.  Urano D, Maruta N, Trusov Y, Stoian R, Wu Q et al. 2016. Saltational evolution of the heterotrimeric G protein signaling mechanisms in the plant kingdom. Sci. Signal. 9:446ra93
    [Google Scholar]
  122. 122.  van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:6657287–89
    [Google Scholar]
  123. 123.  van der Graaff E, Laux T, Rensing SA 2009. The WUS homeobox-containing (WOX) protein family. Genome Biol 10:12248
    [Google Scholar]
  124. 124.  Vollbrecht E, Reiser L, Hake S 2000. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene. knotted1. Development 127:143161–72
    [Google Scholar]
  125. 125.  Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T et al. 2013. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:6120704–7
    [Google Scholar]
  126. 126.  Wang J-W, Wang L-J, Mao Y-B, Cai W-J, Xue H-W, Chen X-Y 2005. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:82204–16
    [Google Scholar]
  127. 127.  Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H et al. 2008. The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev. Cell 15:6913–22
    [Google Scholar]
  128. 128.  Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC 2005. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:163657–68
    [Google Scholar]
  129. 129.  Woodward JB, Abeydeera ND, Paul D, Phillips K, Rapala-Kozik M et al. 2010. A maize thiamine auxotroph is defective in shoot meristem maintenance. Plant Cell 22:103305–17
    [Google Scholar]
  130. 130.  Wu Q, Regan M, Furukawa H, Jackson D 2018. Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits. PLOS Genet 14:4e1007374
    [Google Scholar]
  131. 131.  Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu Y-H et al. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47:7784–92
    [Google Scholar]
  132. 132.  Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:192025–30
    [Google Scholar]
  133. 133.  Yadav RK, Perales M, Gruel J, Ohno C, Heisler M et al. 2013. Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol. Syst. Biol. 9:654
    [Google Scholar]
  134. 134.  Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R et al. 2005. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 15:171566–71
    [Google Scholar]
  135. 135.  Yang F, Bui HT, Pautler M, Llaca V, Johnston R et al. 2015. A maize glutaredoxin gene, Abphyl2, regulates shoot meristem size and phyllotaxy. Plant Cell 27:1121–31
    [Google Scholar]
  136. 136.  Yu LP, Miller AK, Clark SE 2003. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr. Biol. 13:3179–88
    [Google Scholar]
  137. 137.  Yu LP, Simon EJ, Trotochaud AE, Clark SE 2000. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127:81661–70
    [Google Scholar]
  138. 138.  Zeng J, Dong Z, Wu H, Tian Z, Zhao Z 2017. Redox regulation of plant stem cell fate. EMBO J 36:192844–55
    [Google Scholar]
  139. 139.  Zhang F, May A, Irish VF 2017. Type-B ARABIDOPSIS RESPONSE REGULATORs directly activate WUSCHEL. Trends Plant Sci 22:10815–17
    [Google Scholar]
  140. 140.  Zhang T-Q, Lian H, Zhou C-M, Xu L, Jiao Y, Wang J-W 2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29:51073–87
    [Google Scholar]
  141. 141.  Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda-Paz JL et al. 2015. Control of plant stem cell function by conserved interacting transcriptional regulators. Nature 517:7534377–80
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040549
Loading
/content/journals/10.1146/annurev-arplant-042817-040549
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error