1932

Abstract

Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100344
2021-06-17
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-050718-100344.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100344&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams KL, Wendel JF. 2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8:2135–41
    [Google Scholar]
  2. 2. 
    Ahuja MR. 2005. Polyploidy in gymnosperms: revisited. Silvae Genet 54:59–69
    [Google Scholar]
  3. 3. 
    Alger EI, Edger PP. 2020. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54:108–13
    [Google Scholar]
  4. 4. 
    Arrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15:2140–46
    [Google Scholar]
  5. 5. 
    Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. 2018. The “Polyploid Hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 6:117
    [Google Scholar]
  6. 6. 
    Bai Z, Chen J, Liao Y, Wang M, Liu R et al. 2016. The impact and origin of copy number variations in the Oryza species. BMC Genom 17:261
    [Google Scholar]
  7. 7. 
    Barker MS 2013. Karyotype and genome evolution in pteridophytes. Plant Genome Diversity, Volume 2 J Grielhuber, J Dolezel, J Wendel 245–53 Vienna: Springer
    [Google Scholar]
  8. 8. 
    Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:2391–98
    [Google Scholar]
  9. 9. 
    Barker MS, Baute GJ, Liu S-L 2012. Duplications and turnover in plant genomes. Plant Genome Diversity, Volume 1 J Wendel, J Greilhuber, J Dolezel, I Leitch 155–69 Vienna: Springer
    [Google Scholar]
  10. 10. 
    Barker MS, Husband BC, Pires JC. 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103:71139–45
    [Google Scholar]
  11. 11. 
    Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW et al. 2008. Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 25:112445–55
    [Google Scholar]
  12. 12. 
    Barker MS, Wolf PG. 2010. Unfurling fern biology in the genomics age. BioScience 60:177–85
    [Google Scholar]
  13. 13. 
    Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A et al. 2009. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLOS Genet 5:e1000732
    [Google Scholar]
  14. 14. 
    Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M et al. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5:3657
    [Google Scholar]
  15. 15. 
    Birchler JA, Veitia RA. 2011. Protein-protein and protein-DNA dosage balance and differential paralog transcription factor retention in polyploids. Front. Plant Sci 2:64
    [Google Scholar]
  16. 16. 
    Birchler JA, Veitia RA 2012. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. PNAS 109:3714746–53
    [Google Scholar]
  17. 17. 
    Bird KA, VanBuren R, Puzey JR, Edger PP. 2018. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol 220:187–93
    [Google Scholar]
  18. 18. 
    Blischak PD, Mabry ME, Conant GC, Pires JC. 2016. Integrating networks, phylogenomics, and population genomics for the study of polyploidy. Annu. Rev. Ecol. Evol. Syst. 49:253–78
    [Google Scholar]
  19. 19. 
    Bomblies K, Higgins JD, Yant L. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytol 208:2306–23
    [Google Scholar]
  20. 20. 
    Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. 2016. The challenge of evolving stable polyploidy: Could an increase in “crossover interference distance” play a central role?. Chromosoma 125:287–300
    [Google Scholar]
  21. 21. 
    Bomblies K, Madlung A. 2014. Polyploidy in the Arabidopsis genus. Chromosome Res 22:2117–34
    [Google Scholar]
  22. 22. 
    Bowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:6930433–38
    [Google Scholar]
  23. 23. 
    Buggs RJA, Chamala S, Wu W, Tate JA, Schnable PS et al. 2012. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Curr. Biol. 22:3248–52
    [Google Scholar]
  24. 24. 
    Carretero-Paulet L, Van de Peer Y. 2020. The evolutionary conundrum of whole-genome duplication. Am. J. Bot. 107:1101–5
    [Google Scholar]
  25. 25. 
    Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:6199950–53
    [Google Scholar]
  26. 26. 
    Cheng F, Sun C, Wu J, Schnable J, Woodhouse MR et al. 2016. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa. New Phytol 211:288–99
    [Google Scholar]
  27. 27. 
    Cheng F, Wu J, Fang L, Sun S, Liu B et al. 2012. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLOS ONE 7:5e36442
    [Google Scholar]
  28. 28. 
    Chester M, Gallagher JP, Symonds VV, da Silva AVC, Mavrodiev EV et al. 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). PNAS 109:41176–81
    [Google Scholar]
  29. 29. 
    Cifuentes M, Grandont L, Moore G, Chèvre AM, Jenczewski E. 2010. Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186:129–36
    [Google Scholar]
  30. 30. 
    Clark J, Hidalgo O, Pellicer J, Liu H, Marquardt J et al. 2016. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol 210:31072–82
    [Google Scholar]
  31. 31. 
    Clarke TH, Garb JE, Hayashi CY, Arensburger P, Ayoub NA. 2015. Spider transcriptomes identify ancient large-scale gene duplication event potentially important in silk gland evolution. Genome Biol. Evol. 7:71856–70
    [Google Scholar]
  32. 32. 
    Clausen RE. 1941. Polyploidy in Nicotiana. Am. Nat. 75:291–306
    [Google Scholar]
  33. 33. 
    Comai L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6:11836–46
    [Google Scholar]
  34. 34. 
    Comai L, Tyagi AP, Lysak MA. 2003. FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res 11:3217–26
    [Google Scholar]
  35. 35. 
    Conant GC, Birchler JA, Chris Pires J 2014. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 19:91–98
    [Google Scholar]
  36. 36. 
    Crismani W, Mercier R. 2012. What limits meiotic crossovers?. Cell Cycle 11:193527–28
    [Google Scholar]
  37. 37. 
    De Smet R, Adams KL, Vandepoele K, Van Montagu MCE, Maere S, Van de Peer Y 2013. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. PNAS 110:82898–903
    [Google Scholar]
  38. 38. 
    Defoort J, Van de Peer Y, Carretero-Paulet L. 2019. The evolution of gene duplicates in angiosperms and the impact of protein-protein interactions and the mechanism of duplication. Genome Biol. Evol. 11:82292–305
    [Google Scholar]
  39. 39. 
    Devos KM, Brown JKM, Bennetzen JL. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:71075–79
    [Google Scholar]
  40. 40. 
    Dodsworth S, Chase MW, Leitch AR. 2016. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms?. Bot. J. Linn. Soc. 180:11–5
    [Google Scholar]
  41. 41. 
    Douglas GM, Gos G, Steige KA, Salcedo A, Holm K et al. 2015. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. PNAS 112:92806–11
    [Google Scholar]
  42. 42. 
    Doyle JJ, Egan AN. 2010. Dating the origins of polyploidy events. New Phytol 186:173–85
    [Google Scholar]
  43. 43. 
    Doyle JJ, Sherman-Broyles S. 2017. Double trouble: taxonomy and definitions of polyploidy. New Phytol 213:2487–93
    [Google Scholar]
  44. 44. 
    Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:8362–66
    [Google Scholar]
  45. 45. 
    Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M et al. 2019. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51:3541–47
    [Google Scholar]
  46. 46. 
    Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M et al. 2017. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29:92150–67
    [Google Scholar]
  47. 47. 
    Emery M, Willis MMS, Hao Y, Barry K, Oakgrove K et al. 2018. Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PLOS Genet 14:3e1007267
    [Google Scholar]
  48. 48. 
    Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O et al. 2014. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLOS ONE 9:1e85266
    [Google Scholar]
  49. 49. 
    Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch IJ et al. 2019. Polyploidy in the conifer genus Juniperus: an unexpectedly high rate. Front. Plant Sci. 10:676
    [Google Scholar]
  50. 50. 
    Feldman M, Levy AA. 2012. Genome evolution due to allopolyploidization in wheat. Genetics 192:3763–74
    [Google Scholar]
  51. 51. 
    Freeling M 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60:433–53
    [Google Scholar]
  52. 52. 
    Freeling M, Scanlon MJ, Fowler JE. 2015. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35:110–18
    [Google Scholar]
  53. 53. 
    Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, Schnable JC. 2012. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr. Opin. Plant Biol. 15:2131–39
    [Google Scholar]
  54. 54. 
    Fulton IW. 1950. Unilateral nuclear migration and the interactions of haploid mycelia in the fungus Cyathus stercoreus. PNAS 36:5306–12
    [Google Scholar]
  55. 55. 
    Gaebelein R, Schiessl SV, Samans B, Batley J, Mason AS. 2019. Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids. New Phytol 223:2965–78
    [Google Scholar]
  56. 56. 
    Garsmeur O, Schnable JC, Almeida A, Jourda C, D'Hont A, Freeling M 2014. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31:2448–54
    [Google Scholar]
  57. 57. 
    Gastony GJ. 1991. Gene silencing in a polyploid homosporous fern: paleopolyploidy revisited. PNAS 88:51602–5
    [Google Scholar]
  58. 58. 
    Gaut BS, Doebley JF 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. PNAS 94:136809–14
    [Google Scholar]
  59. 59. 
    Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK. 2007. Recombination: an underappreciated factor in the evolution of plant genomes. Nat. Rev. Genet. 8:177–84
    [Google Scholar]
  60. 60. 
    Gonzalo A, Lucas M-O, Charpentier C, Sandmann G, Lloyd A, Jenczewski E 2019. Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nat. Commun. 10:12354
    [Google Scholar]
  61. 61. 
    Gout J-F, Johri P, Arnaiz O, Doak TG, Bhullar S et al. 2019. Universal trends of post-duplication evolution revealed by the genomes of 13 Paramecium species sharing an ancestral whole-genome duplication. bioRxiv 573576. https://doi.org/10.1101/573576
    [Crossref]
  62. 62. 
    Hallinan NM, Lindberg DR. 2011. Comparative analysis of chromosome counts infers three paleopolyploidies in the Mollusca. Genome Biol. Evol. 3:1150–63
    [Google Scholar]
  63. 63. 
    Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P et al. 2016. Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum. Plant Cell 28:388–405
    [Google Scholar]
  64. 64. 
    Harper AL, Trick M, He Z, Clissold L, Fellgett A et al. 2016. Genome distribution of differential homoeologue contributions to leaf gene expression in bread wheat. Plant Biotechnol. J. 14:51207–14
    [Google Scholar]
  65. 65. 
    Hastings PJ, Lupski JR, Rosenberg SM, Ira G 2009. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10:551–64
    [Google Scholar]
  66. 66. 
    Hauber DP, Reeves A, Stack SM. 1999. Synapsis in a natural autotetraploid. Genome 42:5936–49
    [Google Scholar]
  67. 67. 
    Haufler CH. 1987. Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. Am. J. Bot. 74:6953–66
    [Google Scholar]
  68. 68. 
    Haufler CH, Soltis DE 1986. Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. PNAS 83:124389–93
    [Google Scholar]
  69. 69. 
    Hawkins JS, Proulx SR, Rapp RA, Wendel JF 2009. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. PNAS 106:17811–16
    [Google Scholar]
  70. 70. 
    Hazarika MH, Rees H. 1967. Genotypic control of chromosome behaviour in rye X. Chromosome pairing and fertility in autotetraploids. Heredity 22:317–32
    [Google Scholar]
  71. 71. 
    Henry IM, Dilkes BP, Tyagi A, Gao J, Christensen B, Comai L. 2014. The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell 26:1181–94
    [Google Scholar]
  72. 72. 
    Hollister JD. 2015. Polyploidy: adaptation to the genomic environment. New Phytol 205:31034–39
    [Google Scholar]
  73. 73. 
    Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. 2012. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLOS Genet 8:12e1003093
    [Google Scholar]
  74. 74. 
    Hollister JD, Gaut BS. 2009. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:81419–28
    [Google Scholar]
  75. 75. 
    Hollister JD, Smith LM, Guo Y-L, Ott F, Weigel D, Gaut BS 2011. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. PNAS 108:62322–27
    [Google Scholar]
  76. 76. 
    Jackson RC, Jackson JW. 1996. Gene segregation in autotetraploids: prediction from meiotic configurations. Am. J. Bot. 83:6673–78
    [Google Scholar]
  77. 77. 
    Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO et al. 2003. PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:2645–53
    [Google Scholar]
  78. 78. 
    Jiao W-B, Schneeberger K. 2020. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat. Commun. 11:989
    [Google Scholar]
  79. 79. 
    Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:734597–100
    [Google Scholar]
  80. 80. 
    Jones GH, Franklin FCH. 2006. Meiotic crossing-over: obligation and interference. Cell 126:2246–48
    [Google Scholar]
  81. 81. 
    Kondrashov FA, Kondrashov AS. 2006. Role of selection in fixation of gene duplications. J. Theor. Biol. 239:2141–51
    [Google Scholar]
  82. 82. 
    Lan X, Pritchard JK. 2016. Coregulation of tandem duplicate genes slows evolution of subfunctionalization in mammals. Science 352:62881009–13
    [Google Scholar]
  83. 83. 
    Landergott U, Naciri Y, Schneller JJ, Holderegger R. 2006. Allelic configuration and polysomic inheritance of highly variable microsatellites in tetraploid gynodioecious Thymus praecox agg. Theor. Appl. Genet. 113:453–65
    [Google Scholar]
  84. 84. 
    Laughnan JR, Gabay SJ. 1970. Observations on genetic properties of intrachromosomal recombination. Mol. Gen. Genet. 108:93–96
    [Google Scholar]
  85. 85. 
    Le Comber SC, Ainouche ML, Kovarik A, Leitch AR 2010. Making a functional diploid: from polysomic to disomic inheritance. New Phytol 186:1113–22
    [Google Scholar]
  86. 86. 
    Leitch AR, Leitch IJ. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320:5875481–83
    [Google Scholar]
  87. 87. 
    Li F-W, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J et al. 2018. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat Plants 4:7460–72
    [Google Scholar]
  88. 88. 
    Li J-T, Hou G-Y, Kong X-F, Li C-Y, Zeng J-M et al. 2015. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio). Sci. Rep. 5:8199
    [Google Scholar]
  89. 89. 
    Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW et al. 2015. Early genome duplications in conifers and other seed plants. Sci. Adv. 1:10e1501084
    [Google Scholar]
  90. 90. 
    Li Z, Barker MS. 2020. Inferring putative ancient whole-genome duplications in the 1000 Plants (1KP) initiative: access to gene family phylogenies and age distributions. GigaScience 9:2giaa004
    [Google Scholar]
  91. 91. 
    Li Z, Defoort J, Tasdighian S, Maere S, Van de Peer Y, De Smet R. 2016. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28:2326–44
    [Google Scholar]
  92. 92. 
    Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI et al. 2018. Multiple large-scale gene and genome duplications during the evolution of hexapods. PNAS 115:184713–18
    [Google Scholar]
  93. 93. 
    Lien S, Koop BF, Sandve SR, Miller JR, Kent MP et al. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–5
    [Google Scholar]
  94. 94. 
    Liu C, Wang J, Sun P, Yu J, Meng F et al. 2020. Illegitimate recombination between homeologous genes in wheat genome. Front. Plant Sci. 11:1076
    [Google Scholar]
  95. 95. 
    Liu H, Ekrt L, Koutecky P, Pellicer J, Hidalgo O et al. 2019. Polyploidy does not control all: Lineage-specific average chromosome length constrains genome size evolution in ferns. J. Syst. Evol. 57:4418–30
    [Google Scholar]
  96. 96. 
    Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas M-O et al. 2006. Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:31583–96
    [Google Scholar]
  97. 97. 
    Lutz AM. 1907. A preliminary note on the chromosomes of Oenothera lamarckiana and one of its mutants, O. gigas. Science 26:657151–52
    [Google Scholar]
  98. 98. 
    Lynch M, Force A. 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:1459–73
    [Google Scholar]
  99. 99. 
    Lysak MA. 2014. Live and let die: centromere loss during evolution of plant chromosomes. New Phytol 203:41082–89
    [Google Scholar]
  100. 100. 
    Ma J, Devos KM, Bennetzen JL. 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–69
    [Google Scholar]
  101. 101. 
    Ma X-F, Gustafson JP. 2005. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet. Genome Res. 109:1–3236–49
    [Google Scholar]
  102. 102. 
    Mable BK. 2004.. “ Why polyploidy is rarer in animals than in plants”: myths and mechanisms. Biol. J. Linn. Soc. 82:4453–66
    [Google Scholar]
  103. 103. 
    Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:72277–90
    [Google Scholar]
  104. 104. 
    Mandáková T, Li Z, Barker MS, Lysak MA. 2017. Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J 91:13–21
    [Google Scholar]
  105. 105. 
    Mandáková T, Lysak MA. 2018. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42:55–65
    [Google Scholar]
  106. 106. 
    Mandáková T, Pouch M, Harmanová K, Zhan SH, Mayrose I, Lysak MA. 2017. Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 26:226445–62
    [Google Scholar]
  107. 107. 
    Martín AC, Shaw P, Phillips D, Reader S, Moore G. 2014. Licensing MLH1 sites for crossover during meiosis. Nat. Commun. 5:4580
    [Google Scholar]
  108. 108. 
    Mayrose I, Barker MS, Otto SP. 2010. Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst. Biol. 59:2132–44
    [Google Scholar]
  109. 109. 
    Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS et al. 2011. Recently formed polyploid plants diversify at lower rates. Science 333:60471257
    [Google Scholar]
  110. 110. 
    McGrath JM, Hickok LG. 1999. Multiple ribosomal RNA gene loci in the genome of the homosporous fern Ceratopteris richardii. Can. J. Bot. 77:81199–202
    [Google Scholar]
  111. 111. 
    McGrath JM, Hickok LG, Pichersky E. 1994. Assessment of gene copy number in the homosporous ferns Ceratopteris thalictroides and C. richardii (Parkeriaceae) by restriction fragment length polymorphisms. Plant Syst. Evol. 189:3–4203–10
    [Google Scholar]
  112. 112. 
    Meyer A, Schartl M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11:6699–704
    [Google Scholar]
  113. 113. 
    Monnahan P, Brandvain Y. 2019. The effect of autopolyploidy on population genetic signals of hard sweeps. Biol. Lett. 16:20190796
    [Google Scholar]
  114. 114. 
    Morgan C, Zhang H, Henry CE, Franklin FCH, Bomblies K 2020. Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. PNAS 117:168980–88
    [Google Scholar]
  115. 115. 
    Morrison JW, Rajhathy T. 1960. Chromosome behaviour in autotetraploid cereals and grasses. Chromosoma 11:297–309
    [Google Scholar]
  116. 116. 
    Muir CD, Hahn MW. 2015. The limited contribution of reciprocal gene loss to increased speciation rates following whole-genome duplication. Am. Nat. 185:70–86
    [Google Scholar]
  117. 117. 
    Muller HJ. 1925. Why polyploidy is rarer in animals than in plants. Am. Nat. 59:663346–53
    [Google Scholar]
  118. 118. 
    Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G et al. 2005. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–17
    [Google Scholar]
  119. 119. 
    Nakazato T, Barker MS, Rieseberg LH, Gastony GJ 2008. Evolution of the nuclear genome of ferns and lycophytes. Biology and Evolution of Ferns and Lycophytes TA Ranker, CH Haufler 175–98 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  120. 120. 
    Nakazato T, Jung M-K, Housworth EA, Rieseberg LH, Gastony GJ. 2006. Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics 173:31585–97
    [Google Scholar]
  121. 121. 
    Navarro A, Barton NH. 2003. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science 300:321–24
    [Google Scholar]
  122. 122. 
    Nossa CW, Havlak P, Yue J-X, Lv J, Vincent KY et al. 2014. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. GigaScience 3:12047–217X-3–9
    [Google Scholar]
  123. 123. 
    Ohno S. 1970. Evolution by Gene Duplication New York: Springer Press
  124. 124. 
    One Thousand Plant Transcript. Initiat 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:7780679–85
    [Google Scholar]
  125. 125. 
    Orr HA. 1990.. “ Why Polyploidy is Rarer in Animals Than in Plants” Revisited. Am. Nat. 136:6759–70
    [Google Scholar]
  126. 126. 
    Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:3452–62
    [Google Scholar]
  127. 127. 
    Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34:401–37
    [Google Scholar]
  128. 128. 
    Panchy N, Lehti-Shiu M, Shiu S-H. 2016. Evolution of gene duplication in plants. Plant Physiol 171:2294–316
    [Google Scholar]
  129. 129. 
    Parisod C, Holderegger R, Brochmann C. 2010. Evolutionary consequences of autopolyploidy. New Phytol 186:15–17
    [Google Scholar]
  130. 130. 
    Parra-Nunez P, Pradillo M, Santos JL. 2018. Competition for chiasma formation between identical and homologous (but not identical) chromosomes in synthetic autotetraploids of Arabidopsis thaliana. Front. Plant Sci. 9:1924
    [Google Scholar]
  131. 131. 
    Paterson AH, Wang X, Li J, Tang H 2012. Ancient and recent polyploidy in monocots. Polyploidy and Genome Evolution P Soltis, D Soltis 93–108 Berlin: Springer
    [Google Scholar]
  132. 132. 
    Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H et al. 2014. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345:61941250091
    [Google Scholar]
  133. 133. 
    Pichersky E, Soltis D, Soltis P 1990. Defective chlorophyll a/b-binding protein genes in the genome of a homosporous fern. PNAS 87:1195–99
    [Google Scholar]
  134. 134. 
    Pires JC, Conant GC. 2016. Robust yet fragile: expression noise, protein misfolding, and gene dosage in the evolution of genomes. Annu. Rev. Genet. 50:113–31
    [Google Scholar]
  135. 135. 
    Popescu A-A, Huber KT, Paradis E. 2012. ape 3.0: new tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics 28:111536–37
    [Google Scholar]
  136. 136. 
    Qiao X, Li Q, Yin H, Qi K, Li L et al. 2019. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 20:38
    [Google Scholar]
  137. 137. 
    Qu L, Hancock JF, Whallon JH. 1998. Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and Autotetraploid V. corymbosum (Ericaceae). Am. J. Bot. 85:5698–703
    [Google Scholar]
  138. 138. 
    Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29:467–501
    [Google Scholar]
  139. 139. 
    Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33:589–639
    [Google Scholar]
  140. 140. 
    Ren L, Huang W, Cannon EKS, Bertioli DJ, Cannon SB. 2018. A mechanism for genome size reduction following genomic rearrangements. Front. Genet. 9:454
    [Google Scholar]
  141. 141. 
    Ren R, Wang H, Guo C, Zhang N, Zeng L et al. 2018. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol. Plant 11:3414–28
    [Google Scholar]
  142. 142. 
    Renny-Byfield S, Gong L, Gallagher JP, Wendel JF. 2015. Persistence of subgenomes in paleopolyploid cotton after 60 My of evolution. Mol. Biol. Evol. 32:41063–71
    [Google Scholar]
  143. 143. 
    Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3:2217–23
    [Google Scholar]
  144. 144. 
    Riley R, Chapman V. 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–15
    [Google Scholar]
  145. 145. 
    Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK et al. 2017. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol 18:111
    [Google Scholar]
  146. 146. 
    Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z et al. 2017. Revisiting ancestral polyploidy in plants. Sci. Adv. 3:7e1603195
    [Google Scholar]
  147. 147. 
    Sánchez-Morán E, Benavente E, Orellana J. 2001. Analysis of karyotypic stability of homoeologous-pairing (ph) mutants in allopolyploid wheats. Chromosoma 110:5371–77
    [Google Scholar]
  148. 148. 
    Schnable JC, Freeling M, Lyons E. 2012. Genome-wide analysis of syntenic gene deletion in the grasses. Genome Biol. Evol. 4:3265–77
    [Google Scholar]
  149. 149. 
    Schnable JC, Springer NM, Freeling M 2011. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. PNAS 108:104069–74
    [Google Scholar]
  150. 150. 
    Schranz ME, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15:147–53
    [Google Scholar]
  151. 151. 
    Schrider DR, Costello JC, Hahn MW. 2009. All human-specific gene losses are present in the genome as pseudogenes. J. Comput. Biol. 16:101419–27
    [Google Scholar]
  152. 152. 
    Schubert I, Lysak MA. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:6207–16
    [Google Scholar]
  153. 153. 
    Scott AD, Stenz NWM, Ingvarsson PK, Baum DA. 2016. Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytol 221:1186–93
    [Google Scholar]
  154. 154. 
    Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:7625336–43
    [Google Scholar]
  155. 155. 
    Shang Y, Yang F, Schulman AH, Zhu J, Jia Y et al. 2017. Gene deletion in barley mediated by LTR-retrotransposon BARE. Sci. Rep. 7:43766
    [Google Scholar]
  156. 156. 
    Shi T, Huang H, Barker MS. 2010. Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann. Bot. 106:3497–504
    [Google Scholar]
  157. 157. 
    Shi T, Rahmani RS, Gugger PF, Wang M, Li H et al. 2020. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Mol. Biol. Evol. 37:82394–413
    [Google Scholar]
  158. 158. 
    Šmarda P, Horová L, Knápek O, Dieck H, Dieck M et al. 2018. Multiple haploids, triploids, and tetraploids found in modern-day “living fossil” Ginkgo biloba. Hortic. Res. 5:55
    [Google Scholar]
  159. 159. 
    Šmarda P, Vesel P, Šmerda J, Bureš P, Knápek O, Chytrá M. 2016. Polyploidy in a “living fossil” Ginkgo biloba. New Phytol 212:111–14
    [Google Scholar]
  160. 160. 
    Soltis DE, Visger CJ, Marchant DB, Soltis PS. 2016. Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103:71146–66
    [Google Scholar]
  161. 161. 
    Stebbins GL Jr. 1947. Types of polyploids; their classification and significance. Adv. Genet. 1:403–29
    [Google Scholar]
  162. 162. 
    Stebbins GL Jr. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108:279695–98
    [Google Scholar]
  163. 163. 
    Stebbins GL Jr. 1950. Variation and Evolution in Plants New York: Columbia University Press
  164. 164. 
    Stift M, Berenos C, Kuperus P, van Tienderen PH. 2008. Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data. Genetics 179:42113–23
    [Google Scholar]
  165. 165. 
    Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS et al. 2012. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190:41563–74
    [Google Scholar]
  166. 166. 
    Tayalé A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet. Genome Res. 140:2–479–96
    [Google Scholar]
  167. 167. 
    Thomas BC, Pedersen B, Freeling M. 2006. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:7934–46
    [Google Scholar]
  168. 168. 
    Tian Z, Rizzon C, Du J, Zhu L, Bennetzen JL et al. 2009. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?. Genome Res 19:2221–30
    [Google Scholar]
  169. 169. 
    Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18:7411–24
    [Google Scholar]
  170. 170. 
    Vu GTH, Cao HX, Reiss B, Schubert I. 2017. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. New Phytol 214:1712–21
    [Google Scholar]
  171. 171. 
    Wang X, Wang H, Wang J, Sun R, Wu J et al. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:101035–39
    [Google Scholar]
  172. 172. 
    Wendel JF. 2015. The wondrous cycles of polyploidy in plants. Am. J. Bot. 102:111753–56
    [Google Scholar]
  173. 173. 
    Wendel JF, Flagel LE, Adams KL. 2012. Jeans, genes, and genomes: cotton as a model for studying polyploidy. Polyploidy and Genome Evolution P Soltis, D Soltis 181–207 Berlin: Springer
    [Google Scholar]
  174. 174. 
    Werth CR, Windham MD. 1991. A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am. Nat. 137:4515–26
    [Google Scholar]
  175. 175. 
    Wicker T, Yahiaoui N, Keller B. 2007. Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J 51:631–41
    [Google Scholar]
  176. 176. 
    Winge Ø. 1917. The chromosomes. Their numbers and general importance. Compt. Rend. Trav. Lab. Carlsberg 13:131–75
    [Google Scholar]
  177. 177. 
    Wolfe KH. 2001. Yesterday's polyploids and the mystery of diploidization. Nat. Rev. Genet. 2:333–41
    [Google Scholar]
  178. 178. 
    Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH 2009. The frequency of polyploid speciation in vascular plants. PNAS 106:3313875–79
    [Google Scholar]
  179. 179. 
    Woodhouse MR, Cheng F, Pires JC, Lisch D, Freeling M, Wang X 2014. Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. PNAS 111:145283–88
    [Google Scholar]
  180. 180. 
    Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D et al. 2010. Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLOS Biol 8:6e1000409
    [Google Scholar]
  181. 181. 
    Xie J, Chen S, Xu W, Zhao Y, Zhang D. 2019. Origination and function of plant pseudogenes. Plant Signal. Behav. 14:81625698
    [Google Scholar]
  182. 182. 
    Xie J, Li Y, Liu X, Zhao Y, Li B et al. 2019. Evolutionary origins of pseudogenes and their association with regulatory sequences in plants. Plant Cell 31:3563–78
    [Google Scholar]
  183. 183. 
    Xiong Z, Gaeta RT, Pires JC 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. PNAS 108:197908–13
    [Google Scholar]
  184. 184. 
    Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD et al. 2013. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr. Biol. 23:212151–56
    [Google Scholar]
  185. 185. 
    Yoo M-J, Szadkowski E, Wendel JF. 2013. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:2171–80
    [Google Scholar]
  186. 186. 
    Yoshida M-A, Ishikura Y, Moritaki T, Shoguchi E, Shimizu KK et al. 2011. Genome structure analysis of molluscs revealed whole genome duplication and lineage specific repeat variation. Gene 483:1–263–71
    [Google Scholar]
  187. 187. 
    Zhang H, Bian Y, Gou X, Zhu B, Xu C et al. 2013. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. PNAS 110:93447–52
    [Google Scholar]
  188. 188. 
    Zhang J. 2003. Evolution by gene duplication: an update. Trends Ecol. Evol. 18:6292–98
    [Google Scholar]
  189. 189. 
    Zhang Z, Harrison PM, Liu Y, Gerstein M. 2003. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:122541–58
    [Google Scholar]
  190. 190. 
    Zhao M, Zhang B, Lisch D, Ma J. 2017. Patterns and consequences of subgenome differentiation provide insights into the nature of paleopolyploidy in plants. Plant Cell 29:122974–94
    [Google Scholar]
  191. 191. 
    Zwaenepoel A, Van de Peer Y. 2019. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol. Biol. Evol. 36:71384–404
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100344
Loading
/content/journals/10.1146/annurev-arplant-050718-100344
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error