1932

Abstract

The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case the, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the , the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042916-041040
2020-04-29
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-042916-041040.html?itemId=/content/journals/10.1146/annurev-arplant-042916-041040&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Amborella Genome Proj 2013. The Amborella genome and the evolution of flowering plants. Science 342:61651241089
    [Google Scholar]
  2. 2. 
    Augustin MM, Ruzicka DR, Shukla AK, Augustin JM, Starks CM et al. 2015. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells. Plant J 82:6991–1003
    [Google Scholar]
  3. 3. 
    Avise JC, Robinson TJ. 2008. Hemiplasy: a new term in the lexicon of phylogenetics. Syst. Biol. 57:3503–7
    [Google Scholar]
  4. 4. 
    Baniaga AE, Arrigo N, Barker MS 2016. The small nuclear genomes of Selaginella are associated with a low rate of genome size evolution. Genome Biol. Evol. 8:1516–25
    [Google Scholar]
  5. 5. 
    Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:6032960–63
    [Google Scholar]
  6. 6. 
    Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:2391–98
    [Google Scholar]
  7. 7. 
    Barker MS, Dlugosch KM, Dinh L, Challa RS, Kane NC et al. 2010. EvoPipes.net: Bioinformatic tools for ecological and evolutionary genomics. Evol. Bioinform. Online 6:143–49
    [Google Scholar]
  8. 8. 
    Barker MS, Husband BC, Pires JC 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103:71139–45
    [Google Scholar]
  9. 9. 
    Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW et al. 2008. Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 25:112445–55
    [Google Scholar]
  10. 10. 
    Becker B, Marin B. 2009. Streptophyte algae and the origin of embryophytes. Ann. Bot. 103:7999–1004
    [Google Scholar]
  11. 11. 
    Bennett T, Brockington SF, Rothfels C, Graham SW, Stevenson D et al. 2014. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Mol. Biol. Evol. 31:82042–60
    [Google Scholar]
  12. 12. 
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:721853–59
    [Google Scholar]
  13. 13. 
    Bevan MW, Uauy C, Wulff BBH, Zhou J, Krasileva K, Clark MD 2017. Genomic innovation for crop improvement. Nature 543:7645346–54
    [Google Scholar]
  14. 14. 
    Blank CE. 2013. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting Proterozoic paleobiology and biogeochemical processes in light of trait evolution. J. Phycol. 49:61040–55
    [Google Scholar]
  15. 15. 
    Bourque S, Jeandroz S, Grandperret V, Lehotai N, Aimé S et al. 2016. The evolution of HD2 proteins in green plants. Trends Plant Sci 21:121008–16
    [Google Scholar]
  16. 16. 
    Bowers JE, Chapman BA, Rong J, Paterson AH 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:6930433–38
    [Google Scholar]
  17. 17. 
    Boyden ES. 2011. A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol. Rep. 3:11
    [Google Scholar]
  18. 18. 
    Brinkmann H, van der Giezen M, Zhou Y, Poncelin de Raucourt G, Philippe H 2005. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst. Biol. 54:5743–57
    [Google Scholar]
  19. 19. 
    Bythell-Douglas R, Rothfels CJ, Stevenson D, Graham SW, Wong G-S et al. 2017. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol 15:52
    [Google Scholar]
  20. 19a. 
    Carpenter EJ, Matasci N, Ayyampalayam S, Wu S, Sun Jet al 2019. Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). Gigascience 8:10giz126
    [Google Scholar]
  21. 20. 
    Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM et al. 2018. 10KP: A phylodiverse genome sequencing plan. Gigascience 7:giy013
    [Google Scholar]
  22. 21. 
    Christin P-A, Arakaki M, Osborne CP, Bräutigam A, Sage RF et al. 2014. Shared origins of a key enzyme during the evolution of C4 and CAM metabolism. J. Exp. Bot. 65:133609–21
    [Google Scholar]
  23. 22. 
    Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G et al. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. PNAS 110:41381–86
    [Google Scholar]
  24. 23. 
    Davidson R, Vachaspati P, Mirarab S, Warnow T 2015. Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics 16:Suppl. 10S1
    [Google Scholar]
  25. 24. 
    Delaux P-M, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M et al. 2015. Algal ancestor of land plants was preadapted for symbiosis. PNAS 112:4313390–95
    [Google Scholar]
  26. 25. 
    Delaux P-M, Radhakrishnan G, Oldroyd G 2015. Tracing the evolutionary path to nitrogen-fixing crops. Curr. Opin. Plant Biol. 26:95–99
    [Google Scholar]
  27. 26. 
    Delwiche CF, Cooper ED. 2015. The evolutionary origin of a terrestrial flora. Curr. Biol. 25:19R899–910
    [Google Scholar]
  28. 27. 
    de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM 2017. How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte algae. Plant Cell Physiol 58:5934–45
    [Google Scholar]
  29. 28. 
    de Vries J, Stanton A, Archibald JM, Gould SB 2016. Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci 21:6467–76
    [Google Scholar]
  30. 29. 
    Domozych DS, Popper ZA, Sørensen I 2016. Charophytes: evolutionary giants and emerging model organisms. Front. Plant Sci. 7:1470
    [Google Scholar]
  31. 30. 
    Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:278362–66
    [Google Scholar]
  32. 31. 
    Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157
    [Google Scholar]
  33. 32. 
    Estep MC, McKain MR, Vela Diaz D, Zhong J, Hodge JG et al. 2014. Allopolyploidy, diversification, and the Miocene grassland expansion. PNAS 111:4215149–54
    [Google Scholar]
  34. 33. 
    Fosque BF, Sun Y, Dana H, Yang C-T, Ohyama T et al. 2015. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347:6223755–60
    [Google Scholar]
  35. 34. 
    Freeling M. 2017. Picking up the ball at the K/Pg boundary: the distribution of ancient polyploidies in the plant phylogenetic tree is a spandrel of asexuality and occasional sex. Plant Cell 29:9202–6
    [Google Scholar]
  36. 35. 
    Glantz ST, Carpenter EJ, Melkonian M, Gardner KH, Boyden ES et al. 2016. Functional and topological diversity of LOV domain photoreceptors. PNAS 113:11E1442–51
    [Google Scholar]
  37. 36. 
    Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:Database IssueD117886
    [Google Scholar]
  38. 37. 
    Gould SJ, Vrba ES. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:14–15
    [Google Scholar]
  39. 38. 
    Govorunova EG, Cunha SR, Sineshchekov OA, Spudich JL 2016. Anion channelrhodopsins for inhibitory cardiac optogenetics. Sci. Rep. 6:33530
    [Google Scholar]
  40. 39. 
    Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL 2015. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:6248647–50
    [Google Scholar]
  41. 40. 
    Govorunova EG, Sineshchekov OA, Rodarte EM, Janz R, Morelle O et al. 2017. The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci. Rep. 7:43358
    [Google Scholar]
  42. 41. 
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:7644–52
    [Google Scholar]
  43. 42. 
    Graham LE, Arancibia-Avila P, Taylor WA, Strother PK, Cook ME 2012. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. Am. J. Bot. 99:1130–44
    [Google Scholar]
  44. 43. 
    Graur D, Li WH. 2000. Fundamentals of Molecular Evolution Sunderland, MA: Sinauer, 2nd ed..
  45. 44. 
    Harholt J, Moestrup Ø, Ulvskov P 2016. Why plants were terrestrial from the beginning. Trends Plant Sci 21:296–101
    [Google Scholar]
  46. 45. 
    Heyduk K, McKain MR, Lalani F, Leebens-Mack J 2016. Evolution of a CAM anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae (Asparagaceae). Mol. Phylogenet. Evol. 105:102–13
    [Google Scholar]
  47. 46. 
    Heyduk K, Trapnell DW, Barrett CF, Leebens-Mack J 2015. Estimating relationships within Sabal (Arecaceae) through multilocus analyses of sequence capture data. Biol. J. Linn. Soc. Lond. 117:106–20
    [Google Scholar]
  48. 47. 
    Hibberd JM, Sheehy JE, Langdale JA 2008. Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr. Opin. Plant Biol. 11:2228–31
    [Google Scholar]
  49. 48. 
    Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA et al. 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11:8825–33
    [Google Scholar]
  50. 49. 
    Hodel RGJ, Gitzendanner MA, Germain-Aubrey CC, Liu X, Crowl AA et al. 2016. A new resource for the development of SSR markers: millions of loci from a thousand plant transcriptomes. Appl. Plant Sci. 4:61600024
    [Google Scholar]
  51. 50. 
    Holzinger A, Becker B. 2015. Desiccation tolerance in the streptophyte green alga Klebsormidium: the role of phytohormones. Commun. Integr. Biol. 8:4e1059978
    [Google Scholar]
  52. 51. 
    Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B 2014. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLOS ONE 9:10e110630
    [Google Scholar]
  53. 52. 
    Holzinger A, Pichrtová M. 2016. Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front. Plant Sci. 7:678
    [Google Scholar]
  54. 53. 
    Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y et al. 2016. Selecting superior de novo transcriptome assemblies: lessons learned by leveraging the best plant genome. PLOS ONE 11:1e0146062
    [Google Scholar]
  55. 54. 
    Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N et al. 2014. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5:3978
    [Google Scholar]
  56. 55. 
    Innan H, Kondrashov F. 2010. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11:297–108
    [Google Scholar]
  57. 56. 
    Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW et al. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. PNAS 104:4919369–74
    [Google Scholar]
  58. 57. 
    Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M et al. 2016. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci. Signal. 9:417re2
    [Google Scholar]
  59. 58. 
    Jia Q, Li G, Köllner TG, Fu J, Chen X et al. 2016. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. PNAS 113:4312328–33
    [Google Scholar]
  60. 59. 
    Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR et al. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biol 13:1R3
    [Google Scholar]
  61. 60. 
    Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:734597–100
    [Google Scholar]
  62. 61. 
    Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ 2017. Pipeline to identify hydroxyproline-rich glycoproteins. Plant Physiol 175:2886–903
    [Google Scholar]
  63. 62. 
    Johnson KL, Cassin AM, Lonsdale A, Wong GK-S, Soltis DE et al. 2017. Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant Physiol 174:2904–21
    [Google Scholar]
  64. 63. 
    Johnson MTJ, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN et al. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLOS ONE 7:11e50226
    [Google Scholar]
  65. 64. 
    Jordon-Thaden IE, Chanderbali AS, Gitzendanner MA, Soltis DE 2015. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta. Appl. Plant Sci. 3:51400105
    [Google Scholar]
  66. 65. 
    Kapraun DF. 2007. Nuclear DNA content estimates in green algal lineages: Chlorophyta and Streptophyta. Ann. Bot. 99:4677–701
    [Google Scholar]
  67. 66. 
    Kellogg EA. 2016. Has the connection between polyploidy and diversification actually been tested?. Curr. Opin. Plant Biol. 30:25–32
    [Google Scholar]
  68. 67. 
    Kelly S, Covshoff S, Wanchana S, Thakur V, Quick WP et al. 2017. Wide sampling of natural diversity identifies novel molecular signatures of C4 photosynthesis. bioRxiv https://doi.org/10.1101/163097
    [Crossref] [Google Scholar]
  69. 68. 
    Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A et al. 2014. Independent optical excitation of distinct neural populations. Nat. Methods 11:3338–46
    [Google Scholar]
  70. 69. 
    Koenig D, Weigel D. 2015. Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nat. Rev. Genet. 16:5285–98
    [Google Scholar]
  71. 70. 
    Kubatko LS, Degnan JH. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56:117–24
    [Google Scholar]
  72. 71. 
    Lazebnik Y. 2002. Can a biologist fix a radio?—Or, what I learned while studying apoptosis. Cancer Cell 2:3179–82
    [Google Scholar]
  73. 72. 
    Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH et al. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Mol. Biol. Evol. 22:101948–63
    [Google Scholar]
  74. 73. 
    Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:67985
    [Google Scholar]
  75. 74. 
    Leitch IJ, Leitch AR. 2013. Genome size diversity and evolution in land plants. Plant Genome Diversity 2 IJ Leitch, J Greilhuber, J Dolezel, JF Wendel 307–22 Vienna: Springer
    [Google Scholar]
  76. 75. 
    Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM et al. 2014. DNA-based species delimitation in algae. Eur. J. Phycol. 49:2179–96
    [Google Scholar]
  77. 76. 
    Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW et al. 2015. Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat. Commun. 6:7852
    [Google Scholar]
  78. 77. 
    Li F-W, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW et al. 2015. The origin and evolution of phototropins. Front. Plant Sci. 6:637
    [Google Scholar]
  79. 78. 
    Li F-W, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M et al. 2014. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. PNAS 111:186672–77
    [Google Scholar]
  80. 79. 
    Li R, Fan W, Tian G, Zhu H, He L et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463:7279311–17
    [Google Scholar]
  81. 80. 
    Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW et al. 2015. Early genome duplications in conifers and other seed plants. Sci. Adv. 1:10e1501084
    [Google Scholar]
  82. 81. 
    Maddison WP. 1997. Gene trees in species trees. Syst. Biol. 46:3523
    [Google Scholar]
  83. 82. 
    Maugarny-Calès A, Gonçalves B, Jouannic S, Melkonian M, Wong GK-S, Laufs P 2016. Apparition of the NAC transcription factors predates the emergence of land plants. Mol. Plant 9:91345–48
    [Google Scholar]
  84. 83. 
    Mayrose I, Zhan SH, Rothfels CJ, Arrigo N, Barker MS et al. 2015. Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis et al. (2014). New Phytol 206:127–35
    [Google Scholar]
  85. 84. 
    Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS et al. 2011. Recently formed polyploid plants diversify at lower rates. Science 333:60471257
    [Google Scholar]
  86. 85. 
    Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU et al. 2014. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Ann. Bot. 114:61217–36
    [Google Scholar]
  87. 86. 
    Mirarab S. 2017. Phylogenomics: constrained gene tree inference. Nat. Ecol. Evol. 1:56
    [Google Scholar]
  88. 87. 
    Mirarab S, Warnow T. 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31:12i44–52
    [Google Scholar]
  89. 88. 
    Molloy EK, Warnow T. 2018. To include or not to include: the impact of gene filtering on species tree estimation. Methods Syst. Biol. 67:2285–303
    [Google Scholar]
  90. 89. 
    Muller HJ. 1925. Why polyploidy is rarer in animals than in plants. Am. Nat. 59:346–53
    [Google Scholar]
  91. 90. 
    Nagata T, Hosaka-Sasaki A, Kikuchi S 2015. The evolutionary diversification of genes that encode transcription factor proteins in plants. Plant Transcription Factors D Gonzalez 73–97 Boston: Academic
    [Google Scholar]
  92. 91. 
    Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. Plant J 66:1194–211
    [Google Scholar]
  93. 92. 
    Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:3311–35
    [Google Scholar]
  94. 93. 
    Okita K, Ichisaka T, Yamanaka S 2007. Generation of germline-competent induced pluripotent stem cells. Nature 448:7151313–17
    [Google Scholar]
  95. 94. 
    Orr HA. 1990. “Why polyploidy is rarer in animals than in plants” revisited. Am. Nat. 136:6759–70
    [Google Scholar]
  96. 95. 
    Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34:1401–37
    [Google Scholar]
  97. 96. 
    Pabón-Mora N, Wong GK-S, Ambrose BA 2014. Evolution of fruit development genes in flowering plants. Front. Plant Sci. 5:300
    [Google Scholar]
  98. 97. 
    Page RD, Charleston MA. 1997. From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7:2231–40
    [Google Scholar]
  99. 98. 
    Pamilo P, Nei M. 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5:5568–83
    [Google Scholar]
  100. 99. 
    Parks M, Cronn R, Liston A 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7:84
    [Google Scholar]
  101. 100. 
    Pennisi E. 2017. Biologists propose to sequence the DNA of all life on Earth. Science Feb. 24. http://www.sciencemag.org/news/2017/02/biologists-propose-sequence-dna-all-life-earth
    [Google Scholar]
  102. 101. 
    Pfannebecker KC, Lange M, Rupp O, Becker A 2017. An evolutionary framework for carpel developmental control genes. Mol. Biol. Evol. 34:2330–48
    [Google Scholar]
  103. 102. 
    Pfannebecker KC, Lange M, Rupp O, Becker A 2017. Seed plant-specific gene lineages involved in carpel development. Mol. Biol. Evol. 34:4925–42
    [Google Scholar]
  104. 103. 
    Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C et al. 2009. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19:8706–12
    [Google Scholar]
  105. 104. 
    Philippe H, Laurent J. 1998. How good are deep phylogenetic trees. Curr. Opin. Genet. Dev. 8:6616–23
    [Google Scholar]
  106. 105. 
    Pimentel D, Donlea JM, Talbot CB, Song SM, Thurston AJF, Miesenböck G 2016. Operation of a homeostatic sleep switch. Nature 536:7616333–37
    [Google Scholar]
  107. 106. 
    Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D 2017. An early-branching freshwater cyanobacterium at the origin of plastids. Curr. Biol. 27:3386–91
    [Google Scholar]
  108. 107. 
    Potato Genome Seq. Consort., Xu X, Pan S, Cheng S, Zhang B et al. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475:7355189–95
    [Google Scholar]
  109. 108. 
    Qiu Y-L, Li L, Wang B, Chen Z, Knoop V et al. 2006. The deepest divergences in land plants inferred from phylogenomic evidence. PNAS 103:4215511–16
    [Google Scholar]
  110. 109. 
    Ramirez S, Liu X, Lin P-A, Suh J, Pignatelli M et al. 2013. Creating a false memory in the hippocampus. Science 341:6144387–91
    [Google Scholar]
  111. 110. 
    Rannala B, Yang Z. 2017. Efficient Bayesian species tree inference under the multispecies coalescent. Syst. Biol. 66:5823–42
    [Google Scholar]
  112. 111. 
    Rensing SA. 2017. Why we need more non-seed plant models. New Phytol 216:2355–60
    [Google Scholar]
  113. 112. 
    Richards CL, Hanzawa Y, Katari MS, Ehrenreich IM, Engelmann KE, Purugganan MD 2009. Perspectives on ecological and evolutionary systems biology. Annual Plant Reviews, Volume 35: Plant Systems Biology G Coruzzi, R Gutiérrez 331–49 Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  114. 113. 
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:7086940–43
    [Google Scholar]
  115. 114. 
    Robertson G, Schein J, Chiu R, Corbett R, Field M et al. 2010. De novo assembly and analysis of RNA-seq data. Nat. Methods 7:11909–12
    [Google Scholar]
  116. 115. 
    Roch S, Steel M. 2014. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol. 100C:56–62
    [Google Scholar]
  117. 116. 
    Romanov RE, Bulionkova TS. 2016. Research note: observations on a terrestrial charophyte in a temperate environment. Phycol. Res. 64:2118–20
    [Google Scholar]
  118. 117. 
    Rothfels CJ, Li F-W, Sigel EM, Huiet L, Larsson A et al. 2015. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Am. J. Bot. 102:71089–107
    [Google Scholar]
  119. 118. 
    Sage RF. 2017. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. J. Exp. Bot. 68:24039–56
    [Google Scholar]
  120. 119. 
    Salman-Minkov A, Sabath N, Mayrose I 2016. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2:16115
    [Google Scholar]
  121. 120. 
    Sayou C, Monniaux M, Nanao MH, Moyroud E, Brockington SF et al. 2014. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343:6171645–48
    [Google Scholar]
  122. 121. 
    Sayyari E, Mirarab S. 2016. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33:71654–68
    [Google Scholar]
  123. 122. 
    Sayyari E, Whitfield JB, Mirarab S 2017. Fragmentary gene sequences negatively impact gene tree and species tree reconstruction. Mol. Biol. Evol. 34:123279–91
    [Google Scholar]
  124. 123. 
    Scarpino SV, Levin DA, Meyers LA 2014. Polyploid formation shapes flowering plant diversity. Am. Nat. 184:4456–65
    [Google Scholar]
  125. 124. 
    Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N et al. 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519:349–52
    [Google Scholar]
  126. 125. 
    Sessa EB, Banks JA, Barker MS, Der JP, Duffy AM et al. 2014. Between two fern genomes. GigaScience 3:15
    [Google Scholar]
  127. 126. 
    Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43:2109–16
    [Google Scholar]
  128. 127. 
    Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:81134–44
    [Google Scholar]
  129. 128. 
    Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, Majure L, Miles NM et al. 2014. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol 202:41105–17
    [Google Scholar]
  130. 129. 
    Soltis DE, Visger CJ, Marchant DB, Soltis PS 2016. Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103:1146–66
    [Google Scholar]
  131. 130. 
    Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F et al. 2011. The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:2201–11
    [Google Scholar]
  132. 131. 
    Stata M, Sage TL, Hoffmann N, Covshoff S, Wong GK-S, Sage RF 2016. Mesophyll chloroplast investment in C3, C4 and C2 species of the genus Flaveria. Plant Cell Physiol 57:5904–18
    [Google Scholar]
  133. 132. 
    Su X-Z, Miller LH. 2015. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 58:111175–79
    [Google Scholar]
  134. 133. 
    Swofford DL, Olsen GJ, Waddell PJ, Hillis DM 1996. Phylogenetic inference. Molecular Systematics DM Hillis, BK Mable, C Moritz 407–514 Sunderland, MA: Sinauer, 2nd ed..
    [Google Scholar]
  135. 134. 
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:4663–76
    [Google Scholar]
  136. 135. 
    Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE et al. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207:2454–67
    [Google Scholar]
  137. 136. 
    Timme RE, Bachvaroff TR, Delwiche CF 2012. Broad phylogenomic sampling and the sister lineage of land plants. PLOS ONE 7:1e29696
    [Google Scholar]
  138. 137. 
    Tirichine L, Bowler C. 2011. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J 66:145–57
    [Google Scholar]
  139. 138. 
    Tomato Genome Consort., Sato S, Tabata S, Hirakawa H, Asamizu E et al. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:7400635–41
    [Google Scholar]
  140. 139. 
    Turmel M, Otis C, Lemieux C 2006. The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol. Biol. Evol. 23:61324–38
    [Google Scholar]
  141. 140. 
    Ueno O. 1998. Induction of Kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10:4571–84
    [Google Scholar]
  142. 141. 
    Ueno O, Samejima M, Muto S, Miyachi S 1988. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: expression of C4 and C3 modes in contrasting environments. PNAS 85:186733–37
    [Google Scholar]
  143. 142. 
    van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC 2015. Optogenetic control of organelle transport and positioning. Nature 518:7537111–14
    [Google Scholar]
  144. 143. 
    Van de Peer Y, Mizrachi E, Marchal K 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18:411–24
    [Google Scholar]
  145. 144. 
    Van de Poel B, Cooper ED, Van Der Straeten D, Chang C, Delwiche CF 2016. Transcriptome profiling of the green alga Spirogyra pratensis (Charophyta) suggests an ancestral role for ethylene in cell wall metabolism, photosynthesis, and abiotic stress responses. Plant Physiol 172:1533–45
    [Google Scholar]
  146. 145. 
    Vasco A, Smalls TL, Graham SW, Cooper ED, Wong GK-S et al. 2016. Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes. New Phytol 212:3745–58
    [Google Scholar]
  147. 146. 
    Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T et al. 2012. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Mol. Biol. Evol. 29:123793–806
    [Google Scholar]
  148. 147. 
    Vision TJ, Brown DG, Tanksley SD 2000. The origins of genomic duplications in Arabidopsis. Science 290:54992114–17
    [Google Scholar]
  149. 148. 
    von Caemmerer S, Paul Quick W, Furbank RT 2012. The development of C4 rice: current progress and future challenges. Science 336:60891671–72
    [Google Scholar]
  150. 149. 
    Wang J, Wang W, Li R, Li Y, Tian G et al. 2008. The diploid genome sequence of an Asian individual. Nature 456:721860–65
    [Google Scholar]
  151. 150. 
    Wang X, Wang H, Wang J, Sun R, Wu J et al. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet 43:101035–39
    [Google Scholar]
  152. 151. 
    Wendel JF. 2015. The wondrous cycles of polyploidy in plants. Am. J. Bot. 102:111753–56
    [Google Scholar]
  153. 152. 
    Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. PNAS 111:45E4859–68
    [Google Scholar]
  154. 153. 
    Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H et al. 2014. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:6182409–12
    [Google Scholar]
  155. 154. 
    Williams BP, Johnston IG, Covshoff S, Hibberd JM 2013. Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. eLife 2:e00961
    [Google Scholar]
  156. 155. 
    Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H et al. 2011. Origin of land plants: Do conjugating green algae hold the key?. BMC Evol. Biol. 11:104
    [Google Scholar]
  157. 156. 
    Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH 2009. The frequency of polyploid speciation in vascular plants. PNAS 106:3313875–79
    [Google Scholar]
  158. 157. 
    Xi Z, Liu L, Davis CC 2016. The impact of missing data on species tree estimation. Mol. Biol. Evol. 33:3838–60
    [Google Scholar]
  159. 158. 
    Xie Y, Wu G, Tang J, Luo R, Patterson J et al. 2014. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:121660–66
    [Google Scholar]
  160. 159. 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:Database IssueD643–48
    [Google Scholar]
  161. 160. 
    Zeng L, Zhang N, Zhang Q, Endress PK, Huang J, Ma H 2017. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol 214:31338–54
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-042916-041040
Loading
/content/journals/10.1146/annurev-arplant-042916-041040
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error