1932

Abstract

C photosynthesis evolved multiple times independently from ancestral C photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C context. Further, C photosynthesis relies on a distinct leaf anatomy that differs from that of C, requiring a differential regulation of leaf development in C. We summarize recent progress in the understanding of C-specific features in evolution and metabolic regulation in the context of C photosynthesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042916-040915
2020-04-29
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-042916-040915.html?itemId=/content/journals/10.1146/annurev-arplant-042916-040915&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adwy W, Laxa M, Peterhansel C 2015. A simple mechanism for the establishment of C2-specific gene expression in Brassicaceae. Plant J 84:61231–38
    [Google Scholar]
  2. 2. 
    Adwy W, Schlüter U, Papenbrock J, Peterhansel C, Offermann S 2019. Loss of the M-box from the glycine decarboxylase P-subunit promoter in C2 Moricandia species. Plant Gene 18:100176
    [Google Scholar]
  3. 3. 
    Agetsuma M, Furumoto T, Yanagisawa S, Izui K 2005. The ubiquitin-proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4 photosynthesis. Plant Cell Physiol 46:3389–98
    [Google Scholar]
  4. 4. 
    Aldous SH, Weise SE, Sharkey TD, Waldera-Lupa DM, Stuhler K et al. 2014. Evolution of the phosphoenolpyruvate carboxylase protein kinase family in C3 and C4Flaveria spp. Plant Physiol 165:31076–91
    [Google Scholar]
  5. 5. 
    Ali S, Taylor WC. 2001. Quantitative regulation of the Flaveria Me1 gene is controlled by the 3′-untranslated region and sequences near the amino terminus. Plant Mol. Biol. 46:3251–61
    [Google Scholar]
  6. 6. 
    Alonso-Cantabrana H, Cousins AB, Danila F, Ryan T, Sharwood RE et al. 2018. Diffusion of CO2 across the mesophyll-bundle sheath cell interface in a C4 plant with genetically reduced PEP carboxylase activity. Plant Physiol 178:172–81
    [Google Scholar]
  7. 7. 
    Alvarez CE, Bovdilova A, Höppner A, Wolff C-C, Saigo M et al. 2019. Molecular adaptations of NADP-malic enzyme for its function in C4 photosynthesis in grasses. Nat. Plants 5:755–65
    [Google Scholar]
  8. 8. 
    Aoki N, Ohnishi J, Kanai R 1992. Two different mechanisms for transport of pyruvate into mesophyll chloroplasts of C4 plants—a comparative study. Plant Cell Physiol 33:805–9
    [Google Scholar]
  9. 9. 
    Arrivault S, Alexandre Moraes T, Obata T, Medeiros DB, Fernie AR et al. 2019. Metabolite profiles reveal interspecific variation in operation of the Calvin-Benson cycle in both C4 and C3 plants. J. Exp. Bot. 70:61843–58
    [Google Scholar]
  10. 10. 
    Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M et al. 2017. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation. J. Exp. Bot. 68:2283–98
    [Google Scholar]
  11. 11. 
    Aubry S, Brown NJ, Hibberd JM 2011. The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J. Exp. Bot. 62:93049–59
    [Google Scholar]
  12. 12. 
    Aubry S, Kelly S, Kümpers BMC, Smith-Unna RD, Hibberd JM 2014. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis. PLOS Genet 10:6e1004365
    [Google Scholar]
  13. 13. 
    Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM 2014. Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:4659–73
    [Google Scholar]
  14. 14. 
    Bansal KC, Viret JF, Haley J, Khan BM, Schantz R, Bogorad L 1992. Transient expression from cab-m1 and rbcS-m3 promoter sequences is different in mesophyll and bundle sheath cells in maize leaves. PNAS 89:83654–58
    [Google Scholar]
  15. 15. 
    Bartsch O, Mikkat S, Hagemann M, Bauwe H 2010. An autoinhibitory domain confers redox regulation to maize glycerate kinase. Plant Physiol 153:2832–40
    [Google Scholar]
  16. 16. 
    Bellasio C, Farquhar GD. 2019. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. New Phytol 223:1150–66
    [Google Scholar]
  17. 17. 
    Berry JO, Mure CM, Yerramsetty P 2016. Regulation of Rubisco gene expression in C4 plants. Curr. Opin. Plant Biol. 31:23–28
    [Google Scholar]
  18. 18. 
    Bläsing OE, Westhoff P, Svensson P 2000. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J. Biol. Chem. 275:3627917–23
    [Google Scholar]
  19. 19. 
    Blätke M-A, Bräutigam A. 2019. Evolution of C4 photosynthesis predicted by constraint-based modelling. eLife 8:e49305
    [Google Scholar]
  20. 20. 
    Bloom AJ. 2015. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123:2117–28
    [Google Scholar]
  21. 21. 
    Borba AR, Serra TS, Górska A, Gouveia P, Cordeiro AM et al. 2018. Synergistic binding of bHLH transcription factors to the promoter of the maize NADP-ME gene used in C4 photosynthesis is based on an ancient code found in the ancestral C3 state. Mol. Biol. Evol. 35:71690–705
    [Google Scholar]
  22. 22. 
    Bowman SM, Patel M, Yerramsetty P, Mure CM, Zielinski AM et al. 2013. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC Plant Biol 13:1138
    [Google Scholar]
  23. 23. 
    Bräutigam A, Gowik U. 2016. Photorespiration connects C3 and C4 photosynthesis. J. Exp. Bot. 67:102953–62
    [Google Scholar]
  24. 24. 
    Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D et al. 2011. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155:1142–56
    [Google Scholar]
  25. 25. 
    Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM 2014. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. J. Exp. Bot. 65:133579–93
    [Google Scholar]
  26. 26. 
    Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ et al. 2011. Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis Science. 3311436–39
  27. 27. 
    Brutnell TP, Sawers RJ, Mant A, Langdale JA 1999. BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcL gene of maize. Plant Cell 11:5849–64
    [Google Scholar]
  28. 28. 
    Burgess SJ, Granero-Moya I, Grangé-Guermente MJ, Boursnell C, Terry MJ, Hibberd JM 2016. Ancestral light and chloroplast regulation form the foundations for C4 gene expression. Nat. Plants 2:1116161
    [Google Scholar]
  29. 29. 
    Chang Y-M, Liu W-Y, Shih AC-C, Shen M-N, Lu C-H et al. 2012. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160:1165–77
    [Google Scholar]
  30. 30. 
    Chastain CJ, Baird LM, Walker MT, Bergman CC, Novbatova GT et al. 2018. Maize leaf PPDK regulatory protein isoform-2 is specific to bundle sheath chloroplasts and paradoxically lacks a Pi-dependent PPDK activation activity. J. Exp. Bot. 69:51171–81
    [Google Scholar]
  31. 31. 
    Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen THT 2011. Functional evolution of C4 pyruvate, orthophosphate dikinase. J. Exp. Bot. 62:93083–91
    [Google Scholar]
  32. 32. 
    Chen T, Zhu XG, Lin Y 2014. Major alterations in transcript profiles between C3–C4 and C4 photosynthesis of an amphibious species Eleocharis baldwinii. Plant Mol. Biol. 86:1–293–110
    [Google Scholar]
  33. 33. 
    Christin P-A, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP 2013. Parallel recruitment of multiple genes into C4 photosynthesis. Genome Biol. Evol. 5:112174–87
    [Google Scholar]
  34. 34. 
    Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G et al. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. PNAS 110:41381–86
    [Google Scholar]
  35. 35. 
    Christin P-A, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF 2011. Complex evolutionary transitions and the significance of C3–C4 intermediate forms of photosynthesis in Molluginaceae. Evolution 65:3643–60
    [Google Scholar]
  36. 36. 
    Christin P-A, Salamin N, Savolainen V, Duvall MR, Besnard G 2007. C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr. Biol. 17:141241–47
    [Google Scholar]
  37. 37. 
    Christin P-A, Wallace MJ, Clayton H, Edwards EJ, Furbank RT et al. 2012. Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae. J. Exp. Bot. 63:176297–308
    [Google Scholar]
  38. 38. 
    Clayton H, Saladié M, Rolland V, Sharwood R, Macfarlane T, Ludwig M 2017. Loss of the chloroplast transit peptide from an ancestral C3 carbonic anhydrase is associated with C4 evolution in the grass genus Neurachne. Plant Physiol 173:31648–58
    [Google Scholar]
  39. 39. 
    Covshoff S, Majeran W, Liu P, Kolkman JM, van Wijk KJ, Brutnell TP 2008. Deregulation of maize C4 photosynthetic development in a mesophyll cell-defective mutant. Plant Physiol 146:41469–81
    [Google Scholar]
  40. 40. 
    Covshoff S, Szecowka M, Hughes TE, Smith-Unna R, Kelly S et al. 2016. C4 photosynthesis in the rice paddy: insights from the noxious weed Echinochloa glabrescens. Plant Physiol 170:157–73
    [Google Scholar]
  41. 41. 
    Danila FR, Quick WP, White RG, Furbank RT, von Caemmerer S 2016. The metabolite pathway between bundle sheath and mesophyll: quantification of plasmodesmata in leaves of C3 and C4 monocots. Plant Cell 28:61461–71
    [Google Scholar]
  42. 42. 
    Danila FR, Quick WP, White RG, Kelly S, von Caemmerer S, Furbank RT 2018. Multiple mechanisms for enhanced plasmodesmata density in disparate subtypes of C4 grasses. J. Exp. Bot. 69:51135–45
    [Google Scholar]
  43. 43. 
    Danker T, Dreesen B, Offermann S, Horst I, Peterhänsel C 2008. Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. Plant J 53:3465–74
    [Google Scholar]
  44. 44. 
    Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber APM 2017. Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. J. Exp. Bot. 68:2147–60
    [Google Scholar]
  45. 45. 
    Doncaster HD, Leegood RC. 1987. Regulation of phosphoenolpyruvate carboxylase activity in maize leaves. Plant Physiol 84:182–87
    [Google Scholar]
  46. 46. 
    Dong X-m, Li Y, Chao Q, Shen J, Gong X-j et al. 2016. Analysis of gene expression and histone modification between C4 and non-C4 homologous genes of PPDK and PCK in maize. Photosynth. Res. 129:171–83
    [Google Scholar]
  47. 47. 
    Döring F, Streubel M, Bräutigam A, Gowik U 2016. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. J. Exp. Bot 67:103053–64
    [Google Scholar]
  48. 48. 
    Driever SM, Kromdijk J. 2013. Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)?. J. Exp. Bot. 64:133925–35
    [Google Scholar]
  49. 49. 
    Dunning LT, Olofsson JK, Parisod C, Choudhury RR, Moreno-Villena JJ et al. 2019. Lateral transfers of large DNA fragments spread functional genes among grasses. PNAS 116:104416–25
    [Google Scholar]
  50. 50. 
    Edwards EJ. 2014. The inevitability of C4 photosynthesis. eLife 3:e03702
    [Google Scholar]
  51. 51. 
    Edwards GE, Nakamoto H, Burnell JN, Hatch MD 1985. Pyruvate,Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: properties and mechanism of light/dark regulation. Ann. Rev. Plant Physiol. 36:255–86
    [Google Scholar]
  52. 52. 
    Edwards GE, Voznesenskaya EV. 2011. C4 photosynthesis: Kranz forms and single cell in terrestrial plants. C4 Photosynthesis and Related CO2 Concentrating Mechanisms AS Raghavendra, RF Sage 29–61 Dordrecht, Neth: Springer
    [Google Scholar]
  53. 53. 
    Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW 1991. Climate change and the evolution of C4 photosynthesis. Trends Ecol. Evol. 6:395–99
    [Google Scholar]
  54. 54. 
    Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M 2008. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. PNAS 105:4417199–204
    [Google Scholar]
  55. 55. 
    Emms DM, Covshoff S, Hibberd JM, Kelly S 2016. Independent and parallel evolution of new genes by gene duplication in two origins of C4 photosynthesis provides new insight into the mechanism of phloem loading in C4 species. Mol. Biol. Evol. 33:71796–806
    [Google Scholar]
  56. 56. 
    Engelmann S, Bläsing OE, Gowik U, Svensson P, Westhoff P 2003. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria–a gradual increase from C3 to C4 characteristics. Planta 217:5717–25
    [Google Scholar]
  57. 57. 
    Esau K. 1943. Ontogeny of the vascular bundle in Zea mays. Hilgardia 15:3327–68
    [Google Scholar]
  58. 58. 
    Fankhauser N, Aubry S. 2017. Post-transcriptional regulation of photosynthetic genes is a key driver of C4 leaf ontogeny. J. Exp. Bot. 68:2137–46
    [Google Scholar]
  59. 59. 
    Feldman AB, Murchie EH, Leung H, Baraoidan M, Coe R et al. 2014. Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice. PLOS ONE 9:4e94947
    [Google Scholar]
  60. 60. 
    Fischer WW, Hemp J, Johnson JE 2016. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44:647–83
    [Google Scholar]
  61. 61. 
    Fisher AE, McDade LA, Kiel CA, Khoshravesh R, Johnson MA et al. 2015. Evolutionary history of Blepharis (Acanthaceae) and the origin of C4 photosynthesis in section Acanthodium. Int. J. Plant Sci 176:8770–90
    [Google Scholar]
  62. 62. 
    Flügel F, Timm S, Arrivault S, Florian A, Stitt M et al. 2017. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29:102537–51
    [Google Scholar]
  63. 63. 
    Fouracre JP, Ando S, Langdale JA 2014. Cracking the Kranz enigma with systems biology. J. Exp. Bot. 65:133327–39
    [Google Scholar]
  64. 64. 
    Freitag H, Kadereit G. 2014. C3 and C4 leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). Plant Syst. Evol. 300:4665–87
    [Google Scholar]
  65. 65. 
    Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ 2010. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol 152:31219–50
    [Google Scholar]
  66. 66. 
    Furbank RT. 2011. Evolution of the C4 photosynthetic mechanism: Are there really three C4 acid decarboxylation types?. J. Exp. Bot. 62:93103–8
    [Google Scholar]
  67. 67. 
    Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y et al. 2011. A plastidial sodium-dependent pyruvate transporter. Nature 476:7361472–76
    [Google Scholar]
  68. 68. 
    Geigenberger P. 2011. Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155:41566–77
    [Google Scholar]
  69. 69. 
    Górska AM, Gouveia P, Borba AR, Zimmermann A, Serra TS et al. 2019. ZmbHLH80 and ZmbHLH90 transcription factors act antagonistically and contribute to regulate PEPC1 cell-specific gene expression in maize. Plant J 99:2270–85
    [Google Scholar]
  70. 70. 
    Goss T, Hanke G. 2014. The end of the line: Can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons?. Curr. Protein Pept. Sci. 15:4385–93
    [Google Scholar]
  71. 71. 
    Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P 2011. Evolution of C4 photosynthesis in the genus Flaveria: How many and which genes does it take to make C4. Plant Cell 23:62087–105
    [Google Scholar]
  72. 72. 
    Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M et al. 2004. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16:51077–90
    [Google Scholar]
  73. 73. 
    Gowik U, Schulze S, Saladié M, Rolland V, Tanz SK et al. 2017. A MEM1-like motif directs mesophyll cell-specific expression of the gene encoding the C4 carbonic anhydrase in Flaveria. J. Exp. Bot 68:2311–20
    [Google Scholar]
  74. 74. 
    Haberlandt G. 1896. Physiologische Pflanzenanatomie Leipzig, Ger: Wilhelm Engelmann
  75. 75. 
    Hagemann M, Weber APM, Eisenhut M 2016. Photorespiration: origins and metabolic integration in interacting compartments. J. Exp. Bot. 67:102915–18
    [Google Scholar]
  76. 76. 
    Hall LN, Rossini L, Cribb L, Langdale JA 1998. GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10:6925–36
    [Google Scholar]
  77. 77. 
    Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P et al. 2013. Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153:71579–88
    [Google Scholar]
  78. 78. 
    Heimann L, Horst I, Perduns R, Dreesen B, Offermann S, Peterhansel C 2013. A common histone modification code on C4 genes in maize and its conservation in sorghum and Setaria italica. Plant Physiol 162:1456–69
    [Google Scholar]
  79. 79. 
    Hennacy JH, Jonikas MC. 2020. Prospects for engineering biophysical CO2 concentrating mechanisms into land plants to enhance yields. Ann. Rev. Plant Biol. 71:461–85
    [Google Scholar]
  80. 80. 
    Hibberd JM, Covshoff S. 2010. The regulation of gene expression required for C4 photosynthesis. Annu. Rev. Plant Biol. 61:181–207
    [Google Scholar]
  81. 81. 
    Hibberd JM, Quick WP. 2002. Characteristics of C4 photosynthesis in stems and petioles of C3 plants. Nature 415:451–54
    [Google Scholar]
  82. 82. 
    Huang P, Studer AJ, Schnable JC, Kellogg EA, Brutnell TP 2017. Cross species selection scans identify components of C4 photosynthesis in the grasses. J. Exp. Bot. 68:2127–35
    [Google Scholar]
  83. 83. 
    Hughes T, Sedelnikova OV, Wu H, Becraft P, Langdale JA 2019. Redundant SCARECROW genes pattern distinct cell layers in roots and leaves of maize. Development 146:dev177543
    [Google Scholar]
  84. 84. 
    Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW 1988. Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3–C4 intermediate species. Planta 175:4452–59
    [Google Scholar]
  85. 85. 
    Jacobs B, Engelmann S, Westhoff P, Gowik U 2008. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria: determinants for high tolerance towards the inhibitor L-malate. Plant Cell Environ 31:6793–803
    [Google Scholar]
  86. 86. 
    John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM 2014. Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. Plant Physiol 165:162–75
    [Google Scholar]
  87. 87. 
    Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM 2012. Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J 69:147–56
    [Google Scholar]
  88. 88. 
    Kanai R, Edwards GE. 1999. The biochemistry of C4 photosynthesis. C4 Plant Biology RF Sage, RK Monson 49–87 London: Academic
    [Google Scholar]
  89. 89. 
    Kano-Murakami Y, Suzuki I, Sugiyama T, Matsuoka M 1991. Sequence-specific interactions of a maize factor with a GC-rich repeat in the phosphoenolpyruvate carboxylase gene. Mol. Genet. Genom. 225:203–8
    [Google Scholar]
  90. 90. 
    Kausch AP, Owen TP, Zachwieja SJ, Flynn AR, Sheen J 2001. Mesophyll-specific, light and metabolic regulation of the C4 PPCZm1 promoter in transgenic maize. Plant Mol. Biol. 45:11–15
    [Google Scholar]
  91. 91. 
    Khoshravesh R, Akhani H, Sage TL, Nordenstam B, Sage RF 2012. Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae). J. Exp. Bot. 63:155645–58
    [Google Scholar]
  92. 92. 
    Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF et al. 2016. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J. Exp. Bot. 67:103065–78
    [Google Scholar]
  93. 93. 
    Kirschner S, Woodfield H, Prusko K, Koczor M, Gowik U et al. 2018. Expression of SULTR2;2, encoding a low-affinity sulphur transporter, in the Arabidopsis bundle sheath and vein cells is mediated by a positive regulator. J. Exp. Bot. 69:204897–906
    [Google Scholar]
  94. 94. 
    Kleczkowski LA, Randall DD. 1986. Thiol-dependent regulation of glycerate metabolism in leaf extracts: the role of glycerate kinase in C4 plants. Plant Physiol 81:2656–62
    [Google Scholar]
  95. 95. 
    Kopriva S, Jones A, Koprivova A, Suter M, von Ballmoos P et al. 2001. Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays. Plant Biol 3:124–31
    [Google Scholar]
  96. 96. 
    Kromdijk J, Griffiths H, Schepers HE 2010. Can the progressive increase of C4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration. Plant Cell Environ 33:111935–48
    [Google Scholar]
  97. 97. 
    Kubásek J, Urban O, Šantrůček J 2013. C4 plants use fluctuating light less efficiently than do C3 plants: a study of growth, photosynthesis and carbon isotope discrimination. Physiol. Plant 149:4528–39
    [Google Scholar]
  98. 98. 
    Kubicki A, Funk E, Westhoff P, Steinmüller K 1996. Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199:276–81
    [Google Scholar]
  99. 99. 
    Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S et al. 2014. Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species. Plant Cell 26:83243–60
    [Google Scholar]
  100. 100. 
    Kumar RA, Oldenburg DJ, Bendich AJ 2015. Molecular integrity of chloroplast DNA and mitochondrial DNA in mesophyll and bundle sheath cells of maize. Planta 241:51221–30
    [Google Scholar]
  101. 101. 
    Kümpers BMC, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM 2017. Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria. J. Exp. Bot 68:2177–89
    [Google Scholar]
  102. 102. 
    Lai LB, Wang L, Nelson TM 2002. Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C3 and C4Flaveria species. Plant Physiol 128:1125–39
    [Google Scholar]
  103. 103. 
    Langdale JA. 2011. C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:113879–92
    [Google Scholar]
  104. 104. 
    Langdale JA, Kidner CA. 1994. Bundle sheath defective, a mutation that disrupts cellular differentiation in maize leaves. Development 120:3673–81
    [Google Scholar]
  105. 105. 
    Langdale JA, Taylor WC, Nelson T 1991. Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site >3 kb upstream of the gene. Mol. Gen. Genet. 225:149–55
    [Google Scholar]
  106. 106. 
    Leegood RC, von Caemmerer S 1989. Some relationships between contents of photosynthetic intermediates and the rate of photosynthetic carbon assimilation in leaves of Zea mays L. Planta 178:258–66
    [Google Scholar]
  107. 107. 
    Leegood RC, Walker RP. 2003. Regulation and roles of phosphoenolpyruvate carboxykinase in plants. Arch. Biochem. Biophys. 414:2204–10
    [Google Scholar]
  108. 108. 
    Levey M, Timm S, Mettler-Altmann T, Borghi GL, Koczor M et al. 2019. Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant Flaveria bidentis. J. Exp. Bot 70:2575–87
    [Google Scholar]
  109. 109. 
    Li P, Ponnala L, Gandotra N, Wang L, Si Y et al. 2010. The developmental dynamics of the maize leaf transcriptome. Nat. Genet. 42:121060–67
    [Google Scholar]
  110. 110. 
    Long SP. 1999. Environmental responses. C4 Plant Biology RF Sage, RK Monson 215–49 London: Academic
    [Google Scholar]
  111. 111. 
    Ludwig M. 2012. Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ 35:122–37
    [Google Scholar]
  112. 112. 
    Lundgren MR, Christin P-A, Escobar EG, Ripley BS, Besnard G et al. 2016. Evolutionary implications of C3–C4 intermediates in the grass Alloteropsis semialata. Plant Cell Environ 39:91874–85
    [Google Scholar]
  113. 113. 
    Lundgren MR, Dunning LT, Olofsson JK, Moreno-Villena JJ, Bouvier JW et al. 2019. C4 anatomy can evolve via a single developmental change. Ecol. Lett. 22:2302–12
    [Google Scholar]
  114. 114. 
    Majeran W, Cai Y, Sun Q, van Wijk KJ 2005. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:113111–40
    [Google Scholar]
  115. 115. 
    Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber APM et al. 2014. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife 3:e02478
    [Google Scholar]
  116. 116. 
    Marshall JS, Stubbs JD, Chitty JA, Surin B, Taylor WC 1997. Expression of the C4Me1 gene from Flaveria bidentis requires an interaction between 5′ and 3′ sequences. Plant Cell 9:91515–25
    [Google Scholar]
  117. 117. 
    Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y 1994. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J 6:3311–19
    [Google Scholar]
  118. 118. 
    Matsuoka M, Numazawa T. 1991. CIS-acting elements in the pyruvate, orthophosphate dikinase gene from maize. Mol. Gen. Genet. 228:1–2143–52
    [Google Scholar]
  119. 119. 
    Matsuoka M, Sanada Y. 1991. Expression of photosynthetic genes from the C4 plant, maize, in tobacco. Mol. Gen. Genet. 225:3411–19
    [Google Scholar]
  120. 120. 
    Mayfield SP, Taylor WC. 1984. The appearance of photosynthetic proteins in developing maize leaves. Planta 161:481–86
    [Google Scholar]
  121. 121. 
    McKown AD, Moncalvo J-M, Dengler NG 2005. Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am. J. Bot. 92:111911–28
    [Google Scholar]
  122. 122. 
    Meister M, Agostino A, Hatch MD 1996. The roles of malate and aspartate in C4 photosynthetic metabolism of Flaveria bidentis (L.). Planta 199:262–69
    [Google Scholar]
  123. 123. 
    Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME et al. 2013. Redox regulation of the Calvin-Benson cycle: something old, something new. Front. Plant Sci. 4:470
    [Google Scholar]
  124. 124. 
    Miyake H. 2016. Starch accumulation in the bundle sheaths of C3 plants: a possible pre-condition for C4 photosynthesis. Plant Cell Physiol 57:5890–96
    [Google Scholar]
  125. 125. 
    Monson RK, Rawsthorne S. 2000. CO2 assimilation in C3-C4 intermediate plants. Photosynthesis: Physiology and Metabolism RC Leegood, TD Sharkey, S von Caemmerer 533–50 Dordrecht, Neth: Springer
    [Google Scholar]
  126. 126. 
    Moore R, Black CJ. 1979. Nitrogen assimilation pathways in leaf mesophyll and bundle sheath cells of C4 photosynthesis plants formulated from comparative studies with Digitaria sanguinalis (L.) Scop. Plant Physiol 64:309–13
    [Google Scholar]
  127. 127. 
    Moreno-Villena JJ, Dunning LT, Osborne CP, Christin P-A 2018. Highly expressed genes are preferentially co-opted for C4 photosynthesis. Mol. Biol. Evol. 35:194–106
    [Google Scholar]
  128. 128. 
    Muhaidat R, Sage TL, Frohlich MW, Dengler NG, Sage RF 2011. Characterization of C3–C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ 34:101723–36
    [Google Scholar]
  129. 129. 
    Munekage YN, Taniguchi YY. 2016. Promotion of cyclic electron transport around photosystem I with the development of C4 photosynthesis. Plant Cell Physiol 57:5897–903
    [Google Scholar]
  130. 130. 
    Nakamura H, Muramatsu M, Hakata M, Ueno O, Nagamura Y et al. 2009. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol 50:111933–49
    [Google Scholar]
  131. 131. 
    Nikkanen L, Rintamäki E. 2019. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochem. J. 476:71159–72
    [Google Scholar]
  132. 132. 
    Nikkanen L, Toivola J, Diaz MG, Rintamäki E 2017. Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos. Trans. R. Soc. B 372:173020160474
    [Google Scholar]
  133. 133. 
    Niklaus M, Kelly S. 2019. The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world's most productive plants. J. Exp. Bot. 70:3859–69
    [Google Scholar]
  134. 134. 
    Nomura M, Higuchi T, Ishida Y, Ohta S, Komari T et al. 2005. Differential expression pattern of C4 bundle sheath expression genes in rice, a C3 plant. Plant Cell Physiol 46:5754–61
    [Google Scholar]
  135. 135. 
    Nomura M, Sentoku N, Nishimura A, Lin J-H, Honda C et al. 2000. The evolution of C4 plants: acquisition of cis-regulatory sequences in the promoter of C4-type pyruvate, orthophosphate dikinase gene. Plant J 22:3211–21
    [Google Scholar]
  136. 136. 
    Ohnishi J, Flügge UI, Heldt HW 1989. Phosphate translocator of mesophyll and bundle sheath chloroplasts of a C4 plant, Panicum miliaceum L.: identification and kinetic characterization. Plant Physiol 91:1507–11
    [Google Scholar]
  137. 137. 
    Patel M, Corey AC, Yin L, Ali S, Taylor WC, Berry JO 2004. Untranslated regions from C4 amaranth AhRbcS1 mRNAs confer translational enhancement and preferential bundle sheath cell expression in transgenic C4. Flaveria bidentis 136:33550–61
    [Google Scholar]
  138. 138. 
    Patel M, Siegel AJ, Berry JO 2006. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J. Biol. Chem. 281:3525485–91
    [Google Scholar]
  139. 139. 
    Paulus JK, Schlieper D, Groth G 2013. Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution. Nat. Commun. 4:1518
    [Google Scholar]
  140. 140. 
    Perduns R, Horst-Niessen I, Peterhansel C 2015. Photosynthetic genes and genes associated with the C4 trait in maize are characterized by a unique class of highly regulated histone acetylation peaks on upstream promoters. Plant Physiol 168:41378–88
    [Google Scholar]
  141. 141. 
    Pick TR, Brautigam A, Schluter U, Denton AK, Colmsee C et al. 2011. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23:124208–20
    [Google Scholar]
  142. 142. 
    Pinto H, Powell JR, Sharwood RE, Tissue DT, Ghannoum O 2016. Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C4 grasses at inter-glacial CO2. Plant Cell Environ 39:3514–26
    [Google Scholar]
  143. 143. 
    Purcell M, Mabrouk YM, Bogorad L 1995. Red/far-red and blue light-responsive regions of maize rbcS-m3 are active in bundle sheath and mesophyll cells, respectively. PNAS 92:2511504–8
    [Google Scholar]
  144. 144. 
    Rao X, Lu N, Li G, Nakashima J, Tang Y, Dixon RA 2016. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. J. Exp. Bot. 67:61649–62
    [Google Scholar]
  145. 145. 
    Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW 1988. Distribution of photorespiratory enzymes between bundle-sheath and mesophyll cells in leaves of the C3–C4 intermediate species Moricandia arvensis (L.) DC. Planta 176:527–32
    [Google Scholar]
  146. 146. 
    Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW 1988. Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in leaves of C3 and C3-C4 intermediate species of Moricandia. Planta 173:298–308
    [Google Scholar]
  147. 147. 
    Reeves G, Grangé-Guermente MJ, Hibberd JM 2017. Regulatory gateways for cell-specific gene expression in C4 leaves with Kranz anatomy. J. Exp. Bot. 68:2107–16
    [Google Scholar]
  148. 148. 
    Reyna-Llorens I, Burgess SJ, Reeves G, Singh P, Stevenson SR et al. 2018. Ancient duons may underpin spatial patterning of gene expression in C4 leaves. PNAS 115:81931–36
    [Google Scholar]
  149. 149. 
    Reyna-Llorens I, Hibberd JM. 2017. Recruitment of pre-existing networks during the evolution of C4 photosynthesis. Philos. Trans. R. Soc. B 372:173020160386
    [Google Scholar]
  150. 150. 
    Rosche E, Chitty J, Westhoff P, Taylor WC 1998. Analysis of promoter activity for the gene encoding pyruvate orthophosphate dikinase in stably transformed C4Flaveria species. Plant Physiol 117:821–29
    [Google Scholar]
  151. 151. 
    Rosnow JJ, Edwards GE, Roalson EH 2014. Positive selection of Kranz and non-Kranz C4 phosphoenolpyruvate carboxylase amino acids in Suaedoideae (Chenopodiaceae). J. Exp. Bot. 65:133595–607
    [Google Scholar]
  152. 152. 
    Roth R, Hall LN, Brutnell TP, Langdale JA 1996. bundle sheath defective2, a mutation that disrupts the coordinated development of bundle sheath and mesophyll cells in the maize leaf. Plant Cell 8:915–27
    [Google Scholar]
  153. 153. 
    Sage RF. 2004. The evolution of C4 photosynthesis. New Phytol 161:2341–70
    [Google Scholar]
  154. 154. 
    Sage RF. 2016. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. J. Exp. Bot. 67:144039–56
    [Google Scholar]
  155. 155. 
    Sage RF, Christin P-A, Edwards EJ 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 62:93155–69
    [Google Scholar]
  156. 156. 
    Sage RF, Sage TL, Kocacinar F 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63:19–47
    [Google Scholar]
  157. 157. 
    Sage TL, Sage RF, Vogan PJ, Rahman B, Johnson DC et al. 2011. The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). J. Exp. Bot. 62:93183–95
    [Google Scholar]
  158. 158. 
    Schäffner AR, Sheen J. 1991. Maize rbcS promoter activity depends on sequence elements not found in dicot rbcS promoters. Plant Cell 3:997–1012
    [Google Scholar]
  159. 159. 
    Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM 2019. The role of alanine and aspartate aminotransferases in C4 photosynthesis. Plant Biol 21:S164–76
    [Google Scholar]
  160. 160. 
    Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin P-A et al. 2017. Photosynthesis in C3–C4 intermediate Moricandia species. J. Exp. Bot. 68:2191–206
    [Google Scholar]
  161. 161. 
    Schlüter U, Denton AK, Bräutigam A 2016. Understanding metabolite transport and metabolism in C4 plants through RNA-seq. Curr. Opin. Plant Biol. 31:83–90
    [Google Scholar]
  162. 162. 
    Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M et al. 2013. Evolution of C4 photosynthesis in the genus Flaveria: establishment of a photorespiratory CO2 pump. Plant Cell 25:72522–35
    [Google Scholar]
  163. 163. 
    Schüssler C, Freitag H, Koteyeva N, Schmidt D, Edwards G et al. 2017. Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae). J. Exp. Bot. 68:2207–23
    [Google Scholar]
  164. 164. 
    Sedelnikova OV, Hughes TE, Langdale JA 2018. Understanding the genetic basis of C4 Kranz anatomy with a view to engineering C3 crops. Annu. Rev. Genet. 52:249–70
    [Google Scholar]
  165. 165. 
    Sharwood RE, Ghannoum O, Whitney SM 2016. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr. Opin. Plant Biol. 31:135–42
    [Google Scholar]
  166. 166. 
    Sheen J. 1991. Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3:225–45
    [Google Scholar]
  167. 167. 
    Shen Z, Dong XM, Gao ZF, Chao Q, Wang BC 2017. Phylogenic and phosphorylation regulation difference of phosphoenolpyruvate carboxykinase of C3 and C4 plants. J. Plant Physiol. 213:16–22
    [Google Scholar]
  168. 168. 
    Slewinski TL, Anderson AA, Zhang C, Turgeon R 2012. Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiol 53:122030–37
    [Google Scholar]
  169. 169. 
    Sommer M, Bräutigam A, Weber APM 2012. The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biol 14:4621–29
    [Google Scholar]
  170. 170. 
    Sonawane BV, Sharwood RE, Whitney S, Ghannoum O 2018. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses. J. Exp. Bot. 69:123053–68
    [Google Scholar]
  171. 171. 
    Stitt M, Heldt HW. 1985. Generation and maintenance of concentration gradients between the mesophyll and bundle sheath in maize leaves. Biochim. Biophys. Acta 808:3400–14
    [Google Scholar]
  172. 172. 
    Studer AJ, Gandin A, Kolbe AR, Wang L, Cousins AB, Brutnell TP 2014. A limited role for carbonic anhydrase in C4 photosynthesis as revealed by a ca1ca2 double mutant in maize. Plant Physiol 165:2608–17
    [Google Scholar]
  173. 173. 
    Takabayashi A, Kishine M, Asada K, Endo T, Sato F 2005. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. PNAS 102:4616898–903
    [Google Scholar]
  174. 174. 
    Taniguchi M, Izawa K, Ku MSB, Lin J-H, Saito H et al. 2000. Binding of cell type-specific nuclear proteins to the 5′-flanking region of maize C4 phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells. Plant Mol. Biol. 44:543–57
    [Google Scholar]
  175. 175. 
    Tanz SK, Tetu SG, Vella NGF, Ludwig M 2009. Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria. Plant Physiol 150:31515–29
    [Google Scholar]
  176. 176. 
    Tausta LS, Li P, Si Y, Gandotra N, Liu P et al. 2014. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. J. Exp. Bot. 65:133543–55
    [Google Scholar]
  177. 177. 
    Tipping C, Murray DR. 1999. Effects of elevated atmospheric CO2 concentration on leaf anatomy and morphology in Panicum species representing different photosynthetic modes. Int. J. Plant Sci. 160:61363–73
    [Google Scholar]
  178. 178. 
    Turkan I, Uzilday B, Dietz KJ, Bräutigam A, Ozgur R 2018. Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. J. Exp. Bot. 69:143321–31
    [Google Scholar]
  179. 179. 
    Ueno O. 2011. Structural and biochemical characterization of the C3-C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco. J. Exp. Bot. 62:155347–55
    [Google Scholar]
  180. 180. 
    Ueno O, Wada Y, Wakai M, Bang SW 2006. Evidence from photosynthetic characteristics for the hybrid origin of Diplotaxis muralis from a C3-C4 intermediate and a C3 species. Plant Biol 8:2253–59
    [Google Scholar]
  181. 181. 
    Usuda H. 1987. Changes in levels of intermediates of the C4 cycle and reductive pentose phosphate pathway under various light intensities in maize leaves. Plant Physiol 83:29–32
    [Google Scholar]
  182. 182. 
    Usuda H, Edwards GE. 1980. Localization of glycerate kinase and some enzymes for sucrose synthesis in C3 and C4 plants. Plant Physiol 65:1017–22
    [Google Scholar]
  183. 183. 
    Viret J-F, Mabrouk YM, Bogorad L 1994. Transcriptional photoregulation of cell-type-preferred expression of maize rbcS-m3: 3′ and 5′ sequences are involved. PNAS 91:8577–81
    [Google Scholar]
  184. 184. 
    Vogan PJ, Frohlich MW, Sage RF 2007. The functional significance of C3–C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives. Plant Cell Environ 30:101337–45
    [Google Scholar]
  185. 185. 
    von Caemmerer S, Quinn V, Hancock NC, Price GD, Furbank RT, Ludwig M 2004. Carbonic anhydrase and C4 photosynthesis: atransgenic analysis. Plant Cell Environ 27:6697–703
    [Google Scholar]
  186. 186. 
    Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE 2002. Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:5649–62
    [Google Scholar]
  187. 187. 
    Voznesenskaya EV, Koteyeva NK, Akhani H, Roalson EH, Edwards GE 2013. Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. J. Exp. Bot. 64:123583–604
    [Google Scholar]
  188. 188. 
    Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G 2010. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae). J. Exp. Bot. 61:133647–62
    [Google Scholar]
  189. 189. 
    Wang D, Portis AR, Moose SP, Long SP 2008. Cool C4 photosynthesis: Pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:1557–67
    [Google Scholar]
  190. 190. 
    Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T et al. 2014. Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat. Biotechnol. 32:111158–65
    [Google Scholar]
  191. 191. 
    Wang P, Karki S, Biswal AK, Lin H-C, Dionora MJ et al. 2017. Candidate regulators of early leaf development in maize perturb hormone signalling and secondary cell wall formation when constitutively expressed in rice. Sci. Rep. 7:14535
    [Google Scholar]
  192. 192. 
    Wang P, Kelly S, Fouracre JP, Langdale JA 2013. Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75:4656–70
    [Google Scholar]
  193. 193. 
    Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP et al. 2017. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Curr. Biol. 27:213278–87.e6
    [Google Scholar]
  194. 194. 
    Watcharamongkol T, Christin PA, Osborne CP 2018. C4 photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecol. Lett. 21:3376–83
    [Google Scholar]
  195. 195. 
    Weckopp SC, Kopriva S. 2015. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis?. Front. Plant Sci. 5:773
    [Google Scholar]
  196. 196. 
    Westhoff P, Gowik U. 2004. Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins: a case study with the genus Flaveria. Ann. Bot 93:113–23
    [Google Scholar]
  197. 197. 
    Williams BP, Burgess SJ, Reyna-Llorens I, Knerova J, Aubry S et al. 2016. An untranslated cis-element regulates the accumulation of multiple C4 enzymes in Gynandropsis gynandra mesophyll cells. Plant Cell 28:2454–65
    [Google Scholar]
  198. 198. 
    Williams BP, Johnston IG, Covshoff S, Hibberd JM 2013. Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. eLife 2:e00961
    [Google Scholar]
  199. 199. 
    Wiludda C, Schulze S, Gowik U, Engelmann S, Koczor M et al. 2012. Regulation of the photorespiratory GLDPA gene in C4Flaveria: an intricate interplay of transcriptional and posttranscriptional processes. Plant Cell 24:1137–51
    [Google Scholar]
  200. 200. 
    Windhövel A, Hein I, Dabrowa R, Stockhaus J 2001. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Mol. Biol 45:201–14
    [Google Scholar]
  201. 201. 
    Xu T, Purcell M, Zucchi P, Helentjaris T, Bogorad L 2002. TRM1, a YY1-like suppressor of rbcS-m3 expression in maize mesophyll cells. PNAS 98:52295–300
    [Google Scholar]
  202. 202. 
    Yanagisawa S. 2000. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:3281–88
    [Google Scholar]
  203. 203. 
    Yerramsetty P, Stata M, Siford R, Sage TL, Sage RF et al. 2016. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants. BMC Evol. Biol. 16:1141
    [Google Scholar]
  204. 204. 
    Yu C-P, Chen SC-C, Chang Y-M, Liu W-Y, Lin H-H et al. 2015. Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. PNAS 112:19E2477–86
    [Google Scholar]
  205. 205. 
    Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP 2009. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:1195–204
    [Google Scholar]
  206. 206. 
    Zhang YG, Pagani M, Liu Z, Bohaty SM, Deconto R 2013. A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. A 371:20130096
    [Google Scholar]
  207. 207. 
    Zhou H, Helliker BR, Huber M, Dicks A, Akçay E 2018. C4 photosynthesis and climate through the lens of optimality. PNAS 115:4712057–62
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-042916-040915
Loading
/content/journals/10.1146/annurev-arplant-042916-040915
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error