1932

Abstract

Quantitative genetics has a long history in plants: It has been used to study specific biological processes, identify the factors important for trait evolution, and breed new crop varieties. These classical approaches to quantitative trait locus mapping have naturally improved with technology. In this review, we show how quantitative genetics has evolved recently in plants and how new developments in phenotyping, population generation, sequencing, gene manipulation, and statistics are rejuvenating both the classical linkage mapping approaches (for example, through nested association mapping) as well as the more recently developed genome-wide association studies. These strategies are complementary in most instances, and indeed, one is often used to confirm the results of the other. Despite significant advances, an emerging trend is that the outcome and efficiency of the different approaches depend greatly on the genetic architecture of the trait in the genetic material under study.

Keyword(s): genetic architectureGWASphenotypeQTLRIL
Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042916-040820
2017-04-28
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/arplant/68/1/annurev-arplant-042916-040820.html?itemId=/content/journals/10.1146/annurev-arplant-042916-040820&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 1001 Genomes Consort 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166481–91Provides genome sequence data for 1,135 Arabidopsis accessions, setting up GWAS at full genomic scale.
  2. Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M. 2.  et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–31 [Google Scholar]
  3. Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S. 3.  et al. 2016. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLOS ONE 11:e0155760 [Google Scholar]
  4. Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC. 4.  et al. 2009. QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLOS ONE 4:e4318 [Google Scholar]
  5. Bandillo N, Raghavan C, Muyco PA, Sevilla MA, Lobina IT. 5.  et al. 2013. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11 [Google Scholar]
  6. Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJ. 6.  et al. 2013. Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. PNAS 110:15818–23 [Google Scholar]
  7. Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B. 7.  et al. 2010. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLOS Genet 6:e1001193 [Google Scholar]
  8. Bergelson J, Roux F. 8.  2010. Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat. Rev. Genet. 11:867–79 [Google Scholar]
  9. Bitella G, Rossi R, Bochicchio R, Perniola M, Amato M. 9.  2014. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors 14:19639–59 [Google Scholar]
  10. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A. 10.  et al. 2010. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLOS Genet 6:e1000940 [Google Scholar]
  11. Brachi B, Morris GP, Borevitz JO. 11.  2011. Genome-wide association studies in plants: The missing heritability is in the field. Genome Biol 12:232 [Google Scholar]
  12. Brown TB, Cheng R, Sirault XR, Rungrat T, Murray KD. 12.  et al. 2014. TraitCapture: genomic and environment modelling of plant phenomic data. Curr. Opin. Plant Biol. 18:73–79 [Google Scholar]
  13. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ. 13.  et al. 2009. The genetic architecture of maize flowering time. Science 325:714–18The founding paper that established and exploited NAM in maize. [Google Scholar]
  14. Caldwell KS, Russell J, Langridge P, Powell W. 14.  2006. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species. Hordeum vulgare. Genetics 172:557–67 [Google Scholar]
  15. Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S. 15.  et al. 2011. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat. Genet. 43:956–63 [Google Scholar]
  16. Chan EK, Rowe HC, Kliebenstein DJ. 16.  2010. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics 185:991–1007 [Google Scholar]
  17. Chao DY, Silva A, Baxter I, Huang YS, Nordborg M. 17.  et al. 2012. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLOS Genet. 8:e1002923 [Google Scholar]
  18. Clauw P, Coppens F, Korte A, Herman D, Slabbinck B. 18.  et al. 2016. Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. Plant Cell 28:2417–34 [Google Scholar]
  19. Cruz JA, Savage LJ, Zegarac R, Hall CC, Satoh-Cruz M. 19.  et al. 2016. Dynamic environmental photosynthetic imaging reveals emergent phenotypes. Cell Syst 2:365–77 [Google Scholar]
  20. Cubillos FA, Stegle O, Grondin C, Canut M, Tisne S. 20.  et al. 2014. Extensive cis-regulatory variation robust to environmental perturbation in Arabidopsis. Plant Cell 26:4298–310 [Google Scholar]
  21. Dhondt S, Wuyts N, Inzé D. 21.  2013. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci 18:428–39 [Google Scholar]
  22. Dunwell JM.22.  2010. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 8:377–424 [Google Scholar]
  23. Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S. 23.  et al. 2010. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–42 [Google Scholar]
  24. Faget M, Nagel KA, Walter A, Herrera JM, Jahnke S. 24.  et al. 2013. Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Ann. Bot. 112:253–66 [Google Scholar]
  25. Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang Q. 25.  2005. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor. Appl. Genet. 110:1445–52 [Google Scholar]
  26. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J. 26.  et al. 2010. Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7:547–53 [Google Scholar]
  27. Flint-Garcia SA, Thornsberry JM, Buckler ES. 27.  2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54:357–74 [Google Scholar]
  28. Flood PJ, Kruijer W, Schnabel SK, van der Schoor R, Jalink H. 28.  et al. 2016. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12:14 [Google Scholar]
  29. Foiada F, Westermeier P, Kessel B, Ouzunova M, Wimmer V. 29.  et al. 2015. Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction. Theor. Appl. Genet. 128:875–91 [Google Scholar]
  30. Gan X, Stegle O, Behr J, Steffen JG, Drewe P. 30.  et al. 2011. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–23 [Google Scholar]
  31. Gaur PM, Jukanti AK, Varshney RK. 31.  2012. Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221 [Google Scholar]
  32. Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD. 32.  1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–58 [Google Scholar]
  33. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES. 33.  et al. 2009. A first-generation haplotype map of maize. Science 326:1115–17 [Google Scholar]
  34. Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M. 34.  et al. 2006. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–35 [Google Scholar]
  35. Grant MR, Godiard L, Straube E, Ashfield T, Lewald J. 35.  et al. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–46 [Google Scholar]
  36. Grosskinsky DK, Svensgaard J, Christensen S, Roitsch T. 36.  2015. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J. Exp. Bot. 66:5429–40 [Google Scholar]
  37. Guo L, Ganguly A, Sun L, Suo F, Du LL, Russell P. 37.  2016. Global fitness profiling identifies arsenic and cadmium tolerance mechanisms in fission yeast. G3 6:3317–33 [Google Scholar]
  38. Hill CB, Taylor JD, Edwards J, Mather D, Langridge P. 38.  et al. 2015. Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–54 [Google Scholar]
  39. Holland JB.39.  2015. MAGIC maize: a new resource for plant genetics. Genome Biol 16:163 [Google Scholar]
  40. Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S. 40.  et al. 2012. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat. Genet. 44:212–16 [Google Scholar]
  41. Houle D, Govindaraju DR, Omholt S. 41.  2010. Phenomics: the next challenge. Nat. Rev. Genet. 11:855–66 [Google Scholar]
  42. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ. 42.  et al. 2012. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol. J. 10:826–39 [Google Scholar]
  43. Huang X, Han B. 43.  2014. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65:531–51 [Google Scholar]
  44. Huang X, Kurata N, Wei X, Wang ZX, Wang A. 44.  et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501 [Google Scholar]
  45. Huang X, Paulo MJ, Boer M, Effgen S, Keizer P. 45.  et al. 2011. Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. PNAS 108:4488–93 [Google Scholar]
  46. Huang X, Wei X, Sang T, Zhao Q, Feng Q. 46.  et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42:961–67 [Google Scholar]
  47. Huang X, Zhao Y, Wei X, Li C, Wang A. 47.  et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44:32–39 [Google Scholar]
  48. Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T. 48.  et al. 2013. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLOS Genet 9:e1003766 [Google Scholar]
  49. Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E. 49.  2015. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor. Appl. Genet. 128:1329–42 [Google Scholar]
  50. Iwata H, Minamikawa MF, Kajiya-Kanegae H, Ishimori M, Hayashi T. 50.  2016. Genomics-assisted breeding in fruit trees. Breed. Sci 66100–15 [Google Scholar]
  51. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q. 51.  et al. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat. Genet. 45:957–61 [Google Scholar]
  52. Kawakatsu T, Huang SS, Jupe F, Sasaki E, Schmitz RJ. 52.  et al. 2016. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505Provides epigenome variation data for 1,107 Arabidopsis accessions and transcriptome data for 1,203 accessions. [Google Scholar]
  53. Kerdaffrec E, Filiault DL, Korte A, Sasaki E, Nizhynska V. 53.  et al. 2016. Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. eLife 5:e22502 [Google Scholar]
  54. Keurentjes JJ, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-De Vries H. 54.  et al. 2007. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905 [Google Scholar]
  55. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM. 55.  et al. 2007. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 39:1151–55 [Google Scholar]
  56. Kim TS, He Q, Kim KW, Yoon MY, Ra WH. 56.  et al. 2016. Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era. BMC Genom 17:408 [Google Scholar]
  57. Korte A, Farlow A. 57.  2013. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29 [Google Scholar]
  58. Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M. 58.  2012. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat. Genet. 44:1066–71 [Google Scholar]
  59. Koumproglou R, Wilkes TM, Townson P, Wang XY, Beynon J. 59.  et al. 2002. STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J. 31:355–64 [Google Scholar]
  60. Kover PX, Rowntree JK, Scarcelli N, Savriama Y, Eldridge T, Schaal BA. 60.  2009. Pleiotropic effects of environment-specific adaptation in Arabidopsis thaliana. New Phytol. 183:816–25 [Google Scholar]
  61. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR. 61.  et al. 2011. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43:163–68 [Google Scholar]
  62. Le Marié C, Kirchgessner N, Marschall D, Walter A, Hund A. 62.  2014. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis. Plant Methods 10:13 [Google Scholar]
  63. Li H, Peng Z, Yang X, Wang W, Fu J. 63.  et al. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45:43–50 [Google Scholar]
  64. Li J, Bus A, Spamer V, Stich B. 64.  2016. Comparison of statistical models for nested association mapping in rapeseed (Brassica napus L.) through computer simulations. BMC Plant Biol 16:26 [Google Scholar]
  65. Li L, Zhang Q, Huang D. 65.  2014. A review of imaging techniques for plant phenotyping. Sensors 14:20078–111 [Google Scholar]
  66. Li Y, Cheng R, Spokas KA, Palmer AA, Borevitz JO. 66.  2014. Genetic variation for life history sensitivity to seasonal warming in Arabidopsis thaliana. Genetics 196:569–77 [Google Scholar]
  67. Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J. 67.  et al. 2015. From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr. Opin. Plant Biol. 24:110–18 [Google Scholar]
  68. Liu M, Chakraborty A, Singh D, Yadav RK, Meenakshisundaram G. 68.  et al. 2011. Adaptive cell segmentation and tracking for volumetric confocal microscopy images of a developing plant meristem. Mol. Plant 4:922–31 [Google Scholar]
  69. Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F. 69.  2005. Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor. Appl. Genet. 110:742–53 [Google Scholar]
  70. Ma J, Shi A, Mou B, Evans M, Clark JR. 70.  et al. 2016. Association mapping of leaf traits in spinach (Spinacia oleracea L.). Plant Breed 135:399–404 [Google Scholar]
  71. Mable BK, Adam A. 71.  2007. Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol. Ecol. 16:3565–80 [Google Scholar]
  72. Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J. 72.  et al. 2014. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3 4:1603–10 [Google Scholar]
  73. Magwene PM, Willis JH, Kelly JK. 73.  2011. The statistics of bulk segregant analysis using next generation sequencing. PLOS Comput. Biol. 7:e1002255 [Google Scholar]
  74. Mairhofer S, Sturrock CJ, Bennett MJ, Mooney SJ, Pridmore TP. 74.  2015. Extracting multiple interacting root systems using X-ray microcomputed tomography. Plant J 84:1034–43 [Google Scholar]
  75. Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD. 75.  2007. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–32 [Google Scholar]
  76. Maurer A, Draba V, Pillen K. 76.  2016. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J. Exp. Bot. 67:2507–18 [Google Scholar]
  77. Meijon M, Satbhai SB, Tsuchimatsu T, Busch W. 77.  2014. Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nat. Genet. 46:77–81A great example of a successful GWAS to find new genes for cellular traits. [Google Scholar]
  78. Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. 78.  2013. The flowering repressor SVP underlies a novel. Arabidopsis thaliana QTL interacting with the genetic background. PLOS Genet. 9:e1003289 [Google Scholar]
  79. Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM. 79.  et al. 2016. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat. Genet. 48:1083–88 [Google Scholar]
  80. Michelmore RW, Paran I, Kesseli RV. 80.  1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS 88:9828–32 [Google Scholar]
  81. Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ. 81.  2012. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 352:1–22 [Google Scholar]
  82. Morrell PL, Toleno DM, Lundy KE, Clegg MT. 82.  2005. Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. PNAS 102:2442–47 [Google Scholar]
  83. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z. 83.  et al. 2009. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–202 [Google Scholar]
  84. Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A. 84.  et al. 2012. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct. Plant Biol. 39:891–904 [Google Scholar]
  85. Neilson EH, Edwards AM, Blomstedt CK, Berger B, Moller BL, Gleadow RM. 85.  2015. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J. Exp. Bot. 66:1817–32 [Google Scholar]
  86. Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C. 86.  et al. 2016. Development and genetic characterization of an advanced backcross–nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics 203:1453–67 [Google Scholar]
  87. Nicolas SD, Peros JP, Lacombe T, Launay A, Le Paslier MC. 87.  et al. 2016. Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16:74 [Google Scholar]
  88. Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, Conti E. 88.  2015. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biol 16:12 [Google Scholar]
  89. Ogut F, Bian Y, Bradbury PJ, Holland JB. 89.  2015. Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population. Heredity 114:552–63 [Google Scholar]
  90. Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L. 90.  et al. 2015. Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol. J. 13:565–77 [Google Scholar]
  91. Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES. 91.  2013. The genetic architecture of maize stalk strength. PLOS ONE 8:e67066 [Google Scholar]
  92. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ. 92.  2011. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. PNAS 108:6893–98 [Google Scholar]
  93. Presterl T, Ouzunova M, Schmidt W, Moller EM, Rober FK. 93.  et al. 2007. Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor. Appl. Genet. 114:1059–70 [Google Scholar]
  94. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 94.  2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38:904–9 [Google Scholar]
  95. Pritchard JK, Stephens M, Donnelly P. 95.  2000. Inference of population structure using multilocus genotype data. Genetics 155:945–59 [Google Scholar]
  96. Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM. 96.  et al. 2016. 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–44 [Google Scholar]
  97. Racedo J, Gutiérrez L, Perera MF, Ostengo S, Pardo EM. 97.  et al. 2016. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol 16:142 [Google Scholar]
  98. Ramakrishnan M, Antony Ceasar S, Duraipandiyan V, Vinod KK, Kalpana K. 98.  et al. 2016. Tracing QTLs for leaf blast resistance and agronomic performance of finger millet (Eleusine coracana (L.) Gaertn.) genotypes through association mapping and in silico comparative genomics analyses. PLOS ONE 11:e0159264 [Google Scholar]
  99. Ravi M, Chan SW. 99.  2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–18 [Google Scholar]
  100. Reiter RS, Williams J, Feldman K, Rafalski JA, Tingey SV, Scolnik PA. 100.  1992. Global and local genome mapping in Arabidopsis thaliana recombinant inbred lines and random amplified polymorphic DNAs. PNAS 89:1477–81 [Google Scholar]
  101. Rellán-Álvarez R, Lobet G, Lindner H, Pradier PL, Sebastian J. 101.  et al. 2015. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. eLife 4:e07597 [Google Scholar]
  102. Rishmawi L, Sun H, Schneeberger K, Hulskamp M, Schrader A. 102.  2014. Rapid identification of a natural knockout allele of ARMADILLO REPEAT-CONTAINING KINESIN1 that causes root hair branching by mapping-by-sequencing. Plant Physiol 166:1280–87 [Google Scholar]
  103. Roux F, Mary-Huard T, Barillot E, Wenes E, Botran L. 103.  et al. 2016. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. PNAS 113:3687–92 [Google Scholar]
  104. Rowan BA, Patel V, Weigel D, Schneeberger K. 104.  2015. Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. G3 5:385–98 [Google Scholar]
  105. Ruggieri V, Francese G, Sacco A, D'Alessandro A, Rigano MM. 105.  et al. 2014. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol 14:337 [Google Scholar]
  106. Sadhu MJ, Bloom JS, Day L, Kruglyak L. 106.  2016. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 352:1113–16 [Google Scholar]
  107. Saez-Aguayo S, Rondeau-Mouro C, Macquet A, Kronholm I, Ralet MC. 107.  et al. 2014. Local evolution of seed flotation in Arabidopsis. PLOS Genet 10:e1004221 [Google Scholar]
  108. Sagawa JM, Stanley LE, LaFountain AM, Frank HA, Liu C, Yuan YW. 108.  2016. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol 209:1049–57 [Google Scholar]
  109. Saha S, Wu J, Jenkins JN, McCarty JC, Hayes R, Stelly DM. 109.  2010. Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor. Appl. Genet. 120:1193–205 [Google Scholar]
  110. Salome PA, Bomblies K, Laitinen RA, Yant L, Mott R, Weigel D. 110.  2011. Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics 188:421–33 [Google Scholar]
  111. Schlotterer C, Tobler R, Kofler R, Nolte V. 111.  2014. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15:749–63 [Google Scholar]
  112. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH. 112.  et al. 2009. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat. Methods 6:550–51 [Google Scholar]
  113. Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M. 113.  et al. 2012. Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. PNAS 109:4227–32Describes the first RIL population fixed through centromere-mediated genome-elimination mutants (haploid inducer). [Google Scholar]
  114. Shakoor N, Ziegler G, Dilkes BP, Brenton Z, Boyles R. 114.  et al. 2016. Integration of experiments across diverse environments identifies the genetic determinants of variation in Sorghum bicolor seed element composition. Plant Physiol 170:1989–98 [Google Scholar]
  115. Simon M, Loudet O, Durand S, Bérard A, Brunel D. 115.  et al. 2008. QTL mapping in five new large RIL populations of Arabidopsis thaliana genotyped with consensus SNP markers. Genetics 178:2253–64 [Google Scholar]
  116. Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B. 116.  et al. 2011. Survival and growth of Arabidopsis plants given limited water are not equal. Nat. Biotechnol. 29:212–14 [Google Scholar]
  117. Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR. 117.  2012. De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol. Ecol. Resour. 12:333–43 [Google Scholar]
  118. Stich B.118.  2009. Comparison of mating designs for establishing nested association mapping populations in maize and Arabidopsis thaliana. Genetics 183:1525–34 [Google Scholar]
  119. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S. 119.  et al. 2013. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–83 [Google Scholar]
  120. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q. 120.  et al. 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 43:159–62 [Google Scholar]
  121. Tisné S, Reymond M, Vile D, Fabre J, Dauzat M. 121.  et al. 2008. Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiol 148:1117–27 [Google Scholar]
  122. Tisné S, Serrand Y, Bach L, Gilbault E, Ben Ameur R. 122.  et al. 2013. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant J 74:534–44 [Google Scholar]
  123. Tuberosa R, Turner NC, Cakir M. 123.  2014. Two decades of InterDrought conferences: Are we bridging the genotype-to-phenotype gap?. J. Exp. Bot. 65:6137–39 [Google Scholar]
  124. Tuinstra MR, Ejeta G, Goldsbrough PB. 124.  1997. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor. Appl. Genet. 95:1005–11 [Google Scholar]
  125. van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D. 125.  et al. 2016. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170:1176–88 [Google Scholar]
  126. Vilhjálmsson BJ, Nordborg M. 126.  2013. The nature of confounding in genome-wide association studies. Nat. Rev. Genet. 14:1–2 [Google Scholar]
  127. Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES. 127.  2014. Association mapping across numerous traits reveals patterns of functional variation in maize. PLOS Genet 10:e1004845 [Google Scholar]
  128. Wang Q, Xie W, Xing H, Yan J, Meng X. 128.  et al. 2015. Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Mol. Plant 8:946–57 [Google Scholar]
  129. Wang X, Wang H, Liu S, Ferjani A, Li J. 129.  et al. 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48:1233–41 [Google Scholar]
  130. Wang X, Wang H, Long Y, Liu L, Zhao Y. 130.  et al. 2015. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theor. Appl. Genet. 128:1175–92 [Google Scholar]
  131. Wijnen CL, Keurentjes JJ. 131.  2014. Genetic resources for quantitative trait analysis: novelty and efficiency in design from an Arabidopsis perspective. Curr. Opin. Plant Biol. 18:103–9Established the idea of combining recombination suppression and genome elimination to easily generate complete sets of chromosome substitution lines. [Google Scholar]
  132. Wijnker E, Deurhof L, van de Belt J, de Snoo CB, Blankestijn H. 132.  et al. 2014. Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nat. Protoc. 9:761–72 [Google Scholar]
  133. Wolyn DJ, Borevitz JO, Loudet O, Schwartz C, Maloof J. 133.  et al. 2004. Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana. . Genetics 167:907–17 [Google Scholar]
  134. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J. 134.  2009. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLOS ONE 4:e8451 [Google Scholar]
  135. Yan J, Warburton M, Crouch J. 135.  2011. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–49 [Google Scholar]
  136. Yang DL, Jing RL, Chang XP, Li W. 136.  2007. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–84 [Google Scholar]
  137. Yang N, Lu Y, Yang X, Huang J, Zhou Y. 137.  et al. 2014. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLOS Genet 10:e1004573 [Google Scholar]
  138. Yang Z, Huang D, Tang W, Zheng Y, Liang K. 138.  et al. 2013. Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLOS ONE 8:e68433 [Google Scholar]
  139. Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC. 139.  et al. 2016. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 48:927–34 [Google Scholar]
  140. Ye L, Huang Y, Dai F, Ning H, Li C. 140.  et al. 2015. Identification of two key genes controlling chill haze stability of beer in barley (Hordeum vulgare L). BMC Genom 16:449 [Google Scholar]
  141. Yu J, Holland JB, McMullen MD, Buckler ES. 141.  2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–51 [Google Scholar]
  142. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M. 142.  et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38:203–8 [Google Scholar]
  143. Yuan W, Flowers JM, Sahraie DJ, Ehrenreich IM, Purugganan MD. 143.  2016. Extreme QTL mapping of germination speed in Arabidopsis thaliana. Mol. Ecol. 25:4177–96 [Google Scholar]
  144. Zhang N, Gibon Y, Wallace JG, Lepak N, Li P. 144.  et al. 2015. Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol 168:575–83 [Google Scholar]
  145. Zhang W, Dai X, Wang Q, Xu S, Zhao PX. 145.  2016. PEPIS: a pipeline for estimating epistatic effects in quantitative trait locus mapping and genome-wide association studies. PLOS Comput. Biol. 12:e1004925 [Google Scholar]
  146. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML. 146.  et al. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2:467 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042916-040820
Loading
/content/journals/10.1146/annurev-arplant-042916-040820
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error